3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13

Size: px
Start display at page:

Download "3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13"

Transcription

1 Contents Limits Derivatives 3. Difference Quotients Average Rate of Change Derivative Rules Tangent Lines Curve Sketching Applications of Derivatives 9 3. Instantaneous Rates of Change Optimization Related Rates Integrals 4 4. Indefinite Integrals Definite Integrals Areas between Functions Volumes of Revolution Improper Integrals

2 Limits Evaluate the following limits.. lim lim + 3. lim sin(6) 4. lim Begin by factoring and canceling the common factor. 6 lim 3 9 = lim 3. Split it into two limits and solve each of them. 3. Use the identity ( 3) ( 3)( + 3) = lim = 6 = 3 + lim = lim + lim = lim + lim 3/ = + = as follows. (multiply the top and bottom by 6) sin θ lim = θ θ sin(6) 6 sin(6) sin(6) lim = lim = 6 lim = 6() = Note that since the function is continuous and the denominator is nonzero, we may plug in 4 directly. 6 lim = =

3 Derivatives. Difference Quotients For the following function, (a) formulate the difference quotient in terms of and h, (b) simplify the difference quotient, (c) take the limit as h to find the derivative. f() = (a) Write out the formula for the difference quotient. (b) Now simplify the epression above. +h h f( + h) f() h = +h h = +h h + h + h = + h h + h This seems a bit messy, but we now multiply by the conjugate of the numerator to simplify further. + h h + h = + h h + h + + h + + h = Now we can cancel the h term from the top and bottom. h h + h ( + + h) h h + h ( + + h) = + h ( + + h) (c) Now take the limit. Notice that since the denominator is not zero at h =, we can plug in h = directly here. lim h + h ( + + h) = ( ) = 3/

4 . Average Rate of Change Find the average rate of change of the function as changes from to 7. f() = + The average rate of change from = to = 7 is defined to be f(7) f() 9 4 = =

5 .3 Derivative Rules Evaluate the derivatives of the following functions.. f() = f() = 3( + ) 3 ( ) 3. y = ln + 4. y = e sin 5. q(v) = cos(ln v). Use the power rule.. Use the power rule and chain rule. f () = f () = 9( + 3) () 3. First, simplify with logarithm rules. ( ) y = ln + = ln ln( + ) = ln ln( + ) Now take the simplified derivative. 4. Use the chain rule. y () = + () y = e sin (cos ) 5. Use the chain rule. q (v) = sin(ln v) ( ) v

6 .4 Tangent Lines Find the equation of the tangent line to the function at =. f() = ( )e + To find the equation of the tangent line, we need a point and a slope. The point in question is at =. Since f() =, the point we need is (, ). To find the slope of the tangent line, take the derivative. f () = ()e + ( )e = e At =, f () = e. Therefore, the slope of the tangent line at = is e. We may then write our equation (in point-slope form) as follows. y = e( ) or y = e e +

7 .5 Curve Sketching Consider the function y = (a) Find the critical points of this function and determine if these points are points of relative maima or relative minima. (b) Find the intervals where the function is increasing or decreasing. (c) Find the inflection points of this function. (d) Find the intervals where the graph of this function is concave up and concave down. (e) Sketch the graph of this function. (a) To find the critical points, we first find the derivative and set it equal to zero. y = = = =, = 4 The points (, ) and (4, 6) are the only critical points. To determine whether these are relative maima or relative minima, we use the second derivative test. y = 6 8 At =, we see y () = 6 < so (, ) is a relative maima. At = 4, y (4) = 6 > so (4, 6) is a relative minima. (b) To find intervals where y is increasing or decreasing, we use a number line for y and test between our critical points. = = y From this, we see that y is increasing for < and > 4 (in interval notation, (, ) (4, )) and decreasing for < < 4 (in interval notation, (, 4)). (c) To find the inflection points, we look at when the second derivative is zero. y = 6 8 = = = 3 To show this is an inflection point, look at a number line for y. = 3 + y Since the sign of y changes at = 3, (3, 8) is an inflection point (and the only one). (d) From the number line from the previous part, we see that y < for < 3 and y > for > 3. This implies that the graph of y is concave down for < 3 and concave up for > 3. (e) The graph of the function looks as follows. y

