Differential Calculus

Size: px
Start display at page:

Download "Differential Calculus"

Transcription

1 Differential Calculus. Compute the derivatives of the following functions a() = b() = c() = 3 + d() = sin cos e() = sin f() = log g() = tan h() = 3 6e 5 4 i() = + tan 3 j() = e k() = arctan l() = log (log ) m() = sin n() = o() = sin log (sin ) p() = q() = arctan ( + e ) r() = log ( + arctan ) s() = log ( + + ) t() = arctan + arctan u() = arctan log ( + ) v() = log + w() = arcsin + y() = log e + z() = log 3 log e + α() = log + 3 log β() = log e + 3e γ() = + log ( ) δ() = log ε() = 4 + cos + cos 6 + e η() = arctan log (arccos ) ϑ() = [ + log ( sin )] e sin λ() = sin cos ϕ() = ( 9)e ψ() = e.. Find the equation of the tangent line to the graph of the following functions at the given point 0 : a) f() = 4 3, ( 0 = ) b) f() = +, ( 0 = ) c) f() =, ( 0 = ) d) f() = e, ( 0 = 0).

2 3. Discuss the differentiability of f() = Determine the monotonicity intervals of the following functions: a) f() = b) f() = ( ) c) f() = e d) f() = e) f() = e. 5. Find local maima and minima of the following functions a) f() = b) f() = c) f() = 3 d) f() = + e) f() = log. 6. Find local maimum and minimum points of f() = sin on [0, π]. 7. Find (local and global) maimum and minimum points of f() = 3 + on [, 3]. 8. Compute the number of real roots of the equation = Let f() = ( )e + arctan(log ) +. Prove that f is invertible on its domain and find R (f). 0. Compute f and f of the following functions (a) f() = (d) f() = (b) f() = arctan (c) f() = cos(sin ) ( + ) (e) f() = + sin (f) f() = arcsin.. Find (if possible) the asymptotes of the following functions a) f() = 3 + b) f() = 3 c) f() = 5 + d) f() = e e e) f() = Find the asymptote as + of the function f() = 3 + sin Compute the following limits using de l Hopital s Theorem: a) lim 0 ( + ) 4 tan d) lim 0 cos g) lim 0 e e sin l) lim 0 e tan e. b) lim sin e) lim 0 ( cos ) cos sin + cos h) lim π sin cos c) lim 0 sin 3 + sin 3 sin ( sin ) f) lim π cos sin i) lim 0 + sin

3 4. For which values of α R is the function ( ) + α f() = arcsin + defined on R? { , if < 0 5. Let f() = ln ( + + ) for which values of k is the function f continuous on R? + k, if 0; Which is the highest order derivative of f we can compute on R? 6. Which of the following functions satisfy the assumptions of Rolle s Theorem on the interval [, ]?, if [, 0] a) f() = b) f() = c) f() = 0, if (0, ] ( ), if (, ] 7. Find the range of the function, if [, 0] d) f() = 0, if (0, ], if (, ] ), if [, e) f() = 0, if =, if (, ]. f() = arctan + arctan, Using Rolle s Theorem show that the derivative of f() = zeros in (0, ). 9. How many solutions has the equation arctan(a) =, where a > 0? { sin π, if > 0 0, if = 0 0. Let f() = + cos. Verify that f is invertible and compute (f ) (). has an infinite number of. Prove that cos, R. 3

4 Solutions. a () = b () = + 4 ( + ) c () = 3 3 ( + ) d () = cos + sin e () = sin + cos f () = g () = ( + tan ) = h () = e 54 i () = + cos e q () = + ( + e ) r () = s () = t () = 0 arctan ( + )( + arctan ) + u () = arctan v () = ( + ) w () = ( + ) 3 4 y () = e e + e (e + ) j () = 3 e tan 3 ( + tan 3) k () = arctan + l () = log + m () = sin cos log n () = (log + ) ( o () = sin cos log + sin ) z () = log 7 log + 5 (log ) α () = 6 log + β () = e + 3e e + 3e γ () = ( ) + log ( ) δ () = sin cos ( + cos ) ( ) cos p () = log sin log sin ε () = 3 e log + sin 6 + e [ ] log (arccos ) η arctan () = arctan + arccos [ ] cos ϑ () = e sin + cos ( + log ( sin )) sin λ () = ( + ) cos + ( ) sin sin cos { e ( + + 9), if > 0 ϕ () = e ( + 9), if < 0 4

