(d by dx notation aka Leibniz notation)

Size: px
Start display at page:

Download "(d by dx notation aka Leibniz notation)"

Transcription

1 n Prerequisites: Differentiating, sin and cos ; sum/difference and chain rules; finding ma./min.; finding tangents to curves; finding stationary points and their nature; optimising a function. Maths Applications: Higher derivatives; integration. Real-World Applications: Particle motion; chemical reaction rates; generic rates of change. Differentiation from First Principles Recall from Higher that the derivative of a function f is ined by, f () lim h 0 f ( + h ) f ( ) h This frightening formula gives a recipe for calculating the derivative of any function. Using this recipe to calculate the derivative of a function is called differentiation from first principles. Although not required, it is useful to see just how painful it is to differentiate a function from first principles, as we can then be grateful for simpler differentiation techniques (which come from the inition). Eample 1 Differentiate f () 1 from first principles. f () lim h 0 ( + h) h 1 1 Multiplying the numerator and denominator by ( h) gives, f () lim h (( + h) )(( + h) + ) 1 1 (( + ) + ) h h Multiplying out the numerator and simplifying gives, M Patel (April 01) 1 St. Machar Academy

2 f () lim h 0 + h h h 1 1 (( + ) + ) Further simplification and rewriting the denominator gives, f () lim h h + Taking the limit as h 0 finally gives, f () 1 + f () 1 Notation for Derivatives The derivative of a function can be written in different ways. Below are listed some common types. Notation: The derivative of a function y f () is written variously as, y or f () (Dash notation aka prime notation or Lagrange notation) df d or d d f () or dy d (d by d notation aka Leibniz notation) Dy or Df (Big D notation aka Euler notation) The derivative of a function of time t has an alternative notation. Notation: The derivative of a function of time t is often written as, f (t) df dt (Dot notation aka Newton notation) M Patel (April 01) St. Machar Academy

3 Higher-Order Derivatives Sometimes, the derivative of a function can be differentiated. Given a function y f (), the higher-order derivative of order n (aka the n th derivative) is ined by, n d f d n d d d d d f d d d d d n times An important special case of this is the second derivative, d f d d df d d In the Euler and Lagrange notations, higher-order derivatives are written respectively as, D n f and f ( n ) () this Lagrange notation mainly being used for derivatives usually greater than or equal to 4 (as then the dashes become too numerous). To avoid ambiguity, sometimes the case when n 1 is called the first derivative. The derivatives we consider are technically called ordinary derivatives, in comparison to partial derivatives, which are derivatives of functions that are of more than 1 variable. Most interesting equations in science involve partial derivatives (as the description of most phenomena depends on more than 1 physical quantity). Eample Find the first and second derivatives of f () 4 + sin. f () 4 + cos f () 1 9 sin M Patel (April 01) St. Machar Academy

4 Eample Find the smallest value of n for which f ( n ) () 0 when f (). f () f () 6 f () 6 f (4 ) () 0 Clearly, all other higher derivatives will be 0 too, so n 4. Product and Quotient Rules The sum, difference and chain rules for differentiating functions are assumed in this course. In order to differentiate more types of functions, new rules will be introduced, the first to enable differentiation of a product of functions, the second to differentiate a quotient. Theorem (Product Rule): Given functions f and g, the derivative of their product is given by, (f g ) f g + f g Theorem (Quotient Rule): Given functions f and g, the derivative of their quotient (f / g ) is given by, 1 (f / g ) g (f g f g ) The Product Rule is easy to remember because of the + sign. The Quotient Rule takes more care because of the sign and the division by g. M Patel (April 01) 4 St. Machar Academy

5 Try writing both these rules in Leibniz notation and Euler notation to see which form is easier (or preferable) to remember. Eample 4 Differentiate h () cos. Let f () and g () cos. The following way of setting out the working is useful, f (), g () cos f (), g () sin Now substitute everything into the Product Rule, h () f () g () + f () g () h () ( ) cos + ( sin ) h () cos sin h () ( cos sin ) Eample 5 Differentiate h () ( 1) ( 1 ), simplifying as much as possible. Let f () and g () ( 1). Then, f (), g () ( 1) f (), g () ( 1) and g ( ) ( 1) 6 (remember rules of indices power of a power). Then apply the Quotient Rule to get, h () ( ) ( 1) ( ( 1) ) ( 1) 6 M Patel (April 01) 5 St. Machar Academy

6 h () ( 1) ( ( 1) ) 6 ( 1) h () ( 1) ( ) ( 1) ( + ) h () 4 ( 1) Reciprocal Trigonometric Functions 6 There are new trigonometric functions that will be studied in this course. They are ined using the sine, cosine and tangent functions. The secant function is ined by, sec 1 cos The domain and range of the secant function are, dom (sec ) R π R : + n π, n Z ran (sec ) R ( 1, 1) The cosecant function is ined by, cosec 1 sin The domain and range of the cosecant function are, dom (cosec ) R { R : n π, n Z } ran (cosec ) R ( 1, 1) M Patel (April 01) 6 St. Machar Academy

