Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n.

Size: px
Start display at page:

Download "Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n."

Transcription

1 .8 Power Series. n x n x n n Using the ratio test. lim x n+ n n + lim x n n + so r and I (, ). By the ratio test. n Then r and I (, ). n x < ( ) n x n < x < n lim x n+ n (n + ) x n lim xn n (n + ) x < < x < By the ratio test lim x ( n + ) n! n (n + )! x n lim x n n + < so r and I (, ) x n n!

2 4. ( ) n x n 4 n By the ratio test lim n+ x n+ 4 n n 4 n + n x n lim x 4 n n 4 < n + x < x < < x < So r and I ( /, /) 5. By the Ratio Test n (x + )n ( ) n n lim n So r and I ( 4, ) (x + ) n+ n n (n + ) n+ (x + ) n lim n(x + ) n n + < x + < x + < 4 < x < 6. (x ) n 5 n n

3 By the Ratio test lim (x ) n+ 5 n n n 5 n+ n + (x ) n lim (x ) n n 5 n + < x 5 < x < 5 x < 5 x < 5 5 < x < 5 < x < So r 5 and I (, ).9 Representing Functions as Power Series. f(x) + x Using the formula for the sum of a geometric series r n r We find that + x ( x) x n ( ) n x n By the properties of geometric series we know that so I (, ) x < x <

4 . Using Geometric series f(x) x x (x ) n x n as r x x < So I (, ). x 5 Using the same methodology as before x x 5 ( x ) n 5 x n 5 n+ The radius of convergence is 5 and the interval of convergence is (-5,5) x n 5 n 4. x 9 + x 4

5 Using the same methodology with slightly more manipulation x 9 + x x 9 ( x ) x 9 ( x ) 9 x ( x 9 9 ) n ( ) n xn+ 9 n+ I use the ratio test to find the radius of convergence: Now we can calculate that lim x (n+)+ 9 n+ n 9 n+ x n+ lim n lim n x 9 x n++ 9x n+ x 9 x 9 < x < 9 x < So the radius of convergence is and the interval of convergence is (-,) 5. x We will apply the exact same procedure. yes there is a pattern here... x x x n n x n n+ 5

6 By the properties of the geometric series, this power series converges when x < Which is the case when x < So the Radius of convergence is and the interval of convergence is (-,) 6. Note that (x ) ( x) also note that ( ) x ( x) From here it is possible to use integration to find the power series of this function: x (x ) x ( x) x ( x x ( x n n ) x n n+ nx n n+ We need to start the power series at to avoid negative exponents, so we get: x nx n n+ 7. If you think that computing t t dt 8 ) nx n+ n+ is going to be a pain in the butt, then you and I are in agreement dear reader. We can use the following property to solve the integral using a power series. c n (x a) n dx c n (x a) n dx 6

7 So first we turn the integrand into a power series: and we integrate: t t t 8 t 8 t t 8n t 8n+ t 8n+ dt t8n+ 8n + + C and find that the integral is equal to C + t 8n+ 8n +. Taylor and Maclaurin Series. Find the Maclaurin series for f(x). Find the radius of convergence. a. f(x) xcos(x) Recall that the formula for a Maclaurin series is n f n () (x a) n n! The best way to start this problem is to write out a few terms to identify the pattern. I start with Derivatives: f(x) x cos(x) f() f (x) cos(x) x sin(x) f () f () (x) sin(x) x cos(x) f () () f () (x) cos(x) + x sin(x) f () f 4 (x) 4 sin(x) + x cos(x) f 4 () f 5 (x) 5 cos(x) x sin(x) f 5 () 5 7

8 And so the first few terms of the series looks like this: x! x + 5 5! x5... and the so in summation notation: ( ) n (n)! xn+ b. n f(x) ln( + x) Note that the nth derivative (n ) of this function is given by and so evaluated at f n (x) ( )n+ (n )! ( + x) n f n () ( ) n+ (n )! Note that f(). So using this in the formula for a taylor series we get that : f(x) ( ) n (n )! + x n ( ) n+ x n n! n c. f(x) e 5x Note that the nth derivative of f(x) is given by and so d. f(x) f n (x) 5 n e 5x 5 n e 5() x n n! n xe x n 5 n n! xn Note that the nth derivative of e x n e x we can use this to get the Maclaurin series like this: f(x) xe n x x n! xn 8 n n n n! xn+

9 . find the Taylor series for f(x) centered at a a. a so f(x) + x + x f(x) + x + x f (x) x + f (x) f() 8f () 5f () and consequently the taylor series is finite, given by the polynomial: (x ) +! (x ) 7 + 5(x ) + (x ) b. f(x) e x a Note that the nth derivative of e x is e x so: f n () e So we can use this to get our Taylor series : n e (x )n n! c. a π f(x) cos(x) lets do some derivatives and figure the series out from there: f(x) cos x f(π) f (x) sin x f (π) f (x) cos x f (π) f (x) sin x f (π) clearly the derivatives follow this pattern, so we can construct the series: f(x) n ( ) n+ (x π) n (n)! 9