5 ( e ) se 0, ψ () = ( ). + e se < 0, +. Since the equation of the tangent line is y = f( 0 ) + f ( 0 )( 0 ) we have: a) y = + 8; b) y = + ; c) y = (horizontal tangent line); d) y =. 3. Since f() =, f the derivative of f eists whenever R \ {}. 4. a) Increasing when > 5/6, decreasing when < 5/6; b) increasing when < /3 and when >, decreasing when /3 < < ; c) Increasing for every ; d) Increasing when 0 < <, decreasing when > ; e) Increasing when > 0, decreasing when < a) Maimum at =, minimum at = ; b) maimum at = ; c) f does not have any maimum or minimum; d) minimum at = 3 ; e) maimum at =. 6. Maimum at = π and minimum at = 0, π. 7. Absolute minimum at = 3, where f ( ) 3 = 3 4. Absolute maimum at = 3, where f(3) = 5. = and = are local maima (f() = 3 and f( ) = 3). = 3 is a local minimum and f ( ) 3 = Eactly one real solution. 9. f is strictly increasing on (0, + ), hence invertible. R (f) = ( π, + ). 0. (a) f () =, f 6 () = ; ( ) 3 ( ) 5 (b) f () = ( + ) arctan, f arctan + () = ( + ) arctan 3 ; (c) f () = sin (sin ) cos, f () = cos (sin ) cos + sin (sin ) sin ; (d) f () = f () = ( + ) [ ( log + ) ], + ( { + ) [ ( log + ) ] } + ( + ) ; (e) f () = ( + cos ), f () = ( 3 + cos ) 4 sin ; (f) f () =, if > 0, if < 0, f () = ( ) 3 ( ) 3, if > 0, if < 0.. a) = vert. as., y = 3 hor. as. ; b) no as. ; c) = vert. as., y = obl. as. ; d) = 0 vert. as., y = 0 hor. as. at ; y = hor. as. at + ; e) no as... y =. 3. a) 4; b) 0; c) 3; d) lim 0 ± f() = ± ; e) ; f) 0; g) ; h) ; i) lim 0 ± f() = ± ; l) α = 0. 5

6 5. f is continuous if k = 0; f eists on R, f () = if < 0 and f () = /( + ) if 0. Computing the limits of the difference quotient of f as 0 + and 0, we obtain f +(0) = and f (0) = 6, hence f has only the first derivative on R. 6. a) No (f( ) f()); b) No (f is not differentiable); c) Yes; d) No (f is not differentiable); e) No (f is not continuous). 7. R (f) = { π/, π/}. 8. f(/n) = 0 for every n, hence the assumptions of the Rolle s Theorem are satisfied in [/(n + ), /n] for every n, that is in infinitely many intervals. 9. If 0 < a < there eists a unique solution. If a, 3 solutions eist. 0. Since f () = sin for every R, f is strictly increasing and then invertible. We look for 0 such that f( 0 ) =. We have 0 = 0, hence g () =.. Let f() = cos + /, we have f () = sin + and f () = cos +. Since f () 0 for every R, f is increasing. We remark that f (0) = 0, hence f () 0 when 0 and f () 0 when 0. Hence f decreases on (, 0], increases on [0, + ) and f() f(0) = 0. 6

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

1969 AP Calculus BC: Section I

1969 AP Calculus BC: Section I 969 AP Calculus BC: Section I 9 Minutes No Calculator Note: In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e).. t The asymptotes of the graph of the parametric

More information

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim Math Final Eam Review Solutions { + 3 if < Consider f() Find the following limits: (a) lim f() + + (b) lim f() + 3 3 (c) lim f() does not eist Find each of the following limits: + 6 (a) lim 3 + 3 (b) lim

More information

4.3 - How Derivatives Affect the Shape of a Graph

4.3 - How Derivatives Affect the Shape of a Graph 4.3 - How Derivatives Affect the Shape of a Graph 1. Increasing and Decreasing Functions Definition: A function f is (strictly) increasing on an interval I if for every 1, in I with 1, f 1 f. A function

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it.

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it. Math 80, Final Eam, Spring 008 Problem Solution. For each of the following limits, determine whether the limit eists and, if so, evaluate it. + (a) lim 0 (b) lim ( ) 3 (c) lim Solution: (a) Upon substituting

More information

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg.

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg. CALCULUS: Graphical,Numerical,Algebraic b Finne,Demana,Watts and Kenned Chapter : Derivatives.: Derivative of a function pg. 116-16 What ou'll Learn About How to find the derivative of: Functions with

More information

Inverse Relations. 5 are inverses because their input and output are switched. For instance: f x x. x 5. f 4

Inverse Relations. 5 are inverses because their input and output are switched. For instance: f x x. x 5. f 4 Inverse Functions Inverse Relations The inverse of a relation is the set of ordered pairs obtained by switching the input with the output of each ordered pair in the original relation. (The domain of the

More information

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math Activity (Due by end of class Jan. 6) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math 44 Activity (Due by end of class July 3) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

First Midterm Examination

First Midterm Examination Çankaya University Department of Mathematics 016-017 Fall Semester MATH 155 - Calculus for Engineering I First Midterm Eamination 1) Find the domain and range of the following functions. Eplain your solution.