8 Consider the function y = (a) Find the critical points of this function and determine if these points are points of relative maima or relative minima. (b) Find the intervals where the function is increasing or decreasing. (c) Find the inflection points of this function. (d) Find the intervals where the graph of this function is concave up and concave down. (e) Sketch the graph of this function. (a) To find the critical points, we find the derivative and find where it is equal to zero (or is underfined). y = ( + 4)() ( + )() 3 ( + 4) = ( + 4) This function is never zero, but it is undefined if = 4. Therefore, we have a critical value at = 4. This function does not have any critical points (no point at = 4) so it does not have any relative maima or relative minima. (b) To find where the function is increasing or decreasing, we use a number line for y. = y From this, we see that the function is increasing for 4 (in interval notation (, 4) ( 4, )). (c) To find the inflection point(s), we find the zeros (and critical points) of the second derivative. y = 6 ( + 4) 3 The second derivative is never zero, but has a critical value at = 4. Therefore, the function has no inflection point. (d) To find where the graph of y is concave up or concave down, we make a number line for y. = 4 + y From this, we can say that the graph of y is concave up for > 4 (in interval notation ( 4, )) and concave down for < 4 (in interval notation (, 4)). (e) The graph of the curve looks like the following. y = 4

9 3 Applications of Derivatives 3. Instantaneous Rates of Change Given a ball whose position, in feet, above the ground is given by y = 5t 6t, where t is the time, find (a) how far off the ground is the ball when t =. (b) the average velocity from t = to t =. (c) the instantaneous velocity at t =. (a) To find the height of the ball at t =, plug in t =. y() = 34ft (b) The average velocity of the ball from t = to t = is defined as y() y() = 36 = 8 (c) The instantaneous velocity of the ball at t = is defined as the derivative of the height function at t =. Therefore, the instantaneous velocity at t = is given by the following. y () = 5 3() = 8ft/s

10 3. Optimization Find two positive numbers whose product is 36 and whose sum is a minimum. Let and y be numbers such that y = 36. We would like to minimize their sum S = + y. Using the fact that y = 36/, we can rewrite S as S = + 36/. We would like to minimize this function, so we take the derivative and set it equal to zero. S = 36 = = = ±6 Since and y are positive, we have that = 6 and y = 36/ = 36/6 = 6. To show this is a minimum, we use the second derivative test. S = 7 3 = S (6) = 7 6 > Since S (6) >, = 6, y = 6 is a minimum as desired.

11 A drug company is designing an open-top rectangular bo with a square base, that will hold 3 cubic centimeters. Determine the dimensions and y that will yield the minimum surface area. We would like an open-top, rectangular bo with a square base of length l, width w, and height h of volume 3,cm 3. Since the base is square, we know that l = w. Since the volume must be fied at 3,cm 3, we have the following relationship. l h = 3, cm 3 (using that l = w) Now we would like to minimize the function SA = lw + lh + wh = l + 4lh. Using the relationship from above, we notice the following. l h = 3, cm 3 = h = 3, /l = SA = l + Now we take the derivative and set it equal to zero to minimize our function. (SA) = l 8, l = = l = 3 64, cm Use the second derivative test to show that this is actually a minimum value. (SA) = + 8, l 56, l 3 = (SA) ( 3 64, ) = + 4 = 6 > Since (SA) >, l = 3 64, cm is a minimum. The size of our bo is then l = 3 64, cm and w = 3 64, cm.

12 An open-top bo is to be constructed from a 9 5 inch piece of cardboard by cutting out the same size square from each of the four corners and then folding up the resulting sides. Find the largest possible volume of such a bo. First, draw the picture as follows. 5 9 From this picture, we see the length of the bo will be 5, the width of the bo will be 9 and the height of the bo will be. Notice that we must have 4.5 (otherwise we cut out too much!). We now need a formula for the volume of the bo (depending on ). V = (5 )(8 )() = To maimize this, we take the derivative and set it equal to zero. V = 96 + = = = 4 ± 6 Notice that > 4.5, so this is outside of our possible values. We look only at 4 6. To see whether this is a relative maimum, we use the second derivative test. V = 4 96 = V (4 6) = 4 6 < Since V (4 6) <, = 4 6 gives the maimum value. (Note: Here, we should have worried about checking the volume at the endpoints, = and = 4.5. In these cases however, the volume of the bo is zero and is definitely not our maimum volume!)

13 3.3 Related Rates A ladder 5 ft long leans against a vertical wall. If the lower end is being moved away from the wall at a rate of 6 ft/sec, how fast is the height of the top decreasing when the lower end is 7 ft from the wall? Draw the picture as follows. 5ft 6ft/s y With the picture above, the problem is to compute dy/dt when = 7ft. From the picture, we see that we must always have the relationship below. + y = 5 Now we take the derivative with respect to time to find d dy dy + y = = dt dt dt = y When = 7, we see that y = 5 7 = 574. Using the fact that d/dt = 6ft/s, we get the result that d dt. dy dt = 7 (6)ft/s = 4 ft/s Which means that the height of the ladder is falling at a rate of ft/s.