7 The cotangent function is ined by, cot cos sin The domain and range of the cotangent function are, dom (cot ) R { R : n π, n Z } ran (cot ) R Derivatives of Trigonometric Functions The derivatives of tan, sec, cosec and tan can be obtained by using the quotient rule and the derivatives of sin and cos. d tan sec d d sec sec tan d d cosec cosec cot d d cot cosec d Derivatives of ep and ln The derivatives of ep ( e ) and ln ( to obtain. The results will be stated here. d d e e d d ln 1 log ) require more effort e M Patel (April 01) 7 St. Machar Academy

8 Eample 6 Differentiate p () e sin. p () (e ) sin + e (cos ) p () e ( sin + cos ) Eample 7 Differentiate m () ln 4. m () 4 ( ) ln 4 4 (ln 4 ) Rectilinear Motion ln 4 m () (ln 4 ) ( ln 4 1) m () (ln 4 ) The derivative of a function gives a measure of the rate of change of a function with respect to a certain variable. Historically, Calculus was invented to satisfy the needs of describing physical phenomena. In particular, the rate of change of functions with respect to time played a very important role in understanding dynamics through mathematics. Motion in a straight line is called rectilinear motion. Unless otherwise stated, time will be measured in seconds and distance in metres. M Patel (April 01) 8 St. Machar Academy

9 The displacement of a particle from the origin O is the location of the particle from O after time t. Displacement is denoted by s (t). The velocity of a particle is ined by, v (t) ds dt s (t) The acceleration of a particle is ined by, a (t) dv dt d s dt ṡ (t) Eample 8 The displacement of a particle from the origin after time t is described by the function s (t) 4t t. Find the velocity and acceleration of the particle when t. s (t) 8t 9t s () 8() 9() s () 57 m/s ṡ (t) 8 18t ṡ () 8 18() ṡ () 46 m/s Differentiability of a Function Recall that a function is differentiable at a point if a unique tangent line can be drawn through that point. This can be understood in terms of tangent lines approaching from the left and right to the point in question. As tangent lines approach from the left and right, the gradients of these tangent lines should approach the same value. The function should be smooth and curvy at the point in question. M Patel (April 01) 9 St. Machar Academy

10 The left-hand derivative of f at a is ined by, f (a) lim h 0 f (a + h) f (a) h The right-hand derivative of f at a is ined by, f + (a) lim + h 0 f (a + h) f (a) h Theorem: A function is differentiable at a point if and only if both the left-hand and right-hand derivatives eist at that point and are equal to each other. Thus, to determine if a function is not differentiable at a point, it suffices to show one of the following (i) the left-hand derivative does not eist (ii) the right-hand derivative does not eist (iii) if they both eist, they are not equal. In terms of the graph of a function, this usually means identifying a sharp corner (aka kink ) or an endpoint (at an endpoint, obviously one of the derivatives won t eist). Eample 9 Determine where the function f ined by, f () (0 ) ( > ) is differentiable and where it is not differentiable. First sketch the graph of f. M Patel (April 01) 10 St. Machar Academy

11 y For 0 < <, f 1, so f is differentiable for 0 < <. For >, f 0, so f is differentiable for >. The only unclear points are where 0 and. For 0, the lefthand derivative does not eist, so f is not differentiable at 0. For, f () 1 and f + () 0, so f is not differentiable at. Critical Points A function may have points where the derivative is 0 or where the derivative does not eist. Such points have a special name. A function f has a critical point at a if either f (a) 0 or f (a) does not eist. a is called the critical number and f (a) is called the critical value. Note that all stationary points are critical points, but not all critical points are stationary points. Referring to the previous eample, f has critical points at (0, 0), (, ) and (, ) ( > ). At (0, 0) and (, ), the derivative doesn t eist, whereas for (, ) ( > ) the derivative is 0 (i.e. all the points (, ) ( > ) are stationary points). Etrema of a Function It is important to know the maimum and minimum values of a function. Maima and minima of a function are known as etrema. M Patel (April 01) 11 St. Machar Academy

12 There are types of etrema. Local. Endpoint. Global. A function f has a local (relative) maimum at a if an open interval I about a for which f (a) f () I. A function f has a local (relative) minimum at a if an open interval I about a for which f (a) f () I. Theorem: All local etrema occur at critical points. Stated differently, if f has a local etremum, then that local etremum point is also a critical point. Note that not all critical points are local etrema. Referring back to Eample 9, the point (0, 0) is not a local minimum, but it is a critical point. If a is an endpoint in dom f, f has an endpoint maimum at a if p dom f for which f (a) f () ( [a, p) or (p, a]). If a is an endpoint in dom f, f has an endpoint minimum at a if p dom f for which f (a) f () ( [a, p) or (p, a]). A function f function has a global (absolute) maimum at a if f (a) f () ( dom f ). A function f function has a global (absolute) minimum at a if f (a) f () ( dom f ). M Patel (April 01) 1 St. Machar Academy

13 Theorem: Every global etremum is either a local etremum or endpoint etremum. Eample 10 Classify the etrema for the function f with the graph shown. y D F C A G B E The small circles indicate the etent of where f is ined. The white circle means that the point is not in dom f, whereas the black circle means that the point is in dom f. Let s analyse the labelled points in turn. Remember, all etrema occur at critical points. A is not an endpoint ma., as A dom f (if A were in dom f, then A would be an endpoint ma.). A is not a critical point. B is a critical point, as f (B) < 0 and f + (B) > 0, so f (B). In particular, a local min. occurs at B, as all y values in the immediate vicinity of f (B) are bigger than f (B); the local min. is also a global min., as is clear from the graph. So, B is a global minimum. C is a critical point (even though f (C) > 0 and f + (C) > 0, the actual values are different and there is clearly no smooth transition between these values; the function is kinky at C, so f (C)). C is not a local M Patel (April 01) 1 St. Machar Academy