More information

1985 AP Calculus AB: Section I

1985 AP Calculus AB: Section I 985 AP Calculus AB: Section I 9 Minutes No Calculator Notes: () In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e). () Unless otherwise specified, the domain of

More information

C) 2 D) 4 E) 6. ? A) 0 B) 1 C) 1 D) The limit does not exist.

C) 2 D) 4 E) 6. ? A) 0 B) 1 C) 1 D) The limit does not exist. . The asymptotes of the graph of the parametric equations = t, y = t t + are A) =, y = B) = only C) =, y = D) = only E) =, y =. What are the coordinates of the inflection point on the graph of y = ( +

More information

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim.

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim. Math 50 Eam #3 Practice Problem Solutions. Determine the absolute maimum and minimum values of the function f() = +. f is defined for all. Also, so f doesn t go off to infinity. Now, to find the critical

More information

LINEAR APPROXIMATION, LIMITS, AND L'HOPITAL'S RULE v.05

LINEAR APPROXIMATION, LIMITS, AND L'HOPITAL'S RULE v.05 LINEAR APPROXIMATION, LIMITS, AND L'HOPITAL'S RULE v.05 Linear Approimation Nearby a point at which a function is differentiable, the function and its tangent line are approimately the same. The tangent

More information

AP Calculus AB/IB Math SL2 Unit 1: Limits and Continuity. Name:

AP Calculus AB/IB Math SL2 Unit 1: Limits and Continuity. Name: AP Calculus AB/IB Math SL Unit : Limits and Continuity Name: Block: Date:. A bungee jumper dives from a tower at time t = 0. Her height h (in feet) at time t (in seconds) is given by the graph below. In

More information

Math 111 Calculus I - SECTIONS A and B SAMPLE FINAL EXAMINATION Thursday, May 3rd, POSSIBLE POINTS

Math 111 Calculus I - SECTIONS A and B SAMPLE FINAL EXAMINATION Thursday, May 3rd, POSSIBLE POINTS Math Calculus I - SECTIONS A and B SAMPLE FINAL EXAMINATION Thursday, May 3rd, 0 00 POSSIBLE POINTS DISCLAIMER: This sample eam is a study tool designed to assist you in preparing for the final eamination

More information

1. The cost (in dollars) of producing x units of a certain commodity is C(x) = x x 2.

1. The cost (in dollars) of producing x units of a certain commodity is C(x) = x x 2. APPM 1350 Review #2 Summer 2014 1. The cost (in dollars) of producing units of a certain commodity is C() 5000 + 10 + 0.05 2. (a) Find the average rate of change of C with respect to when the production

More information

1998 AP Calculus AB: Section I, Part A

1998 AP Calculus AB: Section I, Part A 55 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number.. What is the -coordinate of the point

More information

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one.

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one. Section 5.4 - Inverse Trigonometry In this section, we will define inverse since, cosine and tangent functions. RECALL Facts about inverse functions: A function f ) is one-to-one if no two different inputs

More information

(A) when x = 0 (B) where the tangent line is horizontal (C) when f '(x) = 0 (D) when there is a sharp corner on the graph (E) None of the above

(A) when x = 0 (B) where the tangent line is horizontal (C) when f '(x) = 0 (D) when there is a sharp corner on the graph (E) None of the above AP Physics C - Problem Drill 10: Differentiability and Rules of Differentiation Question No. 1 of 10 Question 1. A derivative does not eist Question #01 (A) when 0 (B) where the tangent line is horizontal

More information

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows: MAT 4 Solutions Eam 4 (Applications of Differentiation) a Applying the Quotient Rule we compute the derivative function of f as follows: f () = 43 e 4 e (e ) = 43 4 e = 3 (4 ) e Hence f '( ) 0 for = 0

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

2. Laws of Exponents (1) b 0 1 (2) b x b y b x y (3) bx b y. b x y (4) b n (5) b r s b rs (6) n b b 1/n Example: Solve the equations (a) e 2x

2. Laws of Exponents (1) b 0 1 (2) b x b y b x y (3) bx b y. b x y (4) b n (5) b r s b rs (6) n b b 1/n Example: Solve the equations (a) e 2x 7.1 Derivative of Exponential Function 1. Exponential Functions Let b 0 and b 1. f x b x is called an exponential function. Domain of f x :, Range of f x : 0, Example: lim x e x x2 2. Laws of Exponents

More information

1 (C) 1 e. Q.3 The angle between the tangent lines to the graph of the function f (x) = ( 2t 5)dt at the points where (C) (A) 0 (B) 1/2 (C) 1 (D) 3

1 (C) 1 e. Q.3 The angle between the tangent lines to the graph of the function f (x) = ( 2t 5)dt at the points where (C) (A) 0 (B) 1/2 (C) 1 (D) 3 [STRAIGHT OBJECTIVE TYPE] Q. Point 'A' lies on the curve y e and has the coordinate (, ) where > 0. Point B has the coordinates (, 0). If 'O' is the origin then the maimum area of the triangle AOB is (A)

More information

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity.