14 4 Integrals 4. Indefinite Integrals Evaluate the following integrals.. ( ) 3 d tan d d ln e d d. First, epand the integrand. ( 6) 3 d = ( ) ( ) d = d Now integrate term by term using the power rule. ( ) d = C. Separate the integrand. + ( ) ( d = + d = / + 3/) d Now integrate term by term using power rule again. ( / + 3/) d = 3 3/ + 5 5/ + C 3. Rewrite tan as follows. tan d = sin cos d Now use the substitution u = cos. We see du = sin d. This turns our integral into the following. sin cos d = du u Now integrate and back substitute. du u = ln u + C = ln cos + C

15 4. Begin with the substitution u = ln. We see du = d/ and our integral becomes the following. d du ln = u Now integrate and back substitute. du = ln u + C = ln ln + C u 5. This problem will require the use of integration by parts. Make the following choice of u and dv. u = du = d dv = e d v = e Using the formula for integration by parts, we then see the following. e d = e + e d = e e + C

16 4. Definite Integrals Evaluate the following definite integrals π 5 ln d e d sin d. This problem requires integration by parts. Make the following choice of u and dv. u = ln Our integral then becomes the following. 3 5 ln d = 5 ln 3 dv = 5 d du = d/ v = 5 / 3 ( 5 5 d = ln 5 ) 3 ( 45 4 = ln 3 45 ) ( 5 ) = Make use of the substitution u =. Then du = d and our integral becomes the following. e d = 4 e u du = 4 eu = (e4 e ) ln 3 3. Integrate directly. π π sin d = cos = () ( ) =

17 4.3 Areas between Functions Find the area bounded by y = sin and y = cos when π/4. All we need to set up our integral is to determine which curve is the top curve and which curve is the bottom curve. A graph of sin and cos shows that cos sin for π/4. Therefore, the top curve is cos and the bottom curve is sin. We then set up our integral as follows. Integrate directly from here. π/4 π/4 (cos sin ) d = (sin + cos ) (cos sin ) d π/4 = ( + ) ( + ) =

18 Set up but do not evaluate the integral that epresses the area bounded by y = and y =. First, draw a graph to get an idea of what area we are finding. y 4 4 Now we find the two points of intersection by setting the curves equal. = = = = = ± 5 From the graph above, we see that between these two points (where the area is enclosed), y = is the top curve and y = is the bottom curve. We then set up our integral as follows ( ) ( ) ( ) d

19 4.4 Volumes of Revolution Look at the region bounded by y = and y = from = to =.. Calculate the volume generated from rotating this region about the -ais.. Calculate the volume generated from rotating this region about the y-ais.. First, we graph the area in question. y We choose to use the disk method here. A picture of a disk is shown below. d The volume of each of these is then dv = π() d π( ) d = π(() ( ) ) d. Integrating these volumes from = to =, we get the result that ( V = π(() ( ) ) d = π ( 4 ) d = π 3 ) = π 5 5. To rotate about the y-ais, we use the shell method. Using the same graph as above, we draw our shell as follows.

20 y d From this picture, the volume of each shell is given by Integrating these from = to = gives us V = π( ) d = π dv = π( ) d. ( 3) ( d = π 3 ) = π 4 6.

21 Find the volume of the solid generated by revolving the region bounded by y =, =, and the -ais about the line =. As before, we first draw the graph. 8 y = We choose to use the shell method (discs requires two separate integrals). A typical shell looks like the following. = d A typical shell then has volume We then get the result that V = π( )( ) d = π dv = π( )( ) d. (4 3 ) d = π ( ) = π 3

22 4.5 Improper Integrals Determine which of the following improper integrals are convergent. Evaluate those that are convergent... e ln() d e d. Write the infinite bound as a limit. e ln Now integrate (use the substitution u = ln ). t ln d = lim t e d t ( ln lim d = lim t e t ln t ) As t, this limit does not eist, so the integral is divergent.. As before, write the integral as a limit. e d = lim Now integrate (use the substitution u = ). lim t t As t, e t implies that we have lim t t t e d ( ) e d = lim e t + t ( e t + Therefore, the integral is convergent and its value is. ) = + =.

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4]

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4] It s Your Turn Problems I. Functions, Graphs, and Limits. Here s the graph of the function f on the interval [ 4,4] f ( ) =.. It has a vertical asymptote at =, a) What are the critical numbers of f? b)

More information

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim Math Final Eam Review Solutions { + 3 if < Consider f() Find the following limits: (a) lim f() + + (b) lim f() + 3 3 (c) lim f() does not eist Find each of the following limits: + 6 (a) lim 3 + 3 (b) lim

More information

( ) 7 ( 5x 5 + 3) 9 b) y = x x

( ) 7 ( 5x 5 + 3) 9 b) y = x x New York City College of Technology, CUNY Mathematics Department Fall 0 MAT 75 Final Eam Review Problems Revised by Professor Kostadinov, Fall 0, Fall 0, Fall 00. Evaluate the following its, if they eist:

