Sigmoid functions for the smooth approximation to x

Size: px
Start display at page:

Download "Sigmoid functions for the smooth approximation to x"

Transcription

1 Sigmoid functions for the smooth approimation to Yogesh J. Bagul,, Christophe Chesneau,, Department of Mathematics, K. K. M. College Manwath, Dist : Parbhani(M.S.) , India. yjbagul@gmail.com LMNO, University of Caen Normandie, France christophe.chesneau@unicaen.fr Abstract. We present smooth approimations to using sigmoid functions. In particular erf(/) is proved to be better smooth approimation for than tanh(/) and + with respect to accuracy. To accomplish our goal we also provide sharp hyperbolic bounds for error function. Introduction An S - shaped function which usually monotonically increases on R (the set of all real numbers) and has finite limits as ± is known as sigmoid function. Sigmoid functions have many applications including the one in artificial neural networks. Rigorously, a sigmoid function is bounded and differentiable real function that is defined for all real input values and has a non-negative derivative at each point 6]. It has bell shaped first derivative. A sigmoid function is constrained by two parallel and horizontal asymptotes. Some eamples of sigmoid functions include logistic function, i.e. /( + e ), tanh(), tan, Gudermannian function, i.e. gd(), error function, i.e. erf(), ( + ) / etc. Some of them are described below. The Gudermannian function is defined as follows: Alternatively, gd() = 0 cosh(t) dt. gd() = sin (tanh()) = tan (sinh()). Corresponding author 00 Mathematics Subject Classification: 6A99, 6E99, 33E99, 4A30. Keywords: Sigmoid functions; error function; smooth approimation; Hyperbolic tangent. 09 by the author(s). Distributed under a Creative Commons CC BY license.

2 The error function or Gaussian error function is defined as follows: erf() = e t dt. π The Gudermannian and error functions are special functions and they have many applications in mathematics and applied sciences. All the above mentioned sigmoid functions are differentiable and their limits as ± are listed below: lim + e ] 0 =, lim + + e lim tanh() =, lim tanh() = + lim tan () = π, lim + tan () = π lim gd() = π, lim gd() = π + lim erf() =, lim erf() = + lim + =, lim + + =. ] = Due to these properties it is easy to see that the functions tanh(/), /( + e / ) / ], (/π) tan (/), (/π) gd(/), erf(/) and ( + ) / as 0 can be used as smooth approimations for. In 3], + is proved to be computationally efficient smooth approimation of, since it involves less number of algebraic operations. In spite of being this, as far as accuracy is concerned some of the above mentioned functions are better transcendental approimations to. In ] tanh(/) was proposed by first author and it is recently proved ] that this approimation is better than + in terms of accuracy by Yogesh J. Bagul and Bhavna K. Khairnar. One of the users of Mathematics Stack Echange 7] suggested erf(/) as a smooth approimation to. However that user did not give the logical proof or did not compare this approimation with eisting ones. In fact, it is better than + or + in terms of accuracy; but it is not proved in 7]. To prove this fact is the main goal of this paper. We shall prove this thing by showing erf(/) to be better than tanh(/). We avoid logical proofs for other approimations presented above, since they are

3 not as good as tanh(/) or erf(/) for accuracy which can be seen in the figures given at the end of this article. The rest of the paper is organized in the following manner. Section presents the main results, with proofs. Two tight approimations are then compared numerically and graphically in Section 3. A conclusion is given in Section 4. Main Results with Proofs We need the following lemmas to prove our main result. Lemma. (l Hôpital s Rule of Monotonicity 4]): Let f, g : c, d] R be two continuous functions which are differentiable on (c, d) and g 0 in (c, d). If f ()/g () is increasing (or decreasing) on (c, d), then the functions (f() f(c))/(g() g(c)) and (f() f(d))/(g() g(d)) are also increasing (or decreasing) on (c, d). If f ()/g () is strictly monotone, then the monotonicity in the conclusion is also strict. Lemma. For R, the following inequality holds: Proof: Suppose that By differentiation we get e e. h() = e. h () = e ( ). This implies = 0, ± are the critical points for h(). Again differentiation gives h () = e ( ) 4 e ( ) Hence, h (0) =, h ( ) = 4 e, h () = 4 e. By second derivative test, h() has minima at = 0 and maima at = ±. Therefore 0 is the minimum value and /e is the maimum value of h(), ending the proof of Lemma. Lemma 3. For R {0}, one has with α = /(e π) erf() + α 3 >, (.)