14 etremum, as there y values close to f (C) which are both bigger and smaller than f (C). C is a critical point. D is a critical point, as f (D) > 0 and f + (D) < 0, so f (D). D is obviously a local ma. and from the graph it clearly has the largest y value. So, D is a global maimum. E is a critical point, as f (E) 0. Thus, E is a stationary point. It is a local as well as a global min. So, E is a global minimum. F is clearly a critical point (for a similar reason cited for D). It is also a local ma., but not a global ma. So, F is a local maimum. G is a critical point, as f + (G). There are values to the left of G for which f () > f (G) and G is an endpoint. So, G is an endpoint minimum. Second Derivatives, Concavity and Points of Infleion The second derivative provides a useful measure of how curvy a function is and how the curviness changes. A function f is concave up on an interval if f () 0 on that interval. A function f is concave down on an interval if f () 0 on that interval. A function f has a point of infleion (inflection) at a if there is a change of concavity as the graph passes through a. The above initions lead to an alternative way of spotting infleion points. Theorem: If a function f has a point of infleion at a, then either f () or f () 0. M Patel (April 01) 14 St. Machar Academy

15 Note that if a function has f (a) 0, this does not necessarily mean 4 that a is a P of I. For eample, f () has f () 1 and thus f (0) 0. However, (0, 0) is clearly a minimum (sketch the graph). Infleion points may be further classified depending on the value of f. A function f has a horizontal (stationary) point of infleion at a if f (a) 0. A function has a non-horizontal (non-stationary) point of infleion at a if f (a) 0. For stationary points, there is a useful test for finding local maima and minima. Theorem (Second Derivative Test): If f (a) 0 and f (a) > 0, then f has a local minimum at a. If f (a) 0 and f (a) < 0, then f has a local maimum at a. If f (a) 0 and f (a) 0, then f may have a local maimum, a local minimum or a (horizontal) point of infleion. In the third case, the P of I must be horizontal, as f 0. A nature table is normally used to find maima, minima and infleion points. The Second Derivative Test gives a quick way of deciding whether a function has maima or minima. In the third case, a nature table must be drawn to determine the stationary point. Eample 11 Find all maima, minima and infleion points of f () sin in the interval (0, π). f () cos. The stationary points occur at (π/, 1) and (π/, 1). M Patel (April 01) 15 St. Machar Academy

16 f () sin. f (π/) 1 < 0 and f (π/) 1 > 0. So, (π/, 1) is a global maimum and (π/, 1) is a global minimum. As neither the ma. nor min. have f 0, any infleion points will be found by solving this equation. So, solving sin 0 gives π. When π, f (π) 0 and f (π) 1 0. Thus, (π, 0) is a non-horizontal P of I. If a function f has a P of I (and f eists at the point in question), then f 0. Hence, if f 0, there do not eist any infleion points. Eample 1 Show that f () points. + 5 has no stationary points and no infleion Rewriting f using long division gives, f () f () ( + ) For stationary points, f () 0. However, the equation, 8 ( + ) 0 obviously has no solutions. Hence, there are no maima or minima. For any infleion points, we need to analyse the second derivative, 16 f () ( + ) Similarly, the equation 16 ( + ) 0 has no solutions. Thus, there are no infleion points. M Patel (April 01) 16 St. Machar Academy

4.3 - How Derivatives Affect the Shape of a Graph

4.3 - How Derivatives Affect the Shape of a Graph 4.3 - How Derivatives Affect the Shape of a Graph 1. Increasing and Decreasing Functions Definition: A function f is (strictly) increasing on an interval I if for every 1, in I with 1, f 1 f. A function

More information

Review of elements of Calculus (functions in one variable)

Review of elements of Calculus (functions in one variable) Review of elements of Calculus (functions in one variable) Mainly adapted from the lectures of prof Greg Kelly Hanford High School, Richland Washington http://online.math.uh.edu/houstonact/ https://sites.google.com/site/gkellymath/home/calculuspowerpoints

More information

2.2 The derivative as a Function

2.2 The derivative as a Function 2.2 The derivative as a Function Recall: The derivative of a function f at a fixed number a: f a f a+h f(a) = lim h 0 h Definition (Derivative of f) For any number x, the derivative of f is f x f x+h f(x)

More information

AP Calculus BC Summer Assignment 2018

AP Calculus BC Summer Assignment 2018 AP Calculus BC Summer Assignment 018 Name: When you come back to school, I will epect you to have attempted every problem. These skills are all different tools that we will pull out of our toolbo at different

More information

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear.