10 d. a 9 f(x) x Let s take some derivatives and search out a pattern f(x) x f(9) f (x) x f (9) 9 f (x) 4 x 5 f (9) 9 f (x) 5 8 x 7 f (9) 5 9 So in general because of the power rule, the nth derivative of f at 9 will be f (n) (9) ( )n ( 5 n ) n 9 n and so the taylor series centred at 9 will be n ( ) n ( 5 n ) (x 9) n n! n 9 n. Applications of Taylor Series. Find T (x) for each function a. for a So T is We need derivatives: f(x) e x sin(x) f(x) e x sin(x) f() f (x) e x (cos x sin x) f () f (x) e x cos x f () f (x) e x (cos x sin x) f () T x x + x

11 b. f(x) x cos x a Use the derivatives we found in part a from. to get T T + x + x! x x x c. f(x) tan (x) a Taking some derivatives: f(x) tan (x) f() π 4 f (x) + x f () f (x) x f () ( + x ) f (x) 6x ( + x ) f (x) and so T π 4 + x + 4 x + x d. a Using the same process, f(x) ln( + x) f(x) ln( + x) f() ln() f (x) f () + x f 4 (x) f () 4 ( + x) 9 f 6 (x) f () 6 ( + x) 7 and so T ln() + x + 9 x x

12 . Parametric Equations Eliminate the parameter and find the Cartesian coordinates a. x sin(θ) y cos(θ) Note that sin (θ) + cos (θ) so we know also that x + y and since θ runs from to π we can conclude that the plot is a half circle in the lower portion of the plane, so y b. First we solve for a parameter: x 4 cos(θ)y 5 sin(θ) x 4 cos(θ) θ cos x 4 then use that to eliminate the parameter in the other equation. y 5 sin(cos ( x )) () 4 y 5 4 ± 6 x () You can use a triangle to get from line to line like this B 4 6 x C x A we can work it out from there. for x y 5 6 (6 x ) y 5 x 6 y 5 + x 6 the angle with vertex C is θ and so

13 c. Solve for cos(θ) x + cos(θ) y cos(θ) so and so we get that: for x d. x + cos(θ) x + cos(θ) y cos(θ) y + c cos(θ) y + cos(θ) x + y + x t y x solving for t in the x equation we get y t x t x t so we can sub that into the y equation to get for x e. y x x t 5 y t + Solving solving for t in the x equation we find that t x + 5 and so substituting to eliminate the parameter we find that: y x y x + + y x +

14 4. Calculus of parametric curves. At what point does the curve x cos (t), y tan(t)( cos (t) Cross itself? Find the equations for both tangents at that point. The curve corsses itself at (,), so we can solve for θ by x cos (t) cos (t) t cos (± ) we can conclude that t is equal to π 4 and 7π 4 So Computing the slope of tangent I can use the following formula, and so dy dy dx dt dx dt dx 4 cos(t) sin(t) dt dy dt sec (t) 4 sin (t) dy dx sec (t) 4 sin (t) 4 cos(t) sin(t) () and evaluating at π we get and evaluating at 7π we get - so the equations for those lines are easy to get since we have a slope and a point (,) 4 4 we get y x and y x. evaluate derivatives and determine concavity for x t t and y t I ll first get my derivatives using the formula above and using the identity that d d dy y dx dt dx dx dt 4

15 so and consequently dx dt t (4) dy t (5) dy dx dt t t (6) (t ) (t)(6t) fracd ydx (t ) t 6(t + 4) (t ) 6(t + 4) 7(t 4) (t + 4) 9(t 4) The second derivative is never zero, but it doesn t exist for t ± so those will be the inflection points. for t < the second derivative is negative, for < t < the second derivative is positive, and for t > the second derivative is negative. its concave up between - and.. find the are of the region enclosed by the Asteroid given by x a cos (θ) and y a sin (θ) Recall that the Area under a parametric curve is given by A β α g(t)f (t)dt for x f(t) and y g(t) note that the asteroid is symetric about both axes and so we can evaluate our integral from to π and multiply by four in order to find the area. f (t) a cos (t) sin(t) 5

16 so we will evaluate the integral: 4 a sin (t)( a cos (t) sin(t)dt a a a ( pi ) a π 8 sin 4 (t)cos (t)dt sin 4 (t) sin 6 (t)dt I used an integration table for this one, Wolfram Alpha has a great step by step for it. 5 Set up but don t evaluate the following arc length integrals a. x t t, y 4 t Recall that arclength is given by the formula β (dx ) ( ) dy L + dt dt dt α So we can set it up by first taking some derivatives dx dt tdy dt 5 t and so we just plug it in on the bounds we re given, which is simplified to L L ( t) + (t 5 ) dt 4t + 4t 5 dt t + t dt 5 6

17 b. x t + cos(t) using the same strategy as above: so the arc length is given by dx dt sin(t) y t sin(t) dy dt cos(t) ( sin t) + ( cos t) dt sin(t) + sin t + cos(t) + cos tdt using the Pythagorean Identity I can reduce + (sin (t) + cos (t)) sin(t) cos(t)dt (sin(t) + cos(t))dt 5. find the length of the curve given by x +t and y 4 + t setting up the integral as before: dx dt 6tdy dt 6t 6t + 6t 4 dt 6 t + t dt u + t ( u udu ( ) 6. polar coordinates du t. find the slopes of tangent lines at specified points r sin(θ) at π 6 following formula: recall that polar derivatives can be attained using the dr dy dy sin(θ) + r cos(θ) dθ cos(θ) r sin(θ) dr dθ 7