More information

lim 2 x lim lim sin 3 (9) l)

lim 2 x lim lim sin 3 (9) l) MAC FINAL EXAM REVIEW. Find each of the following its if it eists, a) ( 5). (7) b). c). ( 5 ) d). () (/) e) (/) f) (-) sin g) () h) 5 5 5. DNE i) (/) j) (-/) 7 8 k) m) ( ) (9) l) n) sin sin( ) 7 o) DNE

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

( ) 9 b) y = x x c) y = (sin x) 7 x d) y = ( x ) cos x

( ) 9 b) y = x x c) y = (sin x) 7 x d) y = ( x ) cos x NYC College of Technology, CUNY Mathematics Department Spring 05 MAT 75 Final Eam Review Problems Revised by Professor Africk Spring 05, Prof. Kostadinov, Fall 0, Fall 0, Fall 0, Fall 0, Fall 00 # Evaluate

More information

Math 170 Calculus I Final Exam Review Solutions

Math 170 Calculus I Final Exam Review Solutions Math 70 Calculus I Final Eam Review Solutions. Find the following its: (a (b (c (d 3 = + = 6 + 5 = 3 + 0 3 4 = sin( (e 0 cos( = (f 0 ln(sin( ln(tan( = ln( (g (h 0 + cot( ln( = sin(π/ = π. Find any values

More information

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim.

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim. Math 50 Eam #3 Practice Problem Solutions. Determine the absolute maimum and minimum values of the function f() = +. f is defined for all. Also, so f doesn t go off to infinity. Now, to find the critical

More information

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it.

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it. Math 80, Final Eam, Spring 008 Problem Solution. For each of the following limits, determine whether the limit eists and, if so, evaluate it. + (a) lim 0 (b) lim ( ) 3 (c) lim Solution: (a) Upon substituting

More information

Mathematics 1161: Midterm Exam 2 Study Guide

Mathematics 1161: Midterm Exam 2 Study Guide Mathematics 1161: Midterm Eam 2 Study Guide 1. Midterm Eam 2 is on October 18 at 6:00-6:55pm in Journalism Building (JR) 300. It will cover Sections 3.8, 3.9, 3.10, 3.11, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6,

More information

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2 Math 5 Final Eam Practice Problem Solutions. What are the domain and range of the function f() = ln? Answer: is only defined for, and ln is only defined for >. Hence, the domain of the function is >. Notice

More information

BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: Unlimited and Continuous! (21 points)

BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: Unlimited and Continuous! (21 points) BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: United and Continuous! ( points) For #- below, find the its, if they eist.(#- are pt each) ) 7 ) 9 9 ) 5 ) 8 For #5-7, eplain why

More information

AP Calculus (BC) Summer Assignment (169 points)

AP Calculus (BC) Summer Assignment (169 points) AP Calculus (BC) Summer Assignment (69 points) This packet is a review of some Precalculus topics and some Calculus topics. It is to be done NEATLY and on a SEPARATE sheet of paper. Use your discretion

More information

1 Exponential Functions Limit Derivative Integral... 5

1 Exponential Functions Limit Derivative Integral... 5 Contents Eponential Functions 3. Limit................................................. 3. Derivative.............................................. 4.3 Integral................................................

More information

AP Calculus AB/BC ilearnmath.net 21. Find the solution(s) to the equation log x =0.

AP Calculus AB/BC ilearnmath.net 21. Find the solution(s) to the equation log x =0. . Find the solution(s) to the equation log =. (a) (b) (c) (d) (e) no real solutions. Evaluate ln( 3 e). (a) can t be evaluated (b) 3 e (c) e (d) 3 (e) 3 3. Find the solution(s) to the equation ln( +)=3.

More information

1985 AP Calculus AB: Section I

1985 AP Calculus AB: Section I 985 AP Calculus AB: Section I 9 Minutes No Calculator Notes: () In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e). () Unless otherwise specified, the domain of

More information

Amherst College, DEPARTMENT OF MATHEMATICS Math 11, Final Examination, May 14, Answer Key. x 1 x 1 = 8. x 7 = lim. 5(x + 4) x x(x + 4) = lim

Amherst College, DEPARTMENT OF MATHEMATICS Math 11, Final Examination, May 14, Answer Key. x 1 x 1 = 8. x 7 = lim. 5(x + 4) x x(x + 4) = lim Amherst College, DEPARTMENT OF MATHEMATICS Math, Final Eamination, May 4, Answer Key. [ Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value,

More information

Math 2413 Final Exam Review 1. Evaluate, giving exact values when possible.