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity. Math Final Eam - Practice Problems. A function f is graphed below. f() 5 4 8 7 5 4 4 5 7 8 4 5 (a) Find f(0), f( ), f(), and f(4) Find the domain and range of f (c) Find the intervals where f () is positive

More information

Review Guideline for Final

Review Guideline for Final Review Guideline for Final Here is the outline of the required skills for the final exam. Please read it carefully and find some corresponding homework problems in the corresponding sections to practice.

More information

x π. Determine all open interval(s) on which f is decreasing

x π. Determine all open interval(s) on which f is decreasing Calculus Maimus Increasing, Decreasing, and st Derivative Test Show all work. No calculator unless otherwise stated. Multiple Choice = /5 + _ /5 over. Determine the increasing and decreasing open intervals

More information

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4]

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4] It s Your Turn Problems I. Functions, Graphs, and Limits. Here s the graph of the function f on the interval [ 4,4] f ( ) =.. It has a vertical asymptote at =, a) What are the critical numbers of f? b)

More information

1993 AP Calculus AB: Section I

1993 AP Calculus AB: Section I 99 AP Calculus AB: Section I 9 Minutes Scientific Calculator Notes: () The eact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among

More information

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23 Chapter 3 Limit and Continuity Contents 3. Definition of Limit 3 3.2 Basic Limit Theorems 8 3.3 One sided Limit 4 3.4 Infinite Limit, Limit at infinity and Asymptotes 5 3.4. Infinite Limit and Vertical

More information

y x is symmetric with respect to which of the following?

y x is symmetric with respect to which of the following? AP Calculus Summer Assignment Name: Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number. Part : Multiple Choice Solve

More information

CALCULUS AB/BC SUMMER REVIEW PACKET (Answers)

CALCULUS AB/BC SUMMER REVIEW PACKET (Answers) Name CALCULUS AB/BC SUMMER REVIEW PACKET (Answers) I. Simplify. Identify the zeros, vertical asymptotes, horizontal asymptotes, holes and sketch each rational function. Show the work that leads to your

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION 8 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION Directions: Solve each of the following problems. After eamining the form

More information

4.3 Mean-Value Theorem and Monotonicity

4.3 Mean-Value Theorem and Monotonicity .3 Mean-Value Theorem and Monotonicit 1. Mean Value Theorem Theorem: Suppose that f is continuous on the interval a, b and differentiable on the interval a, b. Then there eists a number c in a, b such

More information

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2.

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2. ) Solve the following inequalities.) ++.) 4 >.) Calculus - Lab { + > + 5 + < +. ) Graph the functions f() =, g() = + +, h() = cos( ), r() = +. ) Find the domain of the following functions.) f() = +.) f()

More information

1. Find the area enclosed by the curve y = arctan x, the x-axis and the line x = 3. (Total 6 marks)

1. Find the area enclosed by the curve y = arctan x, the x-axis and the line x = 3. (Total 6 marks) 1. Find the area enclosed by the curve y = arctan, the -ais and the line = 3. (Total 6 marks). Show that the points (0, 0) and ( π, π) on the curve e ( + y) = cos (y) have a common tangent. 3. Consider

More information

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET 017-018 Name: 1. This packet is to be handed in on Monday August 8, 017.. All work must be shown on separate paper attached to the packet. 3.

More information

(ii) y = ln 1 ] t 3 t x x2 9

(ii) y = ln 1 ] t 3 t x x2 9 Study Guide for Eam 1 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its epression to be well-defined. Some eamples of the conditions are: What is inside

More information

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables.

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Partial derivatives and directional derivatives. Directional derivative of functions of

More information

Directions: Please read questions carefully. It is recommended that you do the Short Answer Section prior to doing the Multiple Choice.

Directions: Please read questions carefully. It is recommended that you do the Short Answer Section prior to doing the Multiple Choice. AP Calculus AB SUMMER ASSIGNMENT Multiple Choice Section Directions: Please read questions carefully It is recommended that you do the Short Answer Section prior to doing the Multiple Choice Show all work

More information

Chapter 3 Differentiation Rules

Chapter 3 Differentiation Rules Chapter 3 Differentiation Rules Derivative constant function if c is any real number, then Example: The Power Rule: If n is a positive integer, then Example: Extended Power Rule: If r is any real number,

More information

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0 Eact Equations An eact equation is a first order differential equation that can be written in the form M(, + N(,, provided that there eists a function ψ(, such that = M (, and N(, = Note : Often the equation

More information

Given the vectors u, v, w and real numbers α, β, γ. Calculate vector a, which is equal to the linear combination α u + β v + γ w.