18 so evaluating the derivative and so the derivative is evaluating at π 6 I get dr dθ cos(θ) sin(θ) cos(θ) + sin(θ)cos(θ) cos(θ)cos(θ) sin(θ)sin(θ) tan(θ) b. r at θ π Let s do it like the last one. θ so sin(θ) dy dx + cos(θ) θ θ cos(θ) dr dθ θ evaluating at π I get an answer of π θ sin(θ) θ. Area and length in polar coordinates. find the area enclosed by the curve a. r ( + cos(θ)) The period is to π and is symmetric about the x-axis so we will integrate from to π and multiply by. recall that the area of a polar curve is given by b r dθ a 8

19 So the area will be: b. (( + cos(θ)) dθ cos(θ) + cos (θ)dθ + cos(θ) + ( cos(θ) + )dθ 9(θ + sin(θ) + ( 9(θ + sin(θ) + θ + 4 sin(θ) 9(π + + π + ) 9( π ) 7π r cos(θ) + cos(θ)dθ) The three petals of the flower are equal, so I will calculate the first one an multiply by. Note also that the first half of the first petal is traced from θ to θ π so we can take the integral from to π and solve multiply the whole thing by 6. 6 ( cos(θ)dθ) 6 cos (θ)dθ ( + cos(6θ)dθ cos(6θ)dθ + 6θ sin(6θ) + 6θ π π c. r + sin(6θ) 9

20 note that the graph is symetric about the origin, so we can take the integral from to π and then multiply by to get the area. ( + sin(6θ)dθ + 4sin(6θ) + 4 sin (6θ)dθ θ 4 6 cos(6θ) + 4 sin (6θ)dθ θ 4 6 cos(6θ) + 4( t sin(θ) ) π 4 π π π Find the area inside the first curve and outside the second curve. a. r 4sin(θ) and r If we find the points of intersection, we can integrate the first curve between them. so we set them equal and solve for θ 4 sin(θ) sin(θ) θ π 6, 5π 6 those will be our bounds of integration. We will integrate each and take there difference, which can be solved as a single integral like this: 5π 6 π 6 ((4 sin(θ)) () )dθ 8 5π 6 π 6 5π 6 π 6 5π 6 π 6 6sin (θ) 4dθ 4sin (θ) dθ sin (θ)dθ θ 4θ sin(θ) θ 5π 6 π 6 θ sin(θ) 5π + π + 4π +

21 b. r cos(θ) and r +cos(θ) using the same procedure as above, I find that a point of intersection is π and since the curves are both symmetric about the x axis, we can integrate this from to π and multiply by. So I get ( cos(θ)) ( + cos(θ)) dθ 4 8 cos ( θ) cos(θ) dθ cos (θ)dθ + sin(θ) + θ θ sin(θ) + sin(θ) + θ π θ π sin(θ) + sin(θ) π + π So multiplying the answer by we find that the area in question is equal to π c. r + sin(θ) and r sin(θ) The only point of intersection here is at π. note that the second curve is contained completely within the first curve. so we can take the area contained by the first curve and subtract the area of the second. we are going to do two integrals for this, the first gets us from to π and the second will be the absolute value of the integral from π to. we add these and multiply by to get what the area of the outside curve. we can then subtract the area within the second curve which we find using an integral sin(θ) + sin (θ)dθ sin(θ) + sin (θ)dθ π 4θ 4 cos(θ) + θ sin(θ) cos(θ) π + 4θ 4 cos(θ) + θ sin(θ) cos(θ) π So we find the area of the second curve, which is a circle of radius 9π 9π We know 9π its area will be 9π 4

22 Subtracting one from the second from the first, we find that the area of the first curve without the second one is 9π 9π 4 9π 4 Find the exact Length of the polar curve a. r sin(θ) Recall that arc length in polar coordinates is given by the following Formula: b L ( dr dθ ) + r dθ so lets first take the derivative: and subbing into the formula: a r cos(θ) 9cos (θ) + 9 sin (θ)dθ dθ θ π π b. r θ r θ L 4θ + θ 4 dθ θ 4 + θ dθ udu (4 + θ ) π (4 + π) r e θ r e θ

23 L (e θ ) + (e θ ) dθ 4e 4θ + e 4θ dθ e θ 5dθ 5 eθ π 5 (e4π + )

Practice Problems: Exam 2 MATH 230, Spring 2011 Instructor: Dr. Zachary Kilpatrick Show all your work. Simplify as much as possible.

Practice Problems: Exam 2 MATH 230, Spring 2011 Instructor: Dr. Zachary Kilpatrick Show all your work. Simplify as much as possible. Practice Problems: Exam MATH, Spring Instructor: Dr. Zachary Kilpatrick Show all your work. Simplify as much as possible.. Write down a table of x and y values associated with a few t values. Then, graph

More information

Math 113 Final Exam Practice

Math 113 Final Exam Practice Math Final Exam Practice The Final Exam is comprehensive. You should refer to prior reviews when studying material in chapters 6, 7, 8, and.-9. This review will cover.0- and chapter 0. This sheet has three

More information

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2 Math 8, Exam, Study Guide Problem Solution. Use the trapezoid rule with n to estimate the arc-length of the curve y sin x between x and x π. Solution: The arclength is: L b a π π + ( ) dy + (cos x) + cos