4 Proof: We consider two cases depending on the sign of as follows: Case(): For > 0, let us consider the function f() = erf() + α which on differentiation gives f () = e α π = e ]. π e By Lemma, f () 0 and hence f() is decreasing on (0, + ). So, for any > 0, f() > f(+ ), i.e. erf() + α >. Case(): For < 0 let us consider the function g() = erf() + α/ +. As in Case(), g () 0 and is decreasing in (, 0). Hence, for any < 0, g() < g( + ). So we get erf() + α <, which completes the proof of Lemma 3. Theorem. Let > 0 and α = /(e π) For R, the approimation F () = erf(/) to satisfies and Proof: We have F () = F () = e + erf π e + π F () F () < α. (.) ( ) = e π + F (). For = 0 the inequality (.) is obvious. For 0, it follows from Lemma 3 that ( ) ( F () = erf = erf ) ( ) ] = erf < α = α. 4

5 The proof of Theorem is completed. In the following theorem we give sharp bounds for error function erf() implying that the present approimation to is better than tanh(/). Theorem. For > 0, it is true that Proof: Consider the function tanh() < erf() < π tanh(). (.3) G() = erf() tanh() = G () G (), where G () = erf() and G () = tanh() with G (0) = G (0) = 0. On differentiating we get G () G () = e cosh () = λ(), π π where λ() = e cosh (), derivative of which is given by λ () = e cosh() sinh() cosh()]. Since sinh()/ < cosh() (see, for instance, 5]), we have λ () < 0 and hence λ() is decreasing in (0, + ). By Lemma, G() is also decreasing in (0, + ). So, for > 0, G(0 + ) > G() > G(+ ). It is easy to evaluate G(0 + ) = / π by l Hospital s rule and G(+ ) =. This ends the proof of Theorem. 3 Comparison between two approimations By virtue of Theorem, for all R and > 0, we get the following chain of inequalities: ( ) ( ) tanh < erf < < +. (3.) Again in ], it is proved that tanh(/) is better than + or + with respect to accuracy. Consequently, erf(/) is better than + 5

6 or + in the same regard. Numerical and graphical studies support the theory. In Table, we compare numerically some of these approimations by investigating global L error which is given by e(f) = + f()] d, where f() denotes an approimation to. With this criterion, a lower e(f) value indicates a better approimation. Table indicates that erf(/) is the best of the considered approimation (for = 0. and = 0.0, but other values can be considered for, with the same conclusion). Table : Global L errors e(f) for the functions f(). f() + e / ] π gd ( = 0. ) tanh ( ) erf ( ) e(f) f() + e / ] π gd ( = 0.0 ) tanh ( ) erf ( ) e(f) By considering the setting of Table, Figures and also support our theoretical findings. 6

7 = erf( ) tanh( ) ( π)gd( ) ( ( + ep( ) ) Figure : Graphs of the functions in Table with = 0. for ( 0., 0.). = erf( ) tanh( ) ( π)gd( ) ( ( + ep( ) ) Figure : Graphs of the functions in Table with = 0.0 for ( 0.04, 0.04). 7

8 4 Conclusion Sigmoid functions can be used for smooth approimation of. In particular erf(/) is proved to be better smooth approimation for with respect to accuracy. References ] Y. J. Bagul, A smooth transcendental approimation to, International Journal of Mathematical Sciences and Engineering Applications(IJMSEA), Volume, Number (August 07), pp. 3-7, 07. ] Y. J. Bagul and Bhavna K. Khairnar, A note on smooth transcendental approimation to, Preprints 09, doi: /preprints v. Online]. URL: 3] C. Ramirez, R. Sanchez, V. Kreinovich and M. Argaéz, + is the most computationally efficient smooth approimation to : a Proof, Journal of Uncertain Systems, Volume 8, Number 3, pp. 05-0, 04. 4] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Conformal Invarients, Inequalities and Quasiconformal maps, John Wiley and Sons, New York, ] R. Klén, M. Visuri and M. Vuorinen, On Jordan Type Inequalities for Hyperbolic Functions, J. Inequal. and Appl. Volume (00), 4 pages, Art. ID 36548, 00. doi: 0.55/00/ Online]. URL: 6] J. Han and C. Moraga, The influence of the sigmoid function parameters on the speed of backpropagation learning, In: Mira José, Sandoval Francisco(Eds), From Natural to Artificial Neural computation, IWANN 995, Lecture Note in Computer Science, Volume 930, pp. 95-0, Springer, Berlin Heidelberg. 7] Ravi ( Smooth approimation of absolute value inequalities, URL (version: ): 8

4.3 - How Derivatives Affect the Shape of a Graph

4.3 - How Derivatives Affect the Shape of a Graph 4.3 - How Derivatives Affect the Shape of a Graph 1. Increasing and Decreasing Functions Definition: A function f is (strictly) increasing on an interval I if for every 1, in I with 1, f 1 f. A function

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

Research Article On Jordan Type Inequalities for Hyperbolic Functions

Research Article On Jordan Type Inequalities for Hyperbolic Functions Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 010, Article ID 6548, 14 pages doi:10.1155/010/6548 Research Article On Jordan Type Inequalities for Hyperbolic Functions

More information

Differential Calculus

Differential Calculus Differential Calculus. Compute the derivatives of the following functions a() = 4 3 7 + 4 + 5 b() = 3 + + c() = 3 + d() = sin cos e() = sin f() = log g() = tan h() = 3 6e 5 4 i() = + tan 3 j() = e k()