Given the vectors u, v, w and real numbers α, β, γ. Calculate vector a, which is equal to the linear combination α u + β v + γ w. Selected problems from the tetbook J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I Problems in Mathematics I I. LINEAR ALGEBRA I.. Vectors, vector spaces Given the vectors u, v, w and real numbers

More information

Math Midterm Solutions

Math Midterm Solutions Math 50 - Midterm Solutions November 4, 009. a) If f ) > 0 for all in a, b), then the graph of f is concave upward on a, b). If f ) < 0 for all in a, b), then the graph of f is downward on a, b). This

More information

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed.

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed. Section A ln. Let g() =, for > 0. ln Use the quotient rule to show that g ( ). 3 (b) The graph of g has a maimum point at A. Find the -coordinate of A. (Total 7 marks) 6. Let h() =. Find h (0). cos 3.

More information

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13 Contents Limits Derivatives 3. Difference Quotients......................................... 3. Average Rate of Change...................................... 4.3 Derivative Rules...........................................

More information

AP Calculus AB SUMMER ASSIGNMENT. Dear future Calculus AB student

AP Calculus AB SUMMER ASSIGNMENT. Dear future Calculus AB student AP Calculus AB SUMMER ASSIGNMENT Dear future Calculus AB student We are ecited to work with you net year in Calculus AB. In order to help you be prepared for this class, please complete the summer assignment.

More information

Student s Printed Name:

Student s Printed Name: MATH 1060 Test 1 Fall 018 Calculus of One Variable I Version B KEY Sections 1.3 3. Student s Printed Name: Instructor: XID: C Section: No questions will be answered during this eam. If you consider a question

More information

Math 261 Final Exam - Practice Problem Solutions. 1. A function f is graphed below.

Math 261 Final Exam - Practice Problem Solutions. 1. A function f is graphed below. Math Final Eam - Practice Problem Solutions. A function f is graphed below. f() 8 7 7 8 (a) Find f(), f( ), f(), and f() f() = ;f( ).;f() is undefined; f() = (b) Find the domain and range of f Domain:

More information

Ph.D. Katarína Bellová Page 1 Mathematics 1 (10-PHY-BIPMA1) RETAKE EXAM, 4 April 2018, 10:00 12:00

Ph.D. Katarína Bellová Page 1 Mathematics 1 (10-PHY-BIPMA1) RETAKE EXAM, 4 April 2018, 10:00 12:00 Ph.D. Katarína Bellová Page Mathematics (0-PHY-BIPMA) RETAKE EXAM, 4 April 08, 0:00 :00 Problem [4 points]: Prove that for any positive integer n, the following equality holds: + 4 + 7 + + (3n ) = n(3n

More information

In #1-5, find the indicated limits. For each one, if it does not exist, tell why not. Show all necessary work.

In #1-5, find the indicated limits. For each one, if it does not exist, tell why not. Show all necessary work. Calculus I Eam File Fall 7 Test # In #-5, find the indicated limits. For each one, if it does not eist, tell why not. Show all necessary work. lim sin.) lim.) 3.) lim 3 3-5 4 cos 4.) lim 5.) lim sin 6.)

More information

(a) During what time intervals on [0, 4] is the particle traveling to the left?

(a) During what time intervals on [0, 4] is the particle traveling to the left? Chapter 5. (AB/BC, calculator) A particle travels along the -ais for times 0 t 4. The velocity of the particle is given by 5 () sin. At time t = 0, the particle is units to the right of the origin. t /

More information

Technical Calculus I Homework. Instructions

Technical Calculus I Homework. Instructions Technical Calculus I Homework Instructions 1. Each assignment is to be done on one or more pieces of regular-sized notebook paper. 2. Your name and the assignment number should appear at the top of the

More information

Aim: How do we prepare for AP Problems on limits, continuity and differentiability? f (x)

Aim: How do we prepare for AP Problems on limits, continuity and differentiability? f (x) Name AP Calculus Date Supplemental Review 1 Aim: How do we prepare for AP Problems on limits, continuity and differentiability? Do Now: Use the graph of f(x) to evaluate each of the following: 1. lim x

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012 Unit # Understanding the Derivative Homework Packet f ( h) f ( Find lim for each of the functions below. Then, find the equation of the tangent line to h 0 h the graph of f( at the given value of. 1. f

More information

Find the following limits. For each one, if it does not exist, tell why not. Show all necessary work.