More information

Mathematics Engineering Calculus III Fall 13 Test #1

Mathematics Engineering Calculus III Fall 13 Test #1 Mathematics 2153-02 Engineering Calculus III Fall 13 Test #1 Instructor: Dr. Alexandra Shlapentokh (1) Which of the following statements is always true? (a) If x = f(t), y = g(t) and f (1) = 0, then dy/dx(1)

More information

a k 0, then k + 1 = 2 lim 1 + 1

a k 0, then k + 1 = 2 lim 1 + 1 Math 7 - Midterm - Form A - Page From the desk of C. Davis Buenger. https://people.math.osu.edu/buenger.8/ Problem a) [3 pts] If lim a k = then a k converges. False: The divergence test states that if

More information

Math156 Review for Exam 4

Math156 Review for Exam 4 Math56 Review for Eam 4. What will be covered in this eam: Representing functions as power series, Taylor and Maclaurin series, calculus with parametric curves, calculus with polar coordinates.. Eam Rules:

More information

You can learn more about the services offered by the teaching center by visiting

You can learn more about the services offered by the teaching center by visiting MAC 232 Exam 3 Review Spring 209 This review, produced by the Broward Teaching Center, contains a collection of questions which are representative of the type you may encounter on the exam. Other resources

More information

Math 226 Calculus Spring 2016 Exam 2V1

Math 226 Calculus Spring 2016 Exam 2V1 Math 6 Calculus Spring 6 Exam V () (35 Points) Evaluate the following integrals. (a) (7 Points) tan 5 (x) sec 3 (x) dx (b) (8 Points) cos 4 (x) dx Math 6 Calculus Spring 6 Exam V () (Continued) Evaluate

More information

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions Spring 5, MA 5, Calculus II, Final Exam Preview Solutions I will put the following formulas on the front of the final exam, to speed up certain problems. You do not need to put them on your index card,

More information

Math 1310 Final Exam

Math 1310 Final Exam Math 1310 Final Exam December 11, 2014 NAME: INSTRUCTOR: Write neatly and show all your work in the space provided below each question. You may use the back of the exam pages if you need additional space

More information

Parametric Curves. Calculus 2 Lia Vas

Parametric Curves. Calculus 2 Lia Vas Calculus Lia Vas Parametric Curves In the past, we mostly worked with curves in the form y = f(x). However, this format does not encompass all the curves one encounters in applications. For example, consider

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

Friday 09/15/2017 Midterm I 50 minutes

Friday 09/15/2017 Midterm I 50 minutes Fa 17: MATH 2924 040 Differential and Integral Calculus II Noel Brady Friday 09/15/2017 Midterm I 50 minutes Name: Student ID: Instructions. 1. Attempt all questions. 2. Do not write on back of exam sheets.

More information

10.1 Review of Parametric Equations

10.1 Review of Parametric Equations 10.1 Review of Parametric Equations Recall that often, instead of representing a curve using just x and y (called a Cartesian equation), it is more convenient to define x and y using parametric equations

More information

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx Millersville University Name Answer Key Mathematics Department MATH 2, Calculus II, Final Examination May 4, 2, 8:AM-:AM Please answer the following questions. Your answers will be evaluated on their correctness,

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science Calculus III George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 251 George Voutsadakis (LSSU) Calculus III January 2016 1 / 76 Outline 1 Parametric Equations,

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions Fall 6, MA 5, Calculus II, Final Exam Preview Solutions I will put the following formulas on the front of the final exam, to speed up certain problems. You do not need to put them on your index card, and

More information

Review Problems for the Final

Review Problems for the Final Review Problems for the Final Math -3 5 7 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the

More information

More Final Practice Problems

More Final Practice Problems 8.0 Calculus Jason Starr Final Exam at 9:00am sharp Fall 005 Tuesday, December 0, 005 More 8.0 Final Practice Problems Here are some further practice problems with solutions for the 8.0 Final Exam. Many

More information

1 4 (1 cos(4θ))dθ = θ 4 sin(4θ)

1 4 (1 cos(4θ))dθ = θ 4 sin(4θ) M48M Final Exam Solutions, December 9, 5 ) A polar curve Let C be the portion of the cloverleaf curve r = sin(θ) that lies in the first quadrant a) Draw a rough sketch of C This looks like one quarter

More information

Math Final Exam Review

Math Final Exam Review Math - Final Exam Review. Find dx x + 6x +. Name: Solution: We complete the square to see if this function has a nice form. Note we have: x + 6x + (x + + dx x + 6x + dx (x + + Note that this looks a lot

More information

Math 230 Mock Final Exam Detailed Solution

Math 230 Mock Final Exam Detailed Solution Name: Math 30 Mock Final Exam Detailed Solution Disclaimer: This mock exam is for practice purposes only. No graphing calulators TI-89 is allowed on this test. Be sure that all of your work is shown and

More information

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. SECTION A 1. State the maximal domain and range of the function f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. 2. By evaluating f(0),

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2 Test Review (chap 0) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) Find the point on the curve x = sin t, y = cos t, -

More information

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim SMT Calculus Test Solutions February, x + x 5 Compute x x x + Answer: Solution: Note that x + x 5 x x + x )x + 5) = x )x ) = x + 5 x x + 5 Then x x = + 5 = Compute all real values of b such that, for fx)

More information

Final Exam 2011 Winter Term 2 Solutions

Final Exam 2011 Winter Term 2 Solutions . (a Find the radius of convergence of the series: ( k k+ x k. Solution: Using the Ratio Test, we get: L = lim a k+ a k = lim ( k+ k+ x k+ ( k k+ x k = lim x = x. Note that the series converges for L

More information

There are some trigonometric identities given on the last page.