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear. Precalculus Review Functions to KNOW! 1. Polynomial Functions Types: General form Generic Graph and unique properties Constants Linear Quadratic Cubic Generalizations for Polynomial Functions - The domain

More information

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) =

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) = 85. f() = 4 ( - 6) 2 f'() = 4 (2)( - 6)(1) + ( - 6) 2 (4 3 ) = 2 3 ( - 6)[ + 2( - 6)] = 2 3 ( - 6)(3-12) = 6 3 ( - 4)( - 6) Thus, the critical values are = 0, = 4, and = 6. Now we construct the sign chart

More information

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4]

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4] It s Your Turn Problems I. Functions, Graphs, and Limits. Here s the graph of the function f on the interval [ 4,4] f ( ) =.. It has a vertical asymptote at =, a) What are the critical numbers of f? b)

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES Before starting this section, you might need to review the trigonometric functions. DIFFERENTIATION RULES In particular, it is important to remember that,

More information

Differential calculus. Background mathematics review

Differential calculus. Background mathematics review Differential calculus Background mathematics review David Miller Differential calculus First derivative Background mathematics review David Miller First derivative For some function y The (first) derivative

More information

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it.

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it. Math 80, Final Eam, Spring 008 Problem Solution. For each of the following limits, determine whether the limit eists and, if so, evaluate it. + (a) lim 0 (b) lim ( ) 3 (c) lim Solution: (a) Upon substituting

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, you will be epected to have attempted every problem. These skills are all different tools that you will pull out of your toolbo this

More information

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows: MAT 4 Solutions Eam 4 (Applications of Differentiation) a Applying the Quotient Rule we compute the derivative function of f as follows: f () = 43 e 4 e (e ) = 43 4 e = 3 (4 ) e Hence f '( ) 0 for = 0

More information

(A) when x = 0 (B) where the tangent line is horizontal (C) when f '(x) = 0 (D) when there is a sharp corner on the graph (E) None of the above

(A) when x = 0 (B) where the tangent line is horizontal (C) when f '(x) = 0 (D) when there is a sharp corner on the graph (E) None of the above AP Physics C - Problem Drill 10: Differentiability and Rules of Differentiation Question No. 1 of 10 Question 1. A derivative does not eist Question #01 (A) when 0 (B) where the tangent line is horizontal

More information

Technical Calculus I Homework. Instructions

Technical Calculus I Homework. Instructions Technical Calculus I Homework Instructions 1. Each assignment is to be done on one or more pieces of regular-sized notebook paper. 2. Your name and the assignment number should appear at the top of the

More information

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued)

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Prove this Result How Can a Derivative Not Exist? Remember that the derivative at a point (or slope of a tangent line) is a LIMIT, so it doesn t exist whenever

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math 44 Activity (Due by end of class July 3) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

171, Calculus 1. Summer 1, CRN 50248, Section 001. Time: MTWR, 6:30 p.m. 8:30 p.m. Room: BR-43. CRN 50248, Section 002

171, Calculus 1. Summer 1, CRN 50248, Section 001. Time: MTWR, 6:30 p.m. 8:30 p.m. Room: BR-43. CRN 50248, Section 002 171, Calculus 1 Summer 1, 018 CRN 5048, Section 001 Time: MTWR, 6:0 p.m. 8:0 p.m. Room: BR-4 CRN 5048, Section 00 Time: MTWR, 11:0 a.m. 1:0 p.m. Room: BR-4 CONTENTS Syllabus Reviews for tests 1 Review

More information

6.1: Reciprocal, Quotient & Pythagorean Identities

6.1: Reciprocal, Quotient & Pythagorean Identities Math Pre-Calculus 6.: Reciprocal, Quotient & Pythagorean Identities A trigonometric identity is an equation that is valid for all values of the variable(s) for which the equation is defined. In this chapter

More information

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY MATH00 (Calculus).1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY Name Group No. KEYWORD: increasing, decreasing, constant, concave up, concave down, and inflection point Eample 1. Match the

More information

Rules for Differentiation Finding the Derivative of a Product of Two Functions. What does this equation of f '(

Rules for Differentiation Finding the Derivative of a Product of Two Functions. What does this equation of f '( Rules for Differentiation Finding the Derivative of a Product of Two Functions Rewrite the function f( = ( )( + 1) as a cubic function. Then, find f '(. What does this equation of f '( represent, again?

More information

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim.

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim. Math 50 Eam #3 Practice Problem Solutions. Determine the absolute maimum and minimum values of the function f() = +. f is defined for all. Also, so f doesn t go off to infinity. Now, to find the critical

More information

?

? NOTES 4: APPLICATIONS OF DIFFERENTIATION Name: Date: Period: WARM UP: Assume that f( ) and g ( ) are differentiable functions: f( ) f '( ) g ( ) g'( ) - 3 1-5 8-1 -9 7 4 1 0 5 9 9-3 1 3-3 6-5 3 8? 1. Let

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, it is my epectation that you will have this packet completed. You will be way behind at the beginning of the year if you haven t attempted

More information

Slide 1. Slide 2. Slide 3 Remark is a new function derived from called derivative. 2.2 The derivative as a Function

Slide 1. Slide 2. Slide 3 Remark is a new function derived from called derivative. 2.2 The derivative as a Function Slide 1 2.2 The derivative as a Function Slide 2 Recall: The derivative of a function number : at a fixed Definition (Derivative of ) For any number, the derivative of is Slide 3 Remark is a new function

More information

x π. Determine all open interval(s) on which f is decreasing

x π. Determine all open interval(s) on which f is decreasing Calculus Maimus Increasing, Decreasing, and st Derivative Test Show all work. No calculator unless otherwise stated. Multiple Choice = /5 + _ /5 over. Determine the increasing and decreasing open intervals