Math 2413 Final Exam Review 1. Evaluate, giving exact values when possible. Math 4 Final Eam Review. Evaluate, giving eact values when possible. sin cos cos sin y. Evaluate the epression. loglog 5 5ln e. Solve for. 4 6 e 4. Use the given graph of f to answer the following: y f

More information

SOLUTIONS TO THE FINAL - PART 1 MATH 150 FALL 2016 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS

SOLUTIONS TO THE FINAL - PART 1 MATH 150 FALL 2016 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS SOLUTIONS TO THE FINAL - PART MATH 5 FALL 6 KUNIYUKI PART : 5 POINTS, PART : 5 POINTS, TOTAL: 5 POINTS No notes, books, or calculators allowed. 5 points: 45 problems, pts. each. You do not have to algebraically

More information

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity.

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity. Math Final Eam - Practice Problems. A function f is graphed below. f() 5 4 8 7 5 4 4 5 7 8 4 5 (a) Find f(0), f( ), f(), and f(4) Find the domain and range of f (c) Find the intervals where f () is positive

More information

1993 AP Calculus AB: Section I

1993 AP Calculus AB: Section I 99 AP Calculus AB: Section I 90 Minutes Scientific Calculator Notes: () The eact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among

More information

Review: A Cross Section of the Midterm. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review: A Cross Section of the Midterm. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review: A Cross Section of the Midterm Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the limit, if it eists. 4 + ) lim - - ) A) - B) -

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Review sheet Final Exam Math 140 Calculus I Fall 2015 UMass Boston

Review sheet Final Exam Math 140 Calculus I Fall 2015 UMass Boston Review sheet Final Eam Math Calculus I Fall 5 UMass Boston The eam is closed tetbook NO CALCULATORS OR ELECTRONIC DEVICES ARE ALLOWED DURING THE EXAM The final eam will contain problems of types similar

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Eam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine from the graph whether the function has an absolute etreme values on the interval

More information

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44 Math B Prof. Audrey Terras HW #4 Solutions Due Tuesday, Oct. 9 Section 7.4 #, 5, 6, 8,, 3, 44, 53; Section 7.5 #7,,,, ; Section 7.7 #, 4,, 5,, 44 7.4. Since 5 = 5 )5 + ), start with So, 5 = A 5 + B 5 +.

More information

Midterm Exam #1. (y 2, y) (y + 2, y) (1, 1)

Midterm Exam #1. (y 2, y) (y + 2, y) (1, 1) Math 5B Integral Calculus March 7, 7 Midterm Eam # Name: Answer Key David Arnold Instructions. points) This eam is open notes, open book. This includes any supplementary tets or online documents. You are

More information

Technical Calculus I Homework. Instructions

Technical Calculus I Homework. Instructions Technical Calculus I Homework Instructions 1. Each assignment is to be done on one or more pieces of regular-sized notebook paper. 2. Your name and the assignment number should appear at the top of the

More information

Review of elements of Calculus (functions in one variable)

Review of elements of Calculus (functions in one variable) Review of elements of Calculus (functions in one variable) Mainly adapted from the lectures of prof Greg Kelly Hanford High School, Richland Washington http://online.math.uh.edu/houstonact/ https://sites.google.com/site/gkellymath/home/calculuspowerpoints

More information

Final practice, Math 31A - Lec 1, Fall 2013 Name and student ID: Question Points Score Total: 90

Final practice, Math 31A - Lec 1, Fall 2013 Name and student ID: Question Points Score Total: 90 Final practice, Math 31A - Lec 1, Fall 13 Name and student ID: Question Points Score 1 1 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 Total: 9 1. a) 4 points) Find all points x at which the function fx) x 4x + 3 + x

More information

If C(x) is the total cost (in dollars) of producing x items of a product, then

If C(x) is the total cost (in dollars) of producing x items of a product, then Supplemental Review Problems for Unit Test : 1 Marginal Analysis (Sec 7) Be prepared to calculate total revenue given the price - demand function; to calculate total profit given total revenue and total

More information

MATH 1325 Business Calculus Guided Notes

MATH 1325 Business Calculus Guided Notes MATH 135 Business Calculus Guided Notes LSC North Harris By Isabella Fisher Section.1 Functions and Theirs Graphs A is a rule that assigns to each element in one and only one element in. Set A Set B Set

More information

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows: MAT 4 Solutions Eam 4 (Applications of Differentiation) a Applying the Quotient Rule we compute the derivative function of f as follows: f () = 43 e 4 e (e ) = 43 4 e = 3 (4 ) e Hence f '( ) 0 for = 0

More information

I have not checked this review sheet for errors, hence there maybe errors in this document. thank you.

I have not checked this review sheet for errors, hence there maybe errors in this document. thank you. I have not checked this review sheet for errors, hence there maybe errors in this document. thank you. Class test II Review sections 3.7(differentials)-5.5(logarithmic differentiation) ecluding section

More information

Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f (x) is a real number.

Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f (x) is a real number. 997 AP Calculus BC: Section I, Part A 5 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number..

More information

Math 115 Second Midterm November 12, 2018

Math 115 Second Midterm November 12, 2018 EXAM SOLUTIONS Math 5 Second Midterm November, 08. Do not open this eam until you are told to do so.. Do not write your name anywhere on this eam. 3. This eam has 3 pages including this cover. There are

More information

lim x c) lim 7. Using the guidelines discussed in class (domain, intercepts, symmetry, asymptotes, and sign analysis to

lim x c) lim 7. Using the guidelines discussed in class (domain, intercepts, symmetry, asymptotes, and sign analysis to Math 7 REVIEW Part I: Problems Using the precise definition of the it, show that [Find the that works for any arbitrarily chosen positive and show that it works] Determine the that will most likely work

More information

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed.

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed. Section A ln. Let g() =, for > 0. ln Use the quotient rule to show that g ( ). 3 (b) The graph of g has a maimum point at A. Find the -coordinate of A. (Total 7 marks) 6. Let h() =. Find h (0). cos 3.

More information

Multiple Choice. Circle the best answer. No work needed. No partial credit available. is continuous.

Multiple Choice. Circle the best answer. No work needed. No partial credit available. is continuous. Multiple Choice. Circle the best answer. No work needed. No partial credit available. + +. Evaluate lim + (a (b (c (d 0 (e None of the above.. Evaluate lim (a (b (c (d 0 (e + + None of the above.. Find

More information

y = (x2 +1) cos(x) 2x sin(x) d) y = ln(sin(x 2 )) y = 2x cos(x2 ) by the chain rule applied twice. Once to ln(u) and once to

y = (x2 +1) cos(x) 2x sin(x) d) y = ln(sin(x 2 )) y = 2x cos(x2 ) by the chain rule applied twice. Once to ln(u) and once to M408N Final Eam Solutions, December 13, 2011 1) (32 points, 2 pages) Compute dy/d in each of these situations. You do not need to simplify: a) y = 3 + 2 2 14 + 32 y = 3 2 + 4 14, by the n n 1 formula.

More information

Solutions to Test 2 Spring = y+x dy dx +0 = ex+y x+y dy. e x = dy dx (ex+y x) = y e x+y. dx = y ex+y e x+y x

Solutions to Test 2 Spring = y+x dy dx +0 = ex+y x+y dy. e x = dy dx (ex+y x) = y e x+y. dx = y ex+y e x+y x 12pt 1 Consider the equation e +y = y +10 Solutions to Test 2 Spring 2018 (a) Use implicit differentiation to find dy d d d (e+y ) = d ( (y+10) e+y 1+ dy ) d d = y+ dy d +0 = e+y +y dy +e d = y+ dy d +y

More information

AP Calculus (BC) Summer Assignment (104 points)

AP Calculus (BC) Summer Assignment (104 points) AP Calculus (BC) Summer Assignment (0 points) This packet is a review of some Precalculus topics and some Calculus topics. It is to be done NEATLY and on a SEPARATE sheet of paper. Use your discretion

More information

4x x dx. 3 3 x2 dx = x3 ln(x 2 )

4x x dx. 3 3 x2 dx = x3 ln(x 2 ) Problem. a) Compute the definite integral 4 + d This can be done by a u-substitution. Take u = +, so that du = d, which menas that 4 d = du. Notice that u() = and u() = 6, so our integral becomes 6 u du

More information

Math 75B Practice Problems for Midterm II Solutions Ch. 16, 17, 12 (E), , 2.8 (S)

Math 75B Practice Problems for Midterm II Solutions Ch. 16, 17, 12 (E), , 2.8 (S) Math 75B Practice Problems for Midterm II Solutions Ch. 6, 7, 2 (E),.-.5, 2.8 (S) DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual

More information

Calculus AB Topics Limits Continuity, Asymptotes

Calculus AB Topics Limits Continuity, Asymptotes Calculus AB Topics Limits Continuity, Asymptotes Consider f x 2x 1 x 3 1 x 3 x 3 Is there a vertical asymptote at x = 3? Do not give a Precalculus answer on a Calculus exam. Consider f x 2x 1 x 3 1 x 3

More information

Calculus 1st Semester Final Review

Calculus 1st Semester Final Review Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ), c /, > 0 Find the limit: lim 6+

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

AP Calculus Review Assignment Answer Sheet 1. Name: Date: Per. Harton Spring Break Packet 2015

AP Calculus Review Assignment Answer Sheet 1. Name: Date: Per. Harton Spring Break Packet 2015 AP Calculus Review Assignment Answer Sheet 1 Name: Date: Per. Harton Spring Break Packet 015 This is an AP Calc Review packet. As we get closer to the eam, it is time to start reviewing old concepts. Use