Find the following limits. For each one, if it does not exist, tell why not. Show all necessary work. Calculus I Eam File Spring 008 Test #1 Find the following its. For each one, if it does not eist, tell why not. Show all necessary work. 1.) 4.) + 4 0 1.) 0 tan 5.) 1 1 1 1 cos 0 sin 3.) 4 16 3 1 6.) For

More information

MTH 121 Fall 2007 Essex County College Division of Mathematics and Physics Worksheet #1 1

MTH 121 Fall 2007 Essex County College Division of Mathematics and Physics Worksheet #1 1 MTH Fall 007 Essex County College Division of Mathematics and Physics Worksheet # Preamble It is extremely important that you complete the following two items as soon as possible. Please send an email

More information

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

sin x (B) sin x 1 (C) sin x + 1

sin x (B) sin x 1 (C) sin x + 1 ANSWER KEY Packet # AP Calculus AB Eam Multiple Choice Questions Answers are on the last page. NO CALCULATOR MAY BE USED IN THIS PART OF THE EXAMINATION. On the AP Eam, you will have minutes to answer

More information

Calculus I Exam 1 Review Fall 2016

Calculus I Exam 1 Review Fall 2016 Problem 1: Decide whether the following statements are true or false: (a) If f, g are differentiable, then d d x (f g) = f g. (b) If a function is continuous, then it is differentiable. (c) If a function

More information

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2 6 FAMAT Convention Mu Integration. A. 3 3 7 6 6 3 ] 3 6 6 3. B. For quadratic functions, Simpson s Rule is eact. Thus, 3. D.. B. lim 5 3 + ) 3 + ] 5 8 8 cot θ) dθ csc θ ) dθ cot θ θ + C n k n + k n lim

More information

1. By the Product Rule, in conjunction with the Chain Rule, we compute the derivative as follows: and. So the slopes of the tangent lines to the curve

1. By the Product Rule, in conjunction with the Chain Rule, we compute the derivative as follows: and. So the slopes of the tangent lines to the curve MAT 11 Solutions TH Eam 3 1. By the Product Rule, in conjunction with the Chain Rule, we compute the derivative as follows: Therefore, d 5 5 d d 5 5 d 1 5 1 3 51 5 5 and 5 5 5 ( ) 3 d 1 3 5 ( ) So the

More information

AP Exam Practice Questions for Chapter 3

AP Exam Practice Questions for Chapter 3 AP Eam Practice Questions for Chapter AP Eam Practice Questions for Chapter f + 6 7 9 f + 7 0 + 6 0 ( + )( ) 0,. The critical numbers of f are and. So, the answer is B.. Evaluate each statement. I: Because

More information

Date Period For each problem, find all points of absolute minima and maxima on the given interval.

Date Period For each problem, find all points of absolute minima and maxima on the given interval. Calculus C o_0b1k5k gkbult_ai nsoo\fwtvwhairkew ULNLuCC._ ` naylflu [rhisg^h^tlsi traesgevrpvfe_dl. Final Eam Review Day 1 Name ID: 1 Date Period For each problem, find all points of absolute minima and

More information

) # ( 281). Give units with your answer.

) # ( 281). Give units with your answer. Math 120 Winter 2009 Handout 17: In-Class Review for Exam 2 The topics covered by Exam 2 in the course include the following: Implicit differentiation. Finding formulas for tangent lines using implicit

More information

Key- Math 231 Final Exam Review

Key- Math 231 Final Exam Review Key- Math Final Eam Review Find the equation of the line tangent to the curve y y at the point (, ) y-=(-/)(-) Find the slope of the normal line to y ) ( e at the point (,) dy Find d if cos( y) y y (ysiny+y)/(-siny-y^-^)

More information

Limits, Continuity, and Differentiability Solutions

Limits, Continuity, and Differentiability Solutions Limits, Continuity, and Differentiability Solutions We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions

More information

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x)

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x) APPM 5 Final Eam (5 pts) Fall. The following problems are not related: (a) (5 pts, 5 pts ea.) Find the following limits or show that they do not eist: (i) lim e (ii) lim arcsin() (b) (5 pts) Find and classify

More information

AP Calculus BC Summer Review

AP Calculus BC Summer Review AP Calculus BC 07-08 Summer Review Due September, 07 Name: All students entering AP Calculus BC are epected to be proficient in Pre-Calculus skills. To enhance your chances for success in this class, it

More information

Math 112 (Calculus I) Midterm Exam 3 KEY

Math 112 (Calculus I) Midterm Exam 3 KEY Math 11 (Calculus I) Midterm Exam KEY Multiple Choice. Fill in the answer to each problem on your computer scored answer sheet. Make sure your name, section and instructor are on that sheet. 1. Which of

More information

NOTES 5: APPLICATIONS OF DIFFERENTIATION

NOTES 5: APPLICATIONS OF DIFFERENTIATION NOTES 5: APPLICATIONS OF DIFFERENTIATION Name: Date: Period: Mrs. Nguyen s Initial: LESSON 5.1 EXTREMA ON AN INTERVAL Definition of Etrema Let f be defined on an interval I containing c. 1. f () c is the