More information

Trigonometric Functions. Section 1.6

Trigonometric Functions. Section 1.6 Trigonometric Functions Section 1.6 Quick Review Radian Measure The radian measure of the angle ACB at the center of the unit circle equals the length of the arc that ACB cuts from the unit circle. Radian

More information

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description Unit C3 Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics C3. Unit description Algebra and functions; trigonometry; eponentials and logarithms; differentiation;

More information

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2 Math 5 Final Eam Practice Problem Solutions. What are the domain and range of the function f() = ln? Answer: is only defined for, and ln is only defined for >. Hence, the domain of the function is >. Notice

More information

MATH140 Exam 2 - Sample Test 1 Detailed Solutions

MATH140 Exam 2 - Sample Test 1 Detailed Solutions www.liontutors.com 1. D. reate a first derivative number line MATH140 Eam - Sample Test 1 Detailed Solutions cos -1 0 cos -1 cos 1 cos 1/ p + æp ö p æp ö ç è 4 ø ç è ø.. reate a second derivative number

More information

Maximum and Minimum Values

Maximum and Minimum Values Maimum and Minimum Values y Maimum Minimum MATH 80 Lecture 4 of 6 Definitions: A function f has an absolute maimum at c if f ( c) f ( ) for all in D, where D is the domain of f. The number f (c) is called

More information

MATH section 3.4 Curve Sketching Page 1 of 29

MATH section 3.4 Curve Sketching Page 1 of 29 MATH section. Curve Sketching Page of 9 The step by step procedure below is for regular rational and polynomial functions. If a function contains radical or trigonometric term, then proceed carefully because

More information

Calculus with business applications, Lehigh U, Lecture 05 notes Summer

Calculus with business applications, Lehigh U, Lecture 05 notes Summer Calculus with business applications, Lehigh U, Lecture 0 notes Summer 0 Trigonometric functions. Trigonometric functions often arise in physical applications with periodic motion. They do not arise often

More information

3.1 Day 1: The Derivative of a Function

3.1 Day 1: The Derivative of a Function A P Calculus 3.1 Day 1: The Derivative of a Function I CAN DEFINE A DERIVATIVE AND UNDERSTAND ITS NOTATION. Last chapter we learned to find the slope of a tangent line to a point on a graph by using a

More information

Math 2413 Final Exam Review 1. Evaluate, giving exact values when possible.

Math 2413 Final Exam Review 1. Evaluate, giving exact values when possible. Math 4 Final Eam Review. Evaluate, giving eact values when possible. sin cos cos sin y. Evaluate the epression. loglog 5 5ln e. Solve for. 4 6 e 4. Use the given graph of f to answer the following: y f

More information

AP Calculus Review Assignment Answer Sheet 1. Name: Date: Per. Harton Spring Break Packet 2015

AP Calculus Review Assignment Answer Sheet 1. Name: Date: Per. Harton Spring Break Packet 2015 AP Calculus Review Assignment Answer Sheet 1 Name: Date: Per. Harton Spring Break Packet 015 This is an AP Calc Review packet. As we get closer to the eam, it is time to start reviewing old concepts. Use

More information

Inverse Relations. 5 are inverses because their input and output are switched. For instance: f x x. x 5. f 4

Inverse Relations. 5 are inverses because their input and output are switched. For instance: f x x. x 5. f 4 Inverse Functions Inverse Relations The inverse of a relation is the set of ordered pairs obtained by switching the input with the output of each ordered pair in the original relation. (The domain of the

More information

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the unit circle.

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the unit circle. 2.24 Tanz and the Reciprocals Derivatives of Other Trigonometric Functions One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the

More information

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed.

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed. Section A ln. Let g() =, for > 0. ln Use the quotient rule to show that g ( ). 3 (b) The graph of g has a maimum point at A. Find the -coordinate of A. (Total 7 marks) 6. Let h() =. Find h (0). cos 3.

More information

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math Activity (Due by end of class Jan. 6) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES Before starting this section, you might need to review the trigonometric functions. DIFFERENTIATION RULES In particular, it is important to remember that,

More information

MATH 1325 Business Calculus Guided Notes

MATH 1325 Business Calculus Guided Notes MATH 135 Business Calculus Guided Notes LSC North Harris By Isabella Fisher Section.1 Functions and Theirs Graphs A is a rule that assigns to each element in one and only one element in. Set A Set B Set

More information

First Midterm Examination

First Midterm Examination Çankaya University Department of Mathematics 016-017 Fall Semester MATH 155 - Calculus for Engineering I First Midterm Eamination 1) Find the domain and range of the following functions. Eplain your solution.