More information

Math 140 Final Sample A Solutions. Tyrone Crisp

Math 140 Final Sample A Solutions. Tyrone Crisp Math 4 Final Sample A Solutions Tyrone Crisp (B) Direct substitution gives, so the limit is infinite. When is close to, but greater than,, the numerator is negative while the denominator is positive. So

More information

PTF #AB 07 Average Rate of Change

PTF #AB 07 Average Rate of Change The average rate of change of f( ) over the interval following: 1. y dy d. f() b f() a b a PTF #AB 07 Average Rate of Change ab, can be written as any of the. Slope of the secant line through the points

More information

171, Calculus 1. Summer 1, CRN 50248, Section 001. Time: MTWR, 6:30 p.m. 8:30 p.m. Room: BR-43. CRN 50248, Section 002

171, Calculus 1. Summer 1, CRN 50248, Section 001. Time: MTWR, 6:30 p.m. 8:30 p.m. Room: BR-43. CRN 50248, Section 002 171, Calculus 1 Summer 1, 018 CRN 5048, Section 001 Time: MTWR, 6:0 p.m. 8:0 p.m. Room: BR-4 CRN 5048, Section 00 Time: MTWR, 11:0 a.m. 1:0 p.m. Room: BR-4 CONTENTS Syllabus Reviews for tests 1 Review

More information

MATH 101 Midterm Examination Spring 2009

MATH 101 Midterm Examination Spring 2009 MATH Midterm Eamination Spring 9 Date: May 5, 9 Time: 7 minutes Surname: (Please, print!) Given name(s): Signature: Instructions. This is a closed book eam: No books, no notes, no calculators are allowed!.

More information

Answers to Some Sample Problems

Answers to Some Sample Problems Answers to Some Sample Problems. Use rules of differentiation to evaluate the derivatives of the following functions of : cos( 3 ) ln(5 7 sin(3)) 3 5 +9 8 3 e 3 h 3 e i sin( 3 )3 +[ ln ] cos( 3 ) [ln(5)

More information

D sin x. (By Product Rule of Diff n.) ( ) D 2x ( ) 2. 10x4, or 24x 2 4x 7 ( ) ln x. ln x. , or. ( by Gen.

D sin x. (By Product Rule of Diff n.) ( ) D 2x ( ) 2. 10x4, or 24x 2 4x 7 ( ) ln x. ln x. , or. ( by Gen. SOLUTIONS TO THE FINAL - PART MATH 50 SPRING 07 KUNIYUKI PART : 35 POINTS, PART : 5 POINTS, TOTAL: 50 POINTS No notes, books, or calculators allowed. 35 points: 45 problems, 3 pts. each. You do not have

More information

Solutions to Math 41 Exam 2 November 10, 2011

Solutions to Math 41 Exam 2 November 10, 2011 Solutions to Math 41 Eam November 10, 011 1. (1 points) Find each of the following its, with justification. If the it does not eist, eplain why. If there is an infinite it, then eplain whether it is or.

More information

Math 261 Final Exam - Practice Problem Solutions. 1. A function f is graphed below.

Math 261 Final Exam - Practice Problem Solutions. 1. A function f is graphed below. Math Final Eam - Practice Problem Solutions. A function f is graphed below. f() 8 7 7 8 (a) Find f(), f( ), f(), and f() f() = ;f( ).;f() is undefined; f() = (b) Find the domain and range of f Domain:

More information

Solutions to review problems MAT 125, Fall 2004

Solutions to review problems MAT 125, Fall 2004 Solutions to review problems MAT 125, Fall 200 1. For each of the following functions, find the absolute maimum and minimum values for f() in the given intervals. Also state the value where they occur.

More information

Math 1431 Final Exam Review. 1. Find the following limits (if they exist): lim. lim. lim. lim. sin. lim. cos. lim. lim. lim. n n.

Math 1431 Final Exam Review. 1. Find the following limits (if they exist): lim. lim. lim. lim. sin. lim. cos. lim. lim. lim. n n. . Find the following its (if they eist: sin 7 a. 0 9 5 b. 0 tan( 8 c. 4 d. e. f. sin h0 h h cos h0 h h Math 4 Final Eam Review g. h. i. j. k. cos 0 n nn e 0 n arctan( 0 4 l. 0 sin(4 m. cot 0 = n. = o.

More information

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26. Answer Key 969 BC 97 BC. C. E. B. D 5. E 6. B 7. D 8. C 9. D. A. B. E. C. D 5. B 6. B 7. B 8. E 9. C. A. B. E. D. C 5. A 6. C 7. C 8. D 9. C. D. C. B. A. D 5. A 6. B 7. D 8. A 9. D. E. D. B. E. E 5. E.