More information

DOI: /j3.art Issues of Analysis. Vol. 2(20), No. 2, 2013

DOI: /j3.art Issues of Analysis. Vol. 2(20), No. 2, 2013 DOI: 10.15393/j3.art.2013.2385 Issues of Analysis. Vol. 2(20) No. 2 2013 B. A. Bhayo J. Sánor INEQUALITIES CONNECTING GENERALIZED TRIGONOMETRIC FUNCTIONS WITH THEIR INVERSES Abstract. Motivate by the recent

More information

Solution Sheet 1.4 Questions 26-31

Solution Sheet 1.4 Questions 26-31 Solution Sheet 1.4 Questions 26-31 26. Using the Limit Rules evaluate i) ii) iii) 3 2 +4+1 0 2 +4+3, 3 2 +4+1 2 +4+3, 3 2 +4+1 1 2 +4+3. Note When using a Limit Rule you must write down which Rule you

More information

On the Iyengar Madhava Rao Nanjundiah inequality and its hyperbolic version

On the Iyengar Madhava Rao Nanjundiah inequality and its hyperbolic version Notes on Number Theory and Discrete Mathematics Print ISSN 110 51, Online ISSN 67 875 Vol. 4, 018, No., 14 19 DOI: 10.7546/nntdm.018.4..14-19 On the Iyengar Madhava Rao Nanjundiah inequality and its hyperbolic

More information

A Basic Course in Real Analysis Prof. P. D. Srivastava Department of Mathematics Indian Institute of Technology, Kharagpur

A Basic Course in Real Analysis Prof. P. D. Srivastava Department of Mathematics Indian Institute of Technology, Kharagpur A Basic Course in Real Analysis Prof. P. D. Srivastava Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 36 Application of MVT, Darbou Theorem, L Hospital Rule (Refer Slide

More information

Research Article Inequalities for Hyperbolic Functions and Their Applications

Research Article Inequalities for Hyperbolic Functions and Their Applications Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 130821, 10 pages doi:10.1155/2010/130821 Research Article Inequalities for Hyperbolic Functions and Their

More information

Artificial Neuron (Perceptron)

Artificial Neuron (Perceptron) 9/6/208 Gradient Descent (GD) Hantao Zhang Deep Learning with Python Reading: https://en.wikipedia.org/wiki/gradient_descent Artificial Neuron (Perceptron) = w T = w 0 0 + + w 2 2 + + w d d where

More information

Some tight polynomial-exponential lower bounds for an exponential function

Some tight polynomial-exponential lower bounds for an exponential function Some tight polynomial-exponential lower bounds for an exponential function Christophe Chesneau To cite this version: Christophe Chesneau. Some tight polynomial-exponential lower bounds for an exponential

More information

arxiv: v1 [math.ca] 1 Nov 2012

arxiv: v1 [math.ca] 1 Nov 2012 A NOTE ON THE NEUMAN-SÁNDOR MEAN TIEHONG ZHAO, YUMING CHU, AND BAOYU LIU Abstract. In this article, we present the best possible upper and lower bounds for the Neuman-Sándor mean in terms of the geometric

More information

Research Article On New Wilker-Type Inequalities

Research Article On New Wilker-Type Inequalities International Scholarly Research Network ISRN Mathematical Analysis Volume 2011, Article ID 681702, 7 pages doi:10.5402/2011/681702 Research Article On New Wilker-Type Inequalities Zhengjie Sun and Ling

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2.

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2. ) Solve the following inequalities.) ++.) 4 >.) Calculus - Lab { + > + 5 + < +. ) Graph the functions f() =, g() = + +, h() = cos( ), r() = +. ) Find the domain of the following functions.) f() = +.) f()

More information

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows: MAT 4 Solutions Eam 4 (Applications of Differentiation) a Applying the Quotient Rule we compute the derivative function of f as follows: f () = 43 e 4 e (e ) = 43 4 e = 3 (4 ) e Hence f '( ) 0 for = 0

More information

1998 AP Calculus AB: Section I, Part A

1998 AP Calculus AB: Section I, Part A 55 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number.. What is the -coordinate of the point

More information

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim Math Final Eam Review Solutions { + 3 if < Consider f() Find the following limits: (a) lim f() + + (b) lim f() + 3 3 (c) lim f() does not eist Find each of the following limits: + 6 (a) lim 3 + 3 (b) lim

More information

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math Activity (Due by end of class Jan. 6) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

PACKET Unit 4 Honors ICM Functions and Limits 1

PACKET Unit 4 Honors ICM Functions and Limits 1 PACKET Unit 4 Honors ICM Functions and Limits 1 Day 1 Homework For each of the rational functions find: a. domain b. -intercept(s) c. y-intercept Graph #8 and #10 with at least 5 EXACT points. 1. f 6.