More information

4.3 Mean-Value Theorem and Monotonicity

4.3 Mean-Value Theorem and Monotonicity .3 Mean-Value Theorem and Monotonicit 1. Mean Value Theorem Theorem: Suppose that f is continuous on the interval a, b and differentiable on the interval a, b. Then there eists a number c in a, b such

More information

Notes on Radian Measure

Notes on Radian Measure MAT 170 Pre-Calculus Notes on Radian Measure Radian Angles Terri L. Miller Spring 009 revised April 17, 009 1. Radian Measure Recall that a unit circle is the circle centered at the origin with a radius

More information

Differentiation - Quick Review From Calculus

Differentiation - Quick Review From Calculus Differentiation - Quick Review From Calculus Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Differentiation - Quick Review From Calculus Current Semester 1 / 13 Introduction In this section,

More information

Part Two. Diagnostic Test

Part Two. Diagnostic Test Part Two Diagnostic Test AP Calculus AB and BC Diagnostic Tests Take a moment to gauge your readiness for the AP Calculus eam by taking either the AB diagnostic test or the BC diagnostic test, depending

More information

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim Math Final Eam Review Solutions { + 3 if < Consider f() Find the following limits: (a) lim f() + + (b) lim f() + 3 3 (c) lim f() does not eist Find each of the following limits: + 6 (a) lim 3 + 3 (b) lim

More information

Calculus 1: Sample Questions, Final Exam

Calculus 1: Sample Questions, Final Exam Calculus : Sample Questions, Final Eam. Evaluate the following integrals. Show your work and simplify your answers if asked. (a) Evaluate integer. Solution: e 3 e (b) Evaluate integer. Solution: π π (c)

More information

4-3 Trigonometric Functions on the Unit Circle

4-3 Trigonometric Functions on the Unit Circle Find the exact value of each trigonometric function, if defined. If not defined, write undefined. 9. sin The terminal side of in standard position lies on the positive y-axis. Choose a point P(0, 1) on

More information

Using the Definitions of the Trigonometric Functions

Using the Definitions of the Trigonometric Functions 1.4 Using the Definitions of the Trigonometric Functions Reciprocal Identities Signs and Ranges of Function Values Pythagorean Identities Quotient Identities February 1, 2013 Mrs. Poland Objectives Objective

More information

Brief Revision Notes and Strategies

Brief Revision Notes and Strategies Brief Revision Notes and Strategies Straight Line Distance Formula d = ( ) + ( y y ) d is distance between A(, y ) and B(, y ) Mid-point formula +, y + M y M is midpoint of A(, y ) and B(, y ) y y Equation

More information

5.3 Properties of Trigonometric Functions Objectives

5.3 Properties of Trigonometric Functions Objectives Objectives. Determine the Domain and Range of the Trigonometric Functions. 2. Determine the Period of the Trigonometric Functions. 3. Determine the Signs of the Trigonometric Functions in a Given Quadrant.

More information

TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved.

TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved. 12 TRIGONOMETRIC FUNCTIONS Copyright Cengage Learning. All rights reserved. 12.2 The Trigonometric Functions Copyright Cengage Learning. All rights reserved. The Trigonometric Functions and Their Graphs

More information

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13 Contents Limits Derivatives 3. Difference Quotients......................................... 3. Average Rate of Change...................................... 4.3 Derivative Rules...........................................

More information

2015 Math Camp Calculus Exam Solution

2015 Math Camp Calculus Exam Solution 015 Math Camp Calculus Exam Solution Problem 1: x = x x +5 4+5 = 9 = 3 1. lim We also accepted ±3, even though it is not according to the prevailing convention 1. x x 4 x+4 =. lim 4 4+4 = 4 0 = 4 0 = We

More information

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test.

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test. Chapter 4: Applications of Differentiation In this chapter we will cover: 41 Maimum and minimum values The critical points method for finding etrema 43 How derivatives affect the shape of a graph The first

More information

Chapter 3 Differentiation Rules

Chapter 3 Differentiation Rules Chapter 3 Differentiation Rules Derivative constant function if c is any real number, then Example: The Power Rule: If n is a positive integer, then Example: Extended Power Rule: If r is any real number,

More information

Solutions to review problems MAT 125, Fall 2004

Solutions to review problems MAT 125, Fall 2004 Solutions to review problems MAT 125, Fall 200 1. For each of the following functions, find the absolute maimum and minimum values for f() in the given intervals. Also state the value where they occur.

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

Math 140 Final Sample A Solutions. Tyrone Crisp

Math 140 Final Sample A Solutions. Tyrone Crisp Math 4 Final Sample A Solutions Tyrone Crisp (B) Direct substitution gives, so the limit is infinite. When is close to, but greater than,, the numerator is negative while the denominator is positive. So

More information

The stationary points will be the solutions of quadratic equation x

The stationary points will be the solutions of quadratic equation x Calculus 1 171 Review In Problems (1) (4) consider the function f ( ) ( ) e. 1. Find the critical (stationary) points; establish their character (relative minimum, relative maimum, or neither); find intervals

More information

Chapter 3 Derivatives

Chapter 3 Derivatives Chapter Derivatives Section 1 Derivative of a Function What you ll learn about The meaning of differentiable Different ways of denoting the derivative of a function Graphing y = f (x) given the graph of

More information

Mathematics 1161: Midterm Exam 2 Study Guide

Mathematics 1161: Midterm Exam 2 Study Guide Mathematics 1161: Midterm Eam 2 Study Guide 1. Midterm Eam 2 is on October 18 at 6:00-6:55pm in Journalism Building (JR) 300. It will cover Sections 3.8, 3.9, 3.10, 3.11, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6,