More information

SEE and DISCUSS the pictures on pages in your text. Key picture:

SEE and DISCUSS the pictures on pages in your text. Key picture: Math 6 Notes 1.1 A PREVIEW OF CALCULUS There are main problems in calculus: 1. Finding a tangent line to a curve though a point on the curve.. Finding the area under a curve on some interval. SEE and DISCUSS

More information

16 Inverse Trigonometric Functions

16 Inverse Trigonometric Functions 6 Inverse Trigonometric Functions Concepts: Restricting the Domain of the Trigonometric Functions The Inverse Sine Function The Inverse Cosine Function The Inverse Tangent Function Using the Inverse Trigonometric

More information

08 - DIFFERENTIAL CALCULUS Page 1 ( Answers at the end of all questions ) ( d ) it is at a constant distance from the o igin [ AIEEE 2005 ]

08 - DIFFERENTIAL CALCULUS Page 1 ( Answers at the end of all questions ) ( d ) it is at a constant distance from the o igin [ AIEEE 2005 ] 08 - DIFFERENTIAL CALCULUS Page ( ) + 4 + + sec sec... sec n n n n n n sec ( b ) cosec ( c ) tan ( d ) tan [ AIEEE 005 ] ( ) The normal to the curve = a ( cos θ + θ sin θ ), y = a ( sin θ θ cos θ ) at

More information

2.) Find an equation for the line on the point (3, 2) and perpendicular to the line 6x - 3y = 1.

2.) Find an equation for the line on the point (3, 2) and perpendicular to the line 6x - 3y = 1. College Algebra Test File Summer 007 Eam #1 1.) Find an equation for the line that goes through the points (-5, -4) and (1, 4)..) Find an equation for the line on the point (3, ) and perpendicular to the

More information

Limits. Final Exam Study Guide. Calculus I. 1. Basic Limits I: Evaluate each limit exactly. (a) lim. (c) lim. 2t 15 3 (g) lim. (e) lim. (f) lim.

Limits. Final Exam Study Guide. Calculus I. 1. Basic Limits I: Evaluate each limit exactly. (a) lim. (c) lim. 2t 15 3 (g) lim. (e) lim. (f) lim. Limits 1. Basic Limits I: Evaluate each limit eactly. 3 ( +5 8) (c) lim(sin(α) 5cos(α)) α π 6 (e) lim t t 15 3 (g) lim t 0 t (4t 3 8t +1) t 1 (tan(θ) cot(θ)+1) θ π 4 (f) lim 16 ( 5 (h) lim t 0 3 t ). Basic

More information

Final Exam Review Math Determine the derivative for each of the following: dy dx. dy dx. dy dx dy dx. dy dx dy dx. dy dx

Final Exam Review Math Determine the derivative for each of the following: dy dx. dy dx. dy dx dy dx. dy dx dy dx. dy dx Final Eam Review Math. Determine the derivative or each o the ollowing: a. y 6 b. y sec c. y ln d. y e. y e. y sin sin g. y cos h. i. y e y log j. k. l. 6 y y cosh y sin m. y ln n. y tan o. y arctan e

More information

Work the following on notebook paper. You may use your calculator to find

Work the following on notebook paper. You may use your calculator to find CALCULUS WORKSHEET ON 3.1 Work the following on notebook paper. You may use your calculator to find f values. 1. For each of the labeled points, state whether the function whose graph is shown has an absolute

More information

Part I Analysis in Economics

Part I Analysis in Economics Part I Analysis in Economics D 1 1 (Function) A function f from a set A into a set B, denoted by f : A B, is a correspondence that assigns to each element A eactly one element y B We call y the image of

More information

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on Mat 7 Calculus III Updated on 10/4/07 Dr. Firoz Chapter 14 Partial Derivatives Section 14.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair

More information

Review sheet Final Exam Math 140 Calculus I Fall 2015 UMass Boston

Review sheet Final Exam Math 140 Calculus I Fall 2015 UMass Boston Review sheet Final Eam Math Calculus I Fall 5 UMass Boston The eam is closed tetbook NO CALCULATORS OR ELECTRONIC DEVICES ARE ALLOWED DURING THE EXAM The final eam will contain problems of types similar

More information

Math 140 Final Sample A Solutions. Tyrone Crisp

Math 140 Final Sample A Solutions. Tyrone Crisp Math 4 Final Sample A Solutions Tyrone Crisp (B) Direct substitution gives, so the limit is infinite. When is close to, but greater than,, the numerator is negative while the denominator is positive. So

More information

AP Calculus AB/BC ilearnmath.net 21. Find the solution(s) to the equation log x =0.