More information

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math 44 Activity (Due by end of class July 3) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

arxiv: v5 [math.ca] 28 Apr 2010

arxiv: v5 [math.ca] 28 Apr 2010 On Jordan type inequalities for hyperbolic functions R. Klén, M. Visuri and M. Vuorinen Department of Mathematics, University of Turku, FI-004, Finland arxiv:0808.49v5 [math.ca] 8 Apr 00 Abstract. This

More information

THE HYPERBOLIC METRIC OF A RECTANGLE

THE HYPERBOLIC METRIC OF A RECTANGLE Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 26, 2001, 401 407 THE HYPERBOLIC METRIC OF A RECTANGLE A. F. Beardon University of Cambridge, DPMMS, Centre for Mathematical Sciences Wilberforce

More information

DIFFERENTIATION. 3.1 Approximate Value and Error (page 151)

DIFFERENTIATION. 3.1 Approximate Value and Error (page 151) CHAPTER APPLICATIONS OF DIFFERENTIATION.1 Approimate Value and Error (page 151) f '( lim 0 f ( f ( f ( f ( f '( or f ( f ( f '( f ( f ( f '( (.) f ( f '( (.) where f ( f ( f ( Eample.1 (page 15): Find

More information

4.3 Mean-Value Theorem and Monotonicity

4.3 Mean-Value Theorem and Monotonicity .3 Mean-Value Theorem and Monotonicit 1. Mean Value Theorem Theorem: Suppose that f is continuous on the interval a, b and differentiable on the interval a, b. Then there eists a number c in a, b such

More information

Chapter 3 Differentiation Rules (continued)

Chapter 3 Differentiation Rules (continued) Chapter 3 Differentiation Rules (continued) Sec 3.5: Implicit Differentiation (continued) Implicit Differentiation What if you want to find the slope of the tangent line to a curve that is not the graph

More information

LINEAR APPROXIMATION, LIMITS, AND L'HOPITAL'S RULE v.05

LINEAR APPROXIMATION, LIMITS, AND L'HOPITAL'S RULE v.05 LINEAR APPROXIMATION, LIMITS, AND L'HOPITAL'S RULE v.05 Linear Approimation Nearby a point at which a function is differentiable, the function and its tangent line are approimately the same. The tangent

More information

November 13, 2018 MAT186 Week 8 Justin Ko

November 13, 2018 MAT186 Week 8 Justin Ko 1 Mean Value Theorem Theorem 1 (Mean Value Theorem). Let f be a continuous on [a, b] and differentiable on (a, b). There eists a c (a, b) such that f f(b) f(a) (c) =. b a Eample 1: The Mean Value Theorem

More information

THE inverse tangent function is an elementary mathematical

THE inverse tangent function is an elementary mathematical A Sharp Double Inequality for the Inverse Tangent Function Gholamreza Alirezaei arxiv:307.983v [cs.it] 8 Jul 03 Abstract The inverse tangent function can be bounded by different inequalities, for eample

More information

Find the following limits. For each one, if it does not exist, tell why not. Show all necessary work.

Find the following limits. For each one, if it does not exist, tell why not. Show all necessary work. Calculus I Eam File Spring 008 Test #1 Find the following its. For each one, if it does not eist, tell why not. Show all necessary work. 1.) 4.) + 4 0 1.) 0 tan 5.) 1 1 1 1 cos 0 sin 3.) 4 16 3 1 6.) For

More information

Lesson Goals. Unit 2 Functions Analyzing Graphs of Functions (Unit 2.2) Graph of a Function. Lesson Goals

Lesson Goals. Unit 2 Functions Analyzing Graphs of Functions (Unit 2.2) Graph of a Function. Lesson Goals Unit Functions Analzing Graphs of Functions (Unit.) William (Bill) Finch Mathematics Department Denton High School Lesson Goals When ou have completed this lesson ou will: Find the domain and range of

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

Integration by substitution

Integration by substitution Roberto s Notes on Integral Calculus Chapter : Integration methods Section 1 Integration by substitution or by change of variable What you need to know already: What an indefinite integral is. The chain

More information

Sharp Inequalities Involving Neuman Means of the Second Kind with Applications

Sharp Inequalities Involving Neuman Means of the Second Kind with Applications Jornal of Advances in Applied Mathematics, Vol., No. 3, Jly 06 https://d.doi.org/0.606/jaam.06.300 39 Sharp Ineqalities Involving Neman Means of the Second Kind with Applications Lin-Chang Shen, Ye-Ying

More information

Geometry and Motion, MA 134 Week 1

Geometry and Motion, MA 134 Week 1 Geometry and Motion, MA 134 Week 1 Mario J. Micallef Spring, 2007 Warning. These handouts are not intended to be complete lecture notes. They should be supplemented by your own notes and, importantly,

More information

Limits, Continuity, and Differentiability Solutions

Limits, Continuity, and Differentiability Solutions Limits, Continuity, and Differentiability Solutions We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions

More information

Calculus Differentiation Norhafizah Md Sarif Faculty of Industrial Science & Technology

Calculus Differentiation Norhafizah Md Sarif Faculty of Industrial Science & Technology Calculus Differentiation By Norhafizah Md Sarif Faculty of Industrial Science & Technology norhafizah@ump.edu.my Description Aims This chapter is aimed to : 1. introduce the concept of integration. evaluate

More information

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc.