More information

Review Sheet 2 Solutions

Review Sheet 2 Solutions Review Sheet Solutions 1. If y x 3 x and dx dt 5, find dy dt when x. We have that dy dt 3 x dx dt dx dt 3 x 5 5, and this is equal to 3 5 10 70 when x.. A spherical balloon is being inflated so that its

More information

Chapter 4 Trigonometric Functions

Chapter 4 Trigonometric Functions SECTION 4.1 Special Right Triangles and Trigonometric Ratios Chapter 4 Trigonometric Functions Section 4.1: Special Right Triangles and Trigonometric Ratios Special Right Triangles Trigonometric Ratios

More information

NOTES 5: APPLICATIONS OF DIFFERENTIATION

NOTES 5: APPLICATIONS OF DIFFERENTIATION NOTES 5: APPLICATIONS OF DIFFERENTIATION Name: Date: Period: Mrs. Nguyen s Initial: LESSON 5.1 EXTREMA ON AN INTERVAL Definition of Etrema Let f be defined on an interval I containing c. 1. f () c is the

More information

1998 AP Calculus AB: Section I, Part A

1998 AP Calculus AB: Section I, Part A 55 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number.. What is the -coordinate of the point

More information

Chapter 2 Overview: Anti-Derivatives. As noted in the introduction, Calculus is essentially comprised of four operations.

Chapter 2 Overview: Anti-Derivatives. As noted in the introduction, Calculus is essentially comprised of four operations. Chapter Overview: Anti-Derivatives As noted in the introduction, Calculus is essentially comprised of four operations. Limits Derivatives Indefinite Integrals (or Anti-Derivatives) Definite Integrals There

More information

Math 231 Final Exam Review

Math 231 Final Exam Review Math Final Eam Review Find the equation of the line tangent to the curve 4y y at the point (, ) Find the slope of the normal line to y ) ( e at the point (,) dy Find d if cos( y) y 4 y 4 Find the eact

More information

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations Pre-Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

Math 180, Exam 2, Spring 2013 Problem 1 Solution

Math 180, Exam 2, Spring 2013 Problem 1 Solution Math 80, Eam, Spring 0 Problem Solution. Find the derivative of each function below. You do not need to simplify your answers. (a) tan ( + cos ) (b) / (logarithmic differentiation may be useful) (c) +

More information

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) =

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) = CLEP Calculus Time 60 Minutes 5 Questions For each question below, choose the best answer from the choices given. 7. lim 5 + 5 is (A) 7 0 (C) 7 0 (D) 7 (E) Noneistent. If f(), then f () (A) (C) (D) (E)

More information

Quick Review Sheet for A.P. Calculus Exam

Quick Review Sheet for A.P. Calculus Exam Quick Review Sheet for A.P. Calculus Exam Name AP Calculus AB/BC Limits Date Period 1. Definition: 2. Steps in Evaluating Limits: - Substitute, Factor, and Simplify 3. Limits as x approaches infinity If

More information

Review sheet Final Exam Math 140 Calculus I Fall 2015 UMass Boston

Review sheet Final Exam Math 140 Calculus I Fall 2015 UMass Boston Review sheet Final Eam Math Calculus I Fall 5 UMass Boston The eam is closed tetbook NO CALCULATORS OR ELECTRONIC DEVICES ARE ALLOWED DURING THE EXAM The final eam will contain problems of types similar

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Name: NOTES 4: APPLICATIONS OF DIFFERENTIATION. Date: Period: Mrs. Nguyen s Initial: WARM UP:

Name: NOTES 4: APPLICATIONS OF DIFFERENTIATION. Date: Period: Mrs. Nguyen s Initial: WARM UP: NOTES 4: APPLICATIONS OF DIFFERENTIATION Name: Date: Period: Mrs. Nguyen s Initial: WARM UP: Assume that f ( ) and g ( ) are differentiable functions: f ( ) f '( ) g ( ) g'( ) - 3 1-5 8-1 -9 7 4 1 0 5

More information

Solutions to the Exercises of Chapter 8

Solutions to the Exercises of Chapter 8 8A Domains of Functions Solutions to the Eercises of Chapter 8 1 For 7 to make sense, we need 7 0or7 So the domain of f() is{ 7} For + 5 to make sense, +5 0 So the domain of g() is{ 5} For h() to make

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

lim 2 x lim lim sin 3 (9) l)

lim 2 x lim lim sin 3 (9) l) MAC FINAL EXAM REVIEW. Find each of the following its if it eists, a) ( 5). (7) b). c). ( 5 ) d). () (/) e) (/) f) (-) sin g) () h) 5 5 5. DNE i) (/) j) (-/) 7 8 k) m) ( ) (9) l) n) sin sin( ) 7 o) DNE

More information

Module 5 Calculus. Module5 CALCULUS 5

Module 5 Calculus. Module5 CALCULUS 5 Module 5 Calculus Module5 CALCULUS 5 Table of Contents A Differentiation... 5. Derivatives... 5. Finding Derivatives from First Principles... 5. Gradient Functions... 5. Differentiability... 5.5 Derivatives

More information

Answers for NSSH exam paper 2 type of questions, based on the syllabus part 2 (includes 16)

Answers for NSSH exam paper 2 type of questions, based on the syllabus part 2 (includes 16) Answers for NSSH eam paper type of questions, based on the syllabus part (includes 6) Section Integration dy 6 6. (a) Integrate with respect to : d y c ( )d or d The curve passes through P(,) so = 6/ +