There are some trigonometric identities given on the last page. MA 114 Calculus II Fall 2015 Exam 4 December 15, 2015 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all your electronic devices and do not wear ear-plugs during

More information

Spring 2011 solutions. We solve this via integration by parts with u = x 2 du = 2xdx. This is another integration by parts with u = x du = dx and

Spring 2011 solutions. We solve this via integration by parts with u = x 2 du = 2xdx. This is another integration by parts with u = x du = dx and Math - 8 Rahman Final Eam Practice Problems () We use disks to solve this, Spring solutions V π (e ) d π e d. We solve this via integration by parts with u du d and dv e d v e /, V π e π e d. This is another

More information

Chapter 9 Overview: Parametric and Polar Coordinates

Chapter 9 Overview: Parametric and Polar Coordinates Chapter 9 Overview: Parametric and Polar Coordinates As we saw briefly last year, there are axis systems other than the Cartesian System for graphing (vector coordinates, polar coordinates, rectangular

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2 AP Physics C Calculus C.1 Name Trigonometric Functions 1. Consider the right triangle to the right. In terms of a, b, and c, write the expressions for the following: c a sin θ = cos θ = tan θ =. Using

More information

University of Alberta. Math 214 Sample Exam Math 214 Solutions

University of Alberta. Math 214 Sample Exam Math 214 Solutions University of Alberta Math 14 Sample Exam Math 14 Solutions 1. Test the following series for convergence or divergence (a) ( n +n+1 3n +n+1 )n, (b) 3 n (n +1) (c) SOL: n!, arccos( n n +1 ), (a) ( n +n+1

More information

Parametric Equations and Polar Coordinates

Parametric Equations and Polar Coordinates Parametric Equations and Polar Coordinates Parametrizations of Plane Curves In previous chapters, we have studied curves as the graphs of functions or equations involving the two variables x and y. Another

More information

Assignment 6 Solution. Please do not copy and paste my answer. You will get similar questions but with different numbers!

Assignment 6 Solution. Please do not copy and paste my answer. You will get similar questions but with different numbers! Assignment 6 Solution Please do not copy and paste my answer. You will get similar questions but with different numbers! This question tests you the following points: Integration by Parts: Let u = x, dv

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

Section 5.8. Taylor Series

Section 5.8. Taylor Series Difference Equations to Differential Equations Section 5.8 Taylor Series In this section we will put together much of the work of Sections 5.-5.7 in the context of a discussion of Taylor series. We begin

More information

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx.

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx. Mathematics 14 Fall Term 26 Solutions to Final Exam 1. Evaluate sin(ln t) dt. Solution. We first make the substitution t = e x, for which dt = e x. This gives sin(ln t) dt = e x sin(x). To evaluate the

More information

Practice problems from old exams for math 132 William H. Meeks III

Practice problems from old exams for math 132 William H. Meeks III Practice problems from old exams for math 32 William H. Meeks III Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These practice tests are

More information

Ma 530 Power Series II

Ma 530 Power Series II Ma 530 Power Series II Please note that there is material on power series at Visual Calculus. Some of this material was used as part of the presentation of the topics that follow. Operations on Power Series

More information

n=0 ( 1)n /(n + 1) converges, but not

n=0 ( 1)n /(n + 1) converges, but not Math 07H Topics for the third exam (and beyond) (Technically, everything covered on the first two exams plus...) Absolute convergence and alternating series A series a n converges absolutely if a n converges.

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background We have seen that some power series converge. When they do, we can think of them as

More information

Homework Problem Answers

Homework Problem Answers Homework Problem Answers Integration by Parts. (x + ln(x + x. 5x tan 9x 5 ln sec 9x 9 8 (. 55 π π + 6 ln 4. 9 ln 9 (ln 6 8 8 5. (6 + 56 0/ 6. 6 x sin x +6cos x. ( + x e x 8. 4/e 9. 5 x [sin(ln x cos(ln

More information

1969 AP Calculus BC: Section I

1969 AP Calculus BC: Section I 969 AP Calculus BC: Section I 9 Minutes No Calculator Note: In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e).. t The asymptotes of the graph of the parametric

More information

BC Exam 1 - Part I 28 questions No Calculator Allowed - Solutions C = 2. Which of the following must be true?

BC Exam 1 - Part I 28 questions No Calculator Allowed - Solutions C = 2. Which of the following must be true? BC Exam 1 - Part I 8 questions No Calculator Allowed - Solutions 6x 5 8x 3 1. Find lim x 0 9x 3 6x 5 A. 3 B. 8 9 C. 4 3 D. 8 3 E. nonexistent ( ) f ( 4) f x. Let f be a function such that lim x 4 x 4 I.