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc. 1.2 Functions and Their Properties Copyright 2011 Pearson, Inc. What you ll learn about Function Definition and Notation Domain and Range Continuity Increasing and Decreasing Functions Boundedness Local

More information

Section 4.4 The Fundamental Theorem of Calculus

Section 4.4 The Fundamental Theorem of Calculus Section 4.4 The Fundamental Theorem of Calculus The First Fundamental Theorem of Calculus If f is continuous on the interval [a,b] and F is any function that satisfies F '() = f() throughout this interval

More information

THS Step By Step Calculus Chapter 1

THS Step By Step Calculus Chapter 1 Name: Class Period: Throughout this packet there will be blanks you are epected to fill in prior to coming to class. This packet follows your Larson Tetbook. Do NOT throw away! Keep in 3 ring binder until

More information

(A) when x = 0 (B) where the tangent line is horizontal (C) when f '(x) = 0 (D) when there is a sharp corner on the graph (E) None of the above

(A) when x = 0 (B) where the tangent line is horizontal (C) when f '(x) = 0 (D) when there is a sharp corner on the graph (E) None of the above AP Physics C - Problem Drill 10: Differentiability and Rules of Differentiation Question No. 1 of 10 Question 1. A derivative does not eist Question #01 (A) when 0 (B) where the tangent line is horizontal

More information

1. By the Product Rule, in conjunction with the Chain Rule, we compute the derivative as follows: and. So the slopes of the tangent lines to the curve

1. By the Product Rule, in conjunction with the Chain Rule, we compute the derivative as follows: and. So the slopes of the tangent lines to the curve MAT 11 Solutions TH Eam 3 1. By the Product Rule, in conjunction with the Chain Rule, we compute the derivative as follows: Therefore, d 5 5 d d 5 5 d 1 5 1 3 51 5 5 and 5 5 5 ( ) 3 d 1 3 5 ( ) So the

More information

Mills ratio: Monotonicity patterns and functional inequalities

Mills ratio: Monotonicity patterns and functional inequalities J. Math. Anal. Appl. 340 (008) 136 1370 www.elsevier.com/locate/jmaa Mills ratio: Monotonicity patterns and functional inequalities Árpád Baricz Babeş-Bolyai University, Faculty of Economics, RO-400591

More information

Solutions to the Exercises of Chapter 8

Solutions to the Exercises of Chapter 8 8A Domains of Functions Solutions to the Eercises of Chapter 8 1 For 7 to make sense, we need 7 0or7 So the domain of f() is{ 7} For + 5 to make sense, +5 0 So the domain of g() is{ 5} For h() to make

More information

4. Functions of one variable

4. Functions of one variable 4. Functions of one variable These lecture notes present my interpretation of Ruth Lawrence s lecture notes (in Hebrew) 1 In this chapter we are going to meet one of the most important concepts in mathematics:

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

Hyperbolic functions

Hyperbolic functions Roberto s Notes on Differential Calculus Chapter 5: Derivatives of transcendental functions Section Derivatives of Hyperbolic functions What you need to know already: Basic rules of differentiation, including

More information

AP Calculus BC Prerequisite Knowledge

AP Calculus BC Prerequisite Knowledge AP Calculus BC Prerequisite Knowledge Please review these ideas over the summer as they come up during our class and we will not be reviewing them during class. Also, I feel free to quiz you at any time

More information

MA 137 Calculus 1 for the Life Sciences Operations on Functions Inverse of a Function and its Graph (Sections 1.2 & 1.3)

MA 137 Calculus 1 for the Life Sciences Operations on Functions Inverse of a Function and its Graph (Sections 1.2 & 1.3) MA 137 Calculus 1 for the Life Sciences Operations on Functions Inverse of a Function and its Graph (Sections 12 & 13) Alberto Corso albertocorso@ukyedu Department of Mathematics University of Kentucky

More information

Directions: Please read questions carefully. It is recommended that you do the Short Answer Section prior to doing the Multiple Choice.

Directions: Please read questions carefully. It is recommended that you do the Short Answer Section prior to doing the Multiple Choice. AP Calculus AB SUMMER ASSIGNMENT Multiple Choice Section Directions: Please read questions carefully It is recommended that you do the Short Answer Section prior to doing the Multiple Choice Show all work

More information

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it.

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it. Math 80, Final Eam, Spring 008 Problem Solution. For each of the following limits, determine whether the limit eists and, if so, evaluate it. + (a) lim 0 (b) lim ( ) 3 (c) lim Solution: (a) Upon substituting

More information

1. The cost (in dollars) of producing x units of a certain commodity is C(x) = x x 2.

1. The cost (in dollars) of producing x units of a certain commodity is C(x) = x x 2. APPM 1350 Review #2 Summer 2014 1. The cost (in dollars) of producing units of a certain commodity is C() 5000 + 10 + 0.05 2. (a) Find the average rate of change of C with respect to when the production

More information

ESTIMATING THE ACTIVATION FUNCTIONS OF AN MLP-NETWORK

ESTIMATING THE ACTIVATION FUNCTIONS OF AN MLP-NETWORK ESTIMATING THE ACTIVATION FUNCTIONS OF AN MLP-NETWORK P.V. Vehviläinen, H.A.T. Ihalainen Laboratory of Measurement and Information Technology Automation Department Tampere University of Technology, FIN-,

More information

M151B Practice Problems for Final Exam

M151B Practice Problems for Final Exam M5B Practice Problems for Final Eam Calculators will not be allowed on the eam. Unjustified answers will not receive credit. On the eam you will be given the following identities: n k = n(n + ) ; n k =

More information

10.7. DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson

10.7. DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson JUST THE MATHS SLIDES NUMBER 0.7 DIFFERENTIATION 7 (Inverse hyperbolic functions) by A.J.Hobson 0.7. Summary of results 0.7.2 The erivative of an inverse hyperbolic sine 0.7.3 The erivative of an inverse

More information

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test.

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test. Chapter 4: Applications of Differentiation In this chapter we will cover: 41 Maimum and minimum values The critical points method for finding etrema 43 How derivatives affect the shape of a graph The first

More information

On the Deformed Theory of Special Relativity

On the Deformed Theory of Special Relativity Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 6, 275-282 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.61140 On the Deformed Theory of Special Relativity Won Sang Chung 1

More information

ON HARMONIC FUNCTIONS ON SURFACES WITH POSITIVE GAUSS CURVATURE AND THE SCHWARZ LEMMA

ON HARMONIC FUNCTIONS ON SURFACES WITH POSITIVE GAUSS CURVATURE AND THE SCHWARZ LEMMA ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 44, Number 5, 24 ON HARMONIC FUNCTIONS ON SURFACES WITH POSITIVE GAUSS CURVATURE AND THE SCHWARZ LEMMA DAVID KALAJ ABSTRACT. We prove some versions of the Schwarz

More information

1998 AP Calculus AB: Section I, Part A

1998 AP Calculus AB: Section I, Part A 998 AP Calculus AB: 55 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number.. What is the -coordinate

More information

Chapter 5: Limits, Continuity, and Differentiability

Chapter 5: Limits, Continuity, and Differentiability Chapter 5: Limits, Continuity, and Differentiability 63 Chapter 5 Overview: Limits, Continuity and Differentiability Derivatives and Integrals are the core practical aspects of Calculus. They were the

More information

Calculus-Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus-Lab ) lim. 2.7) lim. 2.

Calculus-Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus-Lab ) lim. 2.7) lim. 2. ) Solve the following inequalities.) ++.) 4 > 3.3) Calculus-Lab { + > + 5 + < 3 +. ) Graph the functions f() = 3, g() = + +, h() = 3 cos( ), r() = 3 +. 3) Find the domain of the following functions 3.)

More information

Lazarević and Cusa type inequalities for hyperbolic functions with two parameters and their applications

Lazarević and Cusa type inequalities for hyperbolic functions with two parameters and their applications Yang and Chu Journal of Inequalities and Applications 2015 2015:403 DOI 10.1186/s13660-015-0924-9 R E S E A R C H Open Access Lazarević and Cusa type inequalities for hyperbolic functions with two parameters

More information

Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory

Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory Danilo López, Nelson Vera, Luis Pedraza International Science Index, Mathematical and Computational Sciences waset.org/publication/10006216

More information

ON YANG MEANS III. Edward Neuman

ON YANG MEANS III. Edward Neuman BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 8(2018), 113-122 DOI: 10.7251/BIMVI1801113N Former BULLETIN

More information

1993 AP Calculus AB: Section I

1993 AP Calculus AB: Section I 99 AP Calculus AB: Section I 90 Minutes Scientific Calculator Notes: () The eact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among

More information

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) =

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) = MATH1003 REVISION 1. Differentiate the following functions, simplifying your answers when appropriate: (i) f(x) = (x 3 2) tan x (ii) y = (3x 5 1) 6 (iii) y 2 = x 2 3 (iv) y = ln(ln(7 + x)) e 5x3 (v) g(t)

More information

(d by dx notation aka Leibniz notation)

(d by dx notation aka Leibniz notation) n Prerequisites: Differentiating, sin and cos ; sum/difference and chain rules; finding ma./min.; finding tangents to curves; finding stationary points and their nature; optimising a function. Maths Applications:

More information

Research Article On Certain Inequalities for Neuman-Sándor Mean

Research Article On Certain Inequalities for Neuman-Sándor Mean Abstract and Applied Analysis Volume 2013, Article ID 790783, 6 pages http://dxdoiorg/101155/2013/790783 Research Article On Certain Inequalities for Neuman-Sándor Mean Wei-Mao Qian 1 and Yu-Ming Chu 2

More information

1 (C) 1 e. Q.3 The angle between the tangent lines to the graph of the function f (x) = ( 2t 5)dt at the points where (C) (A) 0 (B) 1/2 (C) 1 (D) 3