More information

Definition of Tangent Line with Slope m: If f is defined on an open interval containing x, and if the limit y f( c x) f( c) f( c x) f( c) lim lim lim

Definition of Tangent Line with Slope m: If f is defined on an open interval containing x, and if the limit y f( c x) f( c) f( c x) f( c) lim lim lim Derivatives and the Tangent Line Problem Objective: Find the slope of the tangent line to a curve at a point. Use the limit definition to find the derivative of a function. Understand the relationship

More information

5.6 Asymptotes; Checking Behavior at Infinity

5.6 Asymptotes; Checking Behavior at Infinity 5.6 Asymptotes; Checking Behavior at Infinity checking behavior at infinity DEFINITION asymptote In this section, the notion of checking behavior at infinity is made precise, by discussing both asymptotes

More information

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity.

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity. Math Final Eam - Practice Problems. A function f is graphed below. f() 5 4 8 7 5 4 4 5 7 8 4 5 (a) Find f(0), f( ), f(), and f(4) Find the domain and range of f (c) Find the intervals where f () is positive

More information

π 2π More Tutorial at 1. (3 pts) The function y = is a composite function y = f( g( x)) and the outer function y = f( u)

π 2π   More Tutorial at 1. (3 pts) The function y = is a composite function y = f( g( x)) and the outer function y = f( u) 1. ( pts) The function y = is a composite function y = f( g( )). 6 + Identify the inner function u = g( ) and the outer function y = f( u). A) u = g( ) = 6+, y = f( u) = u B) u = g( ) =, y = f( u) = 6u+

More information

Honors Algebra 2 Chapter 14 Page 1

Honors Algebra 2 Chapter 14 Page 1 Section. (Introduction) Graphs of Trig Functions Objectives:. To graph basic trig functions using t-bar method. A. Sine and Cosecant. y = sinθ y y y y 0 --- --- 80 --- --- 30 0 0 300 5 35 5 35 60 50 0

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

1985 AP Calculus AB: Section I

1985 AP Calculus AB: Section I 985 AP Calculus AB: Section I 9 Minutes No Calculator Notes: () In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e). () Unless otherwise specified, the domain of

More information

A. Incorrect! For a point to lie on the unit circle, the sum of the squares of its coordinates must be equal to 1.

A. Incorrect! For a point to lie on the unit circle, the sum of the squares of its coordinates must be equal to 1. Algebra - Problem Drill 19: Basic Trigonometry - Right Triangle No. 1 of 10 1. Which of the following points lies on the unit circle? (A) 1, 1 (B) 1, (C) (D) (E), 3, 3, For a point to lie on the unit circle,

More information

As we know, the three basic trigonometric functions are as follows: Figure 1

As we know, the three basic trigonometric functions are as follows: Figure 1 Trigonometry Basic Functions As we know, the three basic trigonometric functions are as follows: sin θ = cos θ = opposite hypotenuse adjacent hypotenuse tan θ = opposite adjacent Where θ represents an

More information

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables.

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Partial derivatives and directional derivatives. Directional derivative of functions of

More information

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal)

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal) TRIG REVIEW NOTES Convert from radians to degrees: multiply by 0 180 Convert from degrees to radians: multiply by 0. 180 Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents

More information

Chapter 6 Overview: Applications of Derivatives

Chapter 6 Overview: Applications of Derivatives Chapter 6 Overview: Applications of Derivatives There are two main contets for derivatives: graphing and motion. In this chapter, we will consider the graphical applications of the derivative. Much of

More information

Quick Review 4.1 (For help, go to Sections 1.2, 2.1, 3.5, and 3.6.)

Quick Review 4.1 (For help, go to Sections 1.2, 2.1, 3.5, and 3.6.) Section 4. Etreme Values of Functions 93 EXPLORATION Finding Etreme Values Let f,.. Determine graphicall the etreme values of f and where the occur. Find f at these values of.. Graph f and f or NDER f,,

More information

Mathematics syllabus for Grade 11 and 12 For Bilingual Schools in the Sultanate of Oman

Mathematics syllabus for Grade 11 and 12 For Bilingual Schools in the Sultanate of Oman 03 04 Mathematics syllabus for Grade and For Bilingual Schools in the Sultanate of Oman Prepared By: A Stevens (Qurum Private School) M Katira (Qurum Private School) M Hawthorn (Al Sahwa Schools) In Conjunction

More information

Review Guideline for Final

Review Guideline for Final Review Guideline for Final Here is the outline of the required skills for the final exam. Please read it carefully and find some corresponding homework problems in the corresponding sections to practice.

More information

Topic 6 Part 4 [317 marks]

Topic 6 Part 4 [317 marks] Topic 6 Part [7 marks] a. ( + tan ) sec tan (+c) M [ marks] [ marks] Some correct answers but too many candidates had a poor approach and did not use the trig identity. b. sin sin (+c) cos M [ marks] Allow

More information

Chapter 12 Overview: Review of All Derivative Rules

Chapter 12 Overview: Review of All Derivative Rules Chapter 12 Overview: Review of All Derivative Rules The emphasis of the previous chapters was graphing the families of functions as they are viewed (mostly) in Analytic Geometry, that is, with traits.

More information