More information

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x MATH 3B: MIDTERM REVIEW JOE HUGHES. Evaluate sin x and cos x. Solution: Recall the identities cos x = + cos(x) Using these formulas gives cos(x) sin x =. Trigonometric Integrals = x sin(x) sin x = cos(x)

More information

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0 8.7 Taylor s Inequality Math 00 Section 005 Calculus II Name: ANSWER KEY Taylor s Inequality: If f (n+) is continuous and f (n+) < M between the center a and some point x, then f(x) T n (x) M x a n+ (n

More information

Study Guide for Final Exam

Study Guide for Final Exam Study Guide for Final Exam. You are supposed to be able to calculate the cross product a b of two vectors a and b in R 3, and understand its geometric meaning. As an application, you should be able to

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, study past exams and practice exams, and homeworks, quizzes, and worksheets, not just this practice final. A topic not being on the practice final does

More information

Problem Set 6 Math 213, Fall 2016

Problem Set 6 Math 213, Fall 2016 Problem Set 6 Math 213, Fall 216 Directions: Name: Show all your work. You are welcome and encouraged to use Mathematica, or similar software, to check your answers and aid in your understanding of the

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval.

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval. MATH 8 Test -Version A-SOLUTIONS Fall 4. Consider the curve defined by y = ln( sec x), x. a. (8 pts) Find the exact length of the curve on the given interval. sec x tan x = = tan x sec x L = + tan x =

More information

M152: Calculus II Midterm Exam Review

M152: Calculus II Midterm Exam Review M52: Calculus II Midterm Exam Review Chapter 4. 4.2 : Mean Value Theorem. - Know the statement and idea of Mean Value Theorem. - Know how to find values of c making the theorem true. - Realize the importance

More information

Exam 1 Review SOLUTIONS

Exam 1 Review SOLUTIONS 1. True or False (and give a short reason): Exam 1 Review SOLUTIONS (a) If the parametric curve x = f(t), y = g(t) satisfies g (1) = 0, then it has a horizontal tangent line when t = 1. FALSE: To make

More information

8.3 Trigonometric Substitution

8.3 Trigonometric Substitution 8.3 8.3 Trigonometric Substitution Three Basic Substitutions Recall the derivative formulas for the inverse trigonometric functions of sine, secant, tangent. () () (3) d d d ( sin x ) = ( tan x ) = +x

More information

Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch of the appropriate

Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch of the appropriate AP Calculus BC Review Chapter (Parametric Equations and Polar Coordinates) Things to Know and Be Able to Do Understand the meaning of equations given in parametric and polar forms, and develop a sketch

More information

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10 Calculus II Practice Test Problems: 6.-6.3, 6.5, 7.-7.3 Page of This is in no way an inclusive set of problems there can be other types of problems on the actual test. To prepare for the test: review homework,

More information

5.9 Representations of Functions as a Power Series

5.9 Representations of Functions as a Power Series 5.9 Representations of Functions as a Power Series Example 5.58. The following geometric series x n + x + x 2 + x 3 + x 4 +... will converge when < x

More information

2018 FREE RESPONSE QUESTION TENTATIVE SOLUTIONS

2018 FREE RESPONSE QUESTION TENTATIVE SOLUTIONS 8 FREE RESPONSE QUESTION TENTATIVE SOLUTIONS L. MARIZZA A BAILEY Problem. People enter a line for an escalator at a rate modeled by the function, r given by { 44( t r(t) = ) ( t )7 ) t t > where r(t) is

More information

False. 1 is a number, the other expressions are invalid.

False. 1 is a number, the other expressions are invalid. Ma1023 Calculus III A Term, 2013 Pseudo-Final Exam Print Name: Pancho Bosphorus 1. Mark the following T and F for false, and if it cannot be determined from the given information. 1 = 0 0 = 1. False. 1

More information

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4.

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4. 55 PRACTICE FINAL EXAM SOLUTIONS. First notice that x 2 4 x 2x + 2 x 2 5x +6 x 2x. This function is undefined at x 2. Since, in the it as x 2, we only care about what happens near x 2 an for x less than

More information

Material for review. By Lei. May, 2011

Material for review. By Lei. May, 2011 Material for review. By Lei. May, 20 You shouldn t only use this to do the review. Read your book and do the example problems. Do the problems in Midterms and homework once again to have a review. Some

More information

Jim Lambers MAT 169 Fall Semester Practice Final Exam

Jim Lambers MAT 169 Fall Semester Practice Final Exam Jim Lambers MAT 169 Fall Semester 2010-11 Practice Final Exam 1. A ship is moving northwest at a speed of 50 mi/h. A passenger is walking due southeast on the deck at 4 mi/h. Find the speed of the passenger

More information

1. (13%) Find the orthogonal trajectories of the family of curves y = tan 1 (kx), where k is an arbitrary constant. Solution: For the original curves:

1. (13%) Find the orthogonal trajectories of the family of curves y = tan 1 (kx), where k is an arbitrary constant. Solution: For the original curves: 5 微甲 6- 班期末考解答和評分標準. (%) Find the orthogonal trajectories of the family of curves y = tan (kx), where k is an arbitrary constant. For the original curves: dy dx = tan y k = +k x x sin y cos y = +tan y

More information

Math 142, Final Exam. 12/7/10.

Math 142, Final Exam. 12/7/10. Math 4, Final Exam. /7/0. No notes, calculator, or text. There are 00 points total. Partial credit may be given. Write your full name in the upper right corner of page. Number the pages in the upper right

More information

Math 323 Exam 1 Practice Problem Solutions

Math 323 Exam 1 Practice Problem Solutions Math Exam Practice Problem Solutions. For each of the following curves, first find an equation in x and y whose graph contains the points on the curve. Then sketch the graph of C, indicating its orientation.