1 (C) 1 e. Q.3 The angle between the tangent lines to the graph of the function f (x) = ( 2t 5)dt at the points where (C) (A) 0 (B) 1/2 (C) 1 (D) 3 [STRAIGHT OBJECTIVE TYPE] Q. Point 'A' lies on the curve y e and has the coordinate (, ) where > 0. Point B has the coordinates (, 0). If 'O' is the origin then the maimum area of the triangle AOB is (A)

More information

6.2. The Hyperbolic Functions. Introduction. Prerequisites. Learning Outcomes

6.2. The Hyperbolic Functions. Introduction. Prerequisites. Learning Outcomes The Hyperbolic Functions 6. Introduction The hyperbolic functions cosh x, sinh x, tanh x etc are certain combinations of the exponential functions e x and e x. The notation implies a close relationship

More information

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2 6 FAMAT Convention Mu Integration. A. 3 3 7 6 6 3 ] 3 6 6 3. B. For quadratic functions, Simpson s Rule is eact. Thus, 3. D.. B. lim 5 3 + ) 3 + ] 5 8 8 cot θ) dθ csc θ ) dθ cot θ θ + C n k n + k n lim

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

Math 171 Calculus I Spring, 2019 Practice Questions for Exam II 1

Math 171 Calculus I Spring, 2019 Practice Questions for Exam II 1 Math 171 Calculus I Spring, 2019 Practice Questions for Eam II 1 You can check your answers in WebWork. Full solutions in WW available Sunday evening. Problem 1. Find the average rate of change of the

More information

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions f( 8 6 4 8 6-3 - - 3 4 5 6 f(.9.8.7.6.5.4.3.. -4-3 - - 3 f( 7 6 5 4 3-3 - - Calculus Problem Sheet Prof Paul Sutcliffe. By applying the vertical line test, or otherwise, determine whether each of the following

More information

Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7. Discontinuities. is the tool to use,

Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7. Discontinuities. is the tool to use, Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7 Discontinuities What you need to know already: The concept and definition of continuity. What you can learn here: The

More information

SOLUTIONS TO THE FINAL - PART 1 MATH 150 FALL 2016 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS

SOLUTIONS TO THE FINAL - PART 1 MATH 150 FALL 2016 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS SOLUTIONS TO THE FINAL - PART MATH 5 FALL 6 KUNIYUKI PART : 5 POINTS, PART : 5 POINTS, TOTAL: 5 POINTS No notes, books, or calculators allowed. 5 points: 45 problems, pts. each. You do not have to algebraically

More information

Calculus Summer Packet

Calculus Summer Packet Calculus Summer Packet There are certain skills that have been taught to you over the previous years that are essential towards your success in Calculus. This summer packet is intended for you to retain/review/relearn

More information

Section 3.3 Limits Involving Infinity - Asymptotes

Section 3.3 Limits Involving Infinity - Asymptotes 76 Section. Limits Involving Infinity - Asymptotes We begin our discussion with analyzing its as increases or decreases without bound. We will then eplore functions that have its at infinity. Let s consider

More information

1993 AP Calculus AB: Section I

1993 AP Calculus AB: Section I 99 AP Calculus AB: Section I 9 Minutes Scientific Calculator Notes: () The eact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among

More information

Horizontal asymptotes

Horizontal asymptotes Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 5 Limits at infinity and Horizontal asymptotes What you need to know already: The concept, notation and terminology of

More information

1969 AP Calculus BC: Section I

1969 AP Calculus BC: Section I 969 AP Calculus BC: Section I 9 Minutes No Calculator Note: In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e).. t The asymptotes of the graph of the parametric

More information

arxiv: v1 [math.ca] 2 Nov 2018

arxiv: v1 [math.ca] 2 Nov 2018 arxiv.org arxiv:1811.00748v1 [math.ca] 2 Nov 2018 One method for proving some classes of eponential analytical inequalities Branko Malešević a, Tatjana Lutovac a, Bojan Banjac b a School of Electrical

More information

sin x (B) sin x 1 (C) sin x + 1

sin x (B) sin x 1 (C) sin x + 1 ANSWER KEY Packet # AP Calculus AB Eam Multiple Choice Questions Answers are on the last page. NO CALCULATOR MAY BE USED IN THIS PART OF THE EXAMINATION. On the AP Eam, you will have minutes to answer

More information

MATH section 3.4 Curve Sketching Page 1 of 29

MATH section 3.4 Curve Sketching Page 1 of 29 MATH section. Curve Sketching Page of 9 The step by step procedure below is for regular rational and polynomial functions. If a function contains radical or trigonometric term, then proceed carefully because

More information

Review of elements of Calculus (functions in one variable)

Review of elements of Calculus (functions in one variable) Review of elements of Calculus (functions in one variable) Mainly adapted from the lectures of prof Greg Kelly Hanford High School, Richland Washington http://online.math.uh.edu/houstonact/ https://sites.google.com/site/gkellymath/home/calculuspowerpoints

More information

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26. Answer Key 969 BC 97 BC. C. E. B. D 5. E 6. B 7. D 8. C 9. D. A. B. E. C. D 5. B 6. B 7. B 8. E 9. C. A. B. E. D. C 5. A 6. C 7. C 8. D 9. C. D. C. B. A. D 5. A 6. B 7. D 8. A 9. D. E. D. B. E. E 5. E.

More information

Chapter (AB/BC, non-calculator) (a) Find the critical numbers of g. (b) For what values of x is g increasing? Justify your answer.

Chapter (AB/BC, non-calculator) (a) Find the critical numbers of g. (b) For what values of x is g increasing? Justify your answer. Chapter 3 1. (AB/BC, non-calculator) Given g ( ) 2 4 3 6 : (a) Find the critical numbers of g. (b) For what values of is g increasing? Justify your answer. (c) Identify the -coordinate of the critical

More information

UNIT NUMBER DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson

UNIT NUMBER DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson JUST THE MATHS UNIT NUMBER 0.7 DIFFERENTIATION 7 (Inverse hyperbolic functions) by A.J.Hobson 0.7. Summary of results 0.7.2 The erivative of an inverse hyperbolic sine 0.7.3 The erivative of an inverse

More information

On equivalent characterizations of convexity of functions

On equivalent characterizations of convexity of functions International Journal of Mathematical Education in Science and Technology, Vol. 44, No. 3, 2013, 410 417 (author s reprint) On equivalent characterizations of convexity of functions Eleftherios Gkioulekas

More information

(a) 82 (b) 164 (c) 81 (d) 162 (e) 624 (f) 625 None of these. (c) 12 (d) 15 (e)

(a) 82 (b) 164 (c) 81 (d) 162 (e) 624 (f) 625 None of these. (c) 12 (d) 15 (e) Math 2 (Calculus I) Final Eam Form A KEY Multiple Choice. Fill in the answer to each problem on your computer-score answer sheet. Make sure your name, section an instructor are on that sheet.. Approimate

More information

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t Math 111 - Eam 1a 1) Evaluate the following limits: 7 3 1 4 36 a) lim b) lim 5 1 3 6 + 4 c) lim tan( 3 ) + d) lim ( ) 100 1+ h 1 h 0 h ) Calculate the derivatives of the following. DON'T SIMPLIFY! a) y

More information

1 DL3. Infinite Limits and Limits at Infinity

1 DL3. Infinite Limits and Limits at Infinity Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 78 Mark Sparks 01 Infinite Limits and Limits at Infinity In our graphical analysis of its, we have already seen both an infinite

More information

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) =

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) = CLEP Calculus Time 60 Minutes 5 Questions For each question below, choose the best answer from the choices given. 7. lim 5 + 5 is (A) 7 0 (C) 7 0 (D) 7 (E) Noneistent. If f(), then f () (A) (C) (D) (E)

More information

Things you should have learned in Calculus II

Things you should have learned in Calculus II Things you should have learned in Calculus II 1 Vectors Given vectors v = v 1, v 2, v 3, u = u 1, u 2, u 3 1.1 Common Operations Operations Notation How is it calculated Other Notation Dot Product v u

More information

Research Article A Nice Separation of Some Seiffert-Type Means by Power Means

Research Article A Nice Separation of Some Seiffert-Type Means by Power Means International Mathematics and Mathematical Sciences Volume 2012, Article ID 40692, 6 pages doi:10.1155/2012/40692 Research Article A Nice Separation of Some Seiffert-Type Means by Power Means Iulia Costin

More information

( ) 7 ( 5x 5 + 3) 9 b) y = x x

( ) 7 ( 5x 5 + 3) 9 b) y = x x New York City College of Technology, CUNY Mathematics Department Fall 0 MAT 75 Final Eam Review Problems Revised by Professor Kostadinov, Fall 0, Fall 0, Fall 00. Evaluate the following its, if they eist:

More information

Approximations to inverse tangent function

Approximations to inverse tangent function Qiao Chen Journal of Inequalities Applications (2018 2018:141 https://doiorg/101186/s13660-018-1734-7 R E S E A R C H Open Access Approimations to inverse tangent function Quan-Xi Qiao 1 Chao-Ping Chen

More information

So, t = 1 is a point of inflection of s(). Use s () t to find the velocity at t = Because 0, use 144.

So, t = 1 is a point of inflection of s(). Use s () t to find the velocity at t = Because 0, use 144. AP Eam Practice Questions for Chapter AP Eam Practice Questions for Chapter f 4 + 6 7 9 f + 7 0 + 6 0 ( + )( ) 0,. The critical numbers of f( ) are and.. Evaluate each point. A: d d C: d d B: D: d d d

More information

Lecture Notes for Math 1000

Lecture Notes for Math 1000 Lecture Notes for Math 1000 Dr. Xiang-Sheng Wang Memorial University of Newfoundland Office: HH-2016, Phone: 864-4321 Office hours: 13:00-15:00 Wednesday, 12:00-13:00 Friday Email: swang@mun.ca Course

More information

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23 Chapter 3 Limit and Continuity Contents 3. Definition of Limit 3 3.2 Basic Limit Theorems 8 3.3 One sided Limit 4 3.4 Infinite Limit, Limit at infinity and Asymptotes 5 3.4. Infinite Limit and Vertical

More information