AP Calculus AB/BC ilearnmath.net 21. Find the solution(s) to the equation log x =0. . Find the solution(s) to the equation log =. (a) (b) (c) (d) (e) no real solutions. Evaluate ln( 3 e). (a) can t be evaluated (b) 3 e (c) e (d) 3 (e) 3 3. Find the solution(s) to the equation ln( +)=3.

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. Section. Rolle s Theorem and the Mean Value Theorem. 7 Section. Increasing and Decreasing Functions and the First Derivative

More information

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 4.5 and 5.1-5.5 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the textbook

More information

CALCULUS II MATH Dr. Hyunju Ban

CALCULUS II MATH Dr. Hyunju Ban CALCULUS II MATH 2414 Dr. Hyunju Ban Introduction Syllabus Chapter 5.1 5.4 Chapters To Be Covered: Chap 5: Logarithmic, Exponential, and Other Transcendental Functions (2 week) Chap 7: Applications of

More information

MATH 2053 Calculus I Review for the Final Exam

MATH 2053 Calculus I Review for the Final Exam MATH 05 Calculus I Review for the Final Exam (x+ x) 9 x 9 1. Find the limit: lim x 0. x. Find the limit: lim x + x x (x ).. Find lim x (x 5) = L, find such that f(x) L < 0.01 whenever 0 < x

More information

HEAT-3 APPLICATION OF DERIVATIVES BY ABHIJIT KUMAR JHA MAX-MARKS-(112(3)+20(5)=436)

HEAT-3 APPLICATION OF DERIVATIVES BY ABHIJIT KUMAR JHA MAX-MARKS-(112(3)+20(5)=436) HEAT- APPLICATION OF DERIVATIVES BY ABHIJIT KUMAR JHA TIME-(HRS) Select the correct alternative : (Only one is correct) MAX-MARKS-(()+0(5)=6) Q. Suppose & are the point of maimum and the point of minimum

More information

Limits at. x means that x gets larger and larger without a bound. Oktay Olmez and Serhan Varma Calculus Lecture 2 1 / 1

Limits at. x means that x gets larger and larger without a bound. Oktay Olmez and Serhan Varma Calculus Lecture 2 1 / 1 Limits at x means that x gets larger and larger without a bound. Oktay Olmez and Serhan Varma Calculus Lecture 2 1 / 1 Limits at x means that x gets larger and larger without a bound. x means that x gets

More information

1.5 Inverse Trigonometric Functions

1.5 Inverse Trigonometric Functions 1.5 Inverse Trigonometric Functions Remember that only one-to-one functions have inverses. So, in order to find the inverse functions for sine, cosine, and tangent, we must restrict their domains to intervals

More information

Daily WeBWorK. 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8).

Daily WeBWorK. 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8). Daily WeBWorK 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8). (a) On what intervals is f (x) concave down? f (x) is concave down where f (x) is decreasing, so

More information

So, t = 1 is a point of inflection of s(). Use s () t to find the velocity at t = Because 0, use 144.

So, t = 1 is a point of inflection of s(). Use s () t to find the velocity at t = Because 0, use 144. AP Eam Practice Questions for Chapter AP Eam Practice Questions for Chapter f 4 + 6 7 9 f + 7 0 + 6 0 ( + )( ) 0,. The critical numbers of f( ) are and.. Evaluate each point. A: d d C: d d B: D: d d d

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #5 Completion Date: Frida Februar 5, 8 Department of Mathematical and Statistical Sciences Universit of Alberta Question. [Sec.., #

More information

1998 AP Calculus AB: Section I, Part A

1998 AP Calculus AB: Section I, Part A 998 AP Calculus AB: 55 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number.. What is the -coordinate

More information

term from the numerator yields 2

term from the numerator yields 2 APPM 1350 Eam 2 Fall 2013 1. The following parts are not related: (a) (12 pts) Find y given: (i) y = (ii) y = sec( 2 1) tan() (iii) ( 2 + y 2 ) 2 = 2 2 2y 2 1 (b) (8 pts) Let f() be a function such that

More information

Math 231 Final Exam Review

Math 231 Final Exam Review Math Final Eam Review Find the equation of the line tangent to the curve 4y y at the point (, ) Find the slope of the normal line to y ) ( e at the point (,) dy Find d if cos( y) y 4 y 4 Find the eact

More information

Review Exercises for Chapter 3. Review Exercises for Chapter r v 0 2. v ft sec. x 1 2 x dx f x x 99.4.

Review Exercises for Chapter 3. Review Exercises for Chapter r v 0 2. v ft sec. x 1 2 x dx f x x 99.4. Review Eercises for Chapter 6. r v 0 sin. Let f, 00, d 0.6. v 0 00 ftsec changes from 0 to dr 00 cos d 6 0 d 0 r dr 80 00 6 96 feet 80 cos 0 96 feet 8080 f f fd d f 99. 00 0.6 9.97 00 Using a calculator:

More information