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES We have seen how to represent curves by parametric equations. Now, we apply the methods of calculus to these parametric

More information

MTH Calculus with Analytic Geom I TEST 1

MTH Calculus with Analytic Geom I TEST 1 MTH 229-105 Calculus with Analytic Geom I TEST 1 Name Please write your solutions in a clear and precise manner. SHOW your work entirely. (1) Find the equation of a straight line perpendicular to the line

More information

GEORGE ANDROULAKIS THE 7 INDETERMINATE FORMS OF LIMITS : usually we use L Hospital s rule. Two important such limits are lim

GEORGE ANDROULAKIS THE 7 INDETERMINATE FORMS OF LIMITS : usually we use L Hospital s rule. Two important such limits are lim MATH 4 (CALCULUS II) IN ORDER TO OBTAIN A PERFECT SCORE IN ANDROULAKIS MATH 4 CLASS YOU NEED TO MEMORIZE THIS HANDOUT AND SOLVE THE ASSIGNED HOMEWORK ON YOUR OWN GEORGE ANDROULAKIS TRIGONOMETRY θ sin(θ)

More information

6.2 Trigonometric Integrals and Substitutions

6.2 Trigonometric Integrals and Substitutions Arkansas Tech University MATH 9: Calculus II Dr. Marcel B. Finan 6. Trigonometric Integrals and Substitutions In this section, we discuss integrals with trigonometric integrands and integrals that can

More information

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x). You should prepare the following topics for our final exam. () Pre-calculus. (2) Inverses. (3) Algebra of Limits. (4) Derivative Formulas and Rules. (5) Graphing Techniques. (6) Optimization (Maxima and

More information

Limits. Final Exam Study Guide. Calculus I. 1. Basic Limits I: Evaluate each limit exactly. (a) lim. (c) lim. 2t 15 3 (g) lim. (e) lim. (f) lim.

Limits. Final Exam Study Guide. Calculus I. 1. Basic Limits I: Evaluate each limit exactly. (a) lim. (c) lim. 2t 15 3 (g) lim. (e) lim. (f) lim. Limits 1. Basic Limits I: Evaluate each limit eactly. 3 ( +5 8) (c) lim(sin(α) 5cos(α)) α π 6 (e) lim t t 15 3 (g) lim t 0 t (4t 3 8t +1) t 1 (tan(θ) cot(θ)+1) θ π 4 (f) lim 16 ( 5 (h) lim t 0 3 t ). Basic

More information

MA 162 FINAL EXAM PRACTICE PROBLEMS Spring Find the angle between the vectors v = 2i + 2j + k and w = 2i + 2j k. C.

MA 162 FINAL EXAM PRACTICE PROBLEMS Spring Find the angle between the vectors v = 2i + 2j + k and w = 2i + 2j k. C. MA 6 FINAL EXAM PRACTICE PROBLEMS Spring. Find the angle between the vectors v = i + j + k and w = i + j k. cos 8 cos 5 cos D. cos 7 E. cos. Find a such that u = i j + ak and v = i + j + k are perpendicular.

More information

Chapter 4 Notes, Calculus I with Precalculus 3e Larson/Edwards

Chapter 4 Notes, Calculus I with Precalculus 3e Larson/Edwards 4.1 The Derivative Recall: For the slope of a line we need two points (x 1,y 1 ) and (x 2,y 2 ). Then the slope is given by the formula: m = y x = y 2 y 1 x 2 x 1 On a curve we can find the slope of a

More information

Math 113/113H Winter 2006 Departmental Final Exam

Math 113/113H Winter 2006 Departmental Final Exam Name KEY Instructor Section No. Student Number Math 3/3H Winter 26 Departmental Final Exam Instructions: The time limit is 3 hours. Problems -6 short-answer questions, each worth 2 points. Problems 7 through

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK. Summer Examination 2009.

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK. Summer Examination 2009. OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK Summer Examination 2009 First Engineering MA008 Calculus and Linear Algebra

More information

Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f (x) is a real number.

Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f (x) is a real number. 997 AP Calculus BC: Section I, Part A 5 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number..

More information

Brief answers to assigned even numbered problems that were not to be turned in

Brief answers to assigned even numbered problems that were not to be turned in Brief answers to assigned even numbered problems that were not to be turned in Section 2.2 2. At point (x 0, x 2 0) on the curve the slope is 2x 0. The point-slope equation of the tangent line to the curve

More information

Mathematics 111 (Calculus II) Laboratory Manual

Mathematics 111 (Calculus II) Laboratory Manual Mathematics (Calculus II) Laboratory Manual Department of Mathematics & Statistics University of Regina nd edition prepared by Patrick Maidorn, Fotini Labropulu, and Robert Petry University of Regina Department

More information

Final Exam Review Quesitons

Final Exam Review Quesitons Final Exam Review Quesitons. Compute the following integrals. (a) x x 4 (x ) (x + 4) dx. The appropriate partial fraction form is which simplifies to x x 4 (x ) (x + 4) = A x + B (x ) + C x + 4 + Dx x

More information

1. (4 % each, total 20 %) Answer each of the following. (No need to show your work for this problem). 3 n. n!? n=1

1. (4 % each, total 20 %) Answer each of the following. (No need to show your work for this problem). 3 n. n!? n=1 NAME: EXAM 4 - Math 56 SOlutions Instruction: Circle your answers and show all your work CLEARLY Partial credit will be given only when you present what belongs to part of a correct solution (4 % each,

More information

CHALLENGE! (0) = 5. Construct a polynomial with the following behavior at x = 0:

CHALLENGE! (0) = 5. Construct a polynomial with the following behavior at x = 0: TAYLOR SERIES Construct a polynomial with the following behavior at x = 0: CHALLENGE! P( x) = a + ax+ ax + ax + ax 2 3 4 0 1 2 3 4 P(0) = 1 P (0) = 2 P (0) = 3 P (0) = 4 P (4) (0) = 5 Sounds hard right?