More information

UBC-SFU-UVic-UNBC Calculus Exam Solutions 7 June 2007

UBC-SFU-UVic-UNBC Calculus Exam Solutions 7 June 2007 This eamination has 15 pages including this cover. UBC-SFU-UVic-UNBC Calculus Eam Solutions 7 June 007 Name: School: Signature: Candidate Number: Rules and Instructions 1. Show all your work! Full marks

More information

Review for Test 2 Calculus I

Review for Test 2 Calculus I Review for Test Calculus I Find the absolute etreme values of the function on the interval. ) f() = -, - ) g() = - + 8-6, ) F() = -,.5 ) F() =, - 6 5) g() = 7-8, - Find the absolute etreme values of the

More information

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx Math 80, Exam, Practice Fall 009 Problem Solution. Differentiate the functions: (do not simplify) f(x) = x ln(x + ), f(x) = xe x f(x) = arcsin(x + ) = sin (3x + ), f(x) = e3x lnx Solution: For the first

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012 The Second Fundamental Theorem of Calculus Functions Defined by Integrals Given the functions, f(t), below, use F( ) f ( t) dt to find F() and F () in terms of.. f(t) = 4t t. f(t) = cos t Given the functions,

More information

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) =

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) = CLEP Calculus Time 60 Minutes 5 Questions For each question below, choose the best answer from the choices given. 7. lim 5 + 5 is (A) 7 0 (C) 7 0 (D) 7 (E) Noneistent. If f(), then f () (A) (C) (D) (E)

More information

2 (1 + 2 ) cos 2 (ln(1 + 2 )) (ln 2) cos 2 y + sin y. = 2sin y. cos. = lim. (c) Apply l'h^opital's rule since the limit leads to the I.F.

2 (1 + 2 ) cos 2 (ln(1 + 2 )) (ln 2) cos 2 y + sin y. = 2sin y. cos. = lim. (c) Apply l'h^opital's rule since the limit leads to the I.F. . (a) f 0 () = cos sin (b) g 0 () = cos (ln( + )) (c) h 0 (y) = (ln y cos )sin y + sin y sin y cos y (d) f 0 () = cos + sin (e) g 0 (z) = ze arctan z + ( + z )e arctan z Solutions to Math 05a Eam Review

More information

Abe Mirza Graphing f ( x )

Abe Mirza Graphing f ( x ) Abe Mirza Graphing f ( ) Steps to graph f ( ) 1. Set f ( ) = 0 and solve for critical values.. Substitute the critical values into f ( ) to find critical points.. Set f ( ) = 0 and solve for critical values.

More information

MATH section 3.4 Curve Sketching Page 1 of 29

MATH section 3.4 Curve Sketching Page 1 of 29 MATH section. Curve Sketching Page of 9 The step by step procedure below is for regular rational and polynomial functions. If a function contains radical or trigonometric term, then proceed carefully because

More information

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY MATH00 (Calculus).1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY Name Group No. KEYWORD: increasing, decreasing, constant, concave up, concave down, and inflection point Eample 1. Match the

More information

206 Calculus and Structures

206 Calculus and Structures 06 Calculus and Structures CHAPTER 4 CURVE SKETCHING AND MAX-MIN II Calculus and Structures 07 Copright Chapter 4 CURVE SKETCHING AND MAX-MIN II 4. INTRODUCTION In Chapter, we developed a procedure for

More information

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4.

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4. 55 PRACTICE FINAL EXAM SOLUTIONS. First notice that x 2 4 x 2x + 2 x 2 5x +6 x 2x. This function is undefined at x 2. Since, in the it as x 2, we only care about what happens near x 2 an for x less than

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Chapter Practice Dicsclaimer: The actual eam is different. On the actual eam ou must show the correct reasoning to receive credit for the question. SHORT ANSWER. Write the word or phrase that best completes

More information

One of the most common applications of Calculus involves determining maximum or minimum values.

One of the most common applications of Calculus involves determining maximum or minimum values. 8 LESSON 5- MAX/MIN APPLICATIONS (OPTIMIZATION) One of the most common applications of Calculus involves determining maimum or minimum values. Procedure:. Choose variables and/or draw a labeled figure..

More information

WW Prob Lib1 Math course-section, semester year

WW Prob Lib1 Math course-section, semester year Young-Seon Lee WW Prob Lib Math course-section, semester year WeBWorK assignment due /4/03 at :00 PM..( pt) Give the rational number whose decimal form is: 0 7333333 Answer:.( pt) Solve the following inequality:

More information

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx.

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx. Mathematics 14 Fall Term 26 Solutions to Final Exam 1. Evaluate sin(ln t) dt. Solution. We first make the substitution t = e x, for which dt = e x. This gives sin(ln t) dt = e x sin(x). To evaluate the

More information

Math 231 Final Exam Review