More information

Final Exam SOLUTIONS MAT 131 Fall 2011

Final Exam SOLUTIONS MAT 131 Fall 2011 1. Compute the following its. (a) Final Exam SOLUTIONS MAT 131 Fall 11 x + 1 x 1 x 1 The numerator is always positive, whereas the denominator is negative for numbers slightly smaller than 1. Also, as

More information

18.01 Final Answers. 1. (1a) By the product rule, (x 3 e x ) = 3x 2 e x + x 3 e x = e x (3x 2 + x 3 ). (1b) If f(x) = sin(2x), then

18.01 Final Answers. 1. (1a) By the product rule, (x 3 e x ) = 3x 2 e x + x 3 e x = e x (3x 2 + x 3 ). (1b) If f(x) = sin(2x), then 8. Final Answers. (a) By the product rule, ( e ) = e + e = e ( + ). (b) If f() = sin(), then f (7) () = 8 cos() since: f () () = cos() f () () = 4 sin() f () () = 8 cos() f (4) () = 6 sin() f (5) () =

More information

4.1 Analysis of functions I: Increase, decrease and concavity

4.1 Analysis of functions I: Increase, decrease and concavity 4.1 Analysis of functions I: Increase, decrease and concavity Definition Let f be defined on an interval and let x 1 and x 2 denote points in that interval. a) f is said to be increasing on the interval

More information

for 2 1/3 < t 3 1/3 parametrizes

for 2 1/3 < t 3 1/3 parametrizes Solution to Set 4, due Friday April 1) Section 5.1, Problem ) Explain why the path parametrized by ft) = t, t 1 ) is not smooth. Note this is true more specifically if the interval of t contains t = 1

More information

AP Calculus BC Spring Final Part IA. Calculator NOT Allowed. Name:

AP Calculus BC Spring Final Part IA. Calculator NOT Allowed. Name: AP Calculus BC 6-7 Spring Final Part IA Calculator NOT Allowed Name: . Find the derivative if the function if f ( x) = x 5 8 2x a) f b) f c) f d) f ( ) ( x) = x4 40 x 8 2x ( ) ( x) = x4 40 +x 8 2x ( )

More information

Math 115 HW #5 Solutions

Math 115 HW #5 Solutions Math 5 HW #5 Solutions From 29 4 Find the power series representation for the function and determine the interval of convergence Answer: Using the geometric series formula, f(x) = 3 x 4 3 x 4 = 3(x 4 )

More information

Math 101 Fall 2006 Exam 1 Solutions Instructor: S. Cautis/M. Simpson/R. Stong Thursday, October 5, 2006

Math 101 Fall 2006 Exam 1 Solutions Instructor: S. Cautis/M. Simpson/R. Stong Thursday, October 5, 2006 Math 101 Fall 2006 Exam 1 Solutions Instructor: S. Cautis/M. Simpson/R. Stong Thursday, October 5, 2006 Instructions: This is a closed book, closed notes exam. Use of calculators is not permitted. You

More information

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math 44 Activity (Due by end of class July 3) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8).

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8). Worksheet A 1 A curve is given by the parametric equations x = t + 1, y = 4 t. a Write down the coordinates of the point on the curve where t =. b Find the value of t at the point on the curve with coordinates

More information

Examples. 1. (Solution) (a) Suppose f is an increasing function, and let A(x) = x

Examples. 1. (Solution) (a) Suppose f is an increasing function, and let A(x) = x Math 31A Final Exam Practice Problems Austin Christian December 1, 15 Here are some practice problems for the final. You ll notice that these problems all come from material since the last exam. You are,

More information

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework.

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework. For Test # study these problems, the examples in your notes, and the homework. Derivative Rules D [u n ] = nu n 1 du D [ln u] = du u D [log b u] = du u ln b D [e u ] = e u du D [a u ] = a u ln a du D [sin

More information

Math 190 (Calculus II) Final Review

Math 190 (Calculus II) Final Review Math 90 (Calculus II) Final Review. Sketch the region enclosed by the given curves and find the area of the region. a. y = 7 x, y = x + 4 b. y = cos ( πx ), y = x. Use the specified method to find the

More information

Let s Get Series(ous)

Let s Get Series(ous) Department of Mathematics, Computer Science, and Statistics Bloomsburg University Bloomsburg, Pennsylvania 785 Let s Get Series(ous) Summary Presenting infinite series can be (used to be) a tedious and

More information

Math 113 Winter 2005 Key

Math 113 Winter 2005 Key Name Student Number Section Number Instructor Math Winter 005 Key Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems through are multiple

More information

Virginia Tech Math 1226 : Past CTE problems

Virginia Tech Math 1226 : Past CTE problems Virginia Tech Math 16 : Past CTE problems 1. It requires 1 in-pounds of work to stretch a spring from its natural length of 1 in to a length of 1 in. How much additional work (in inch-pounds) is done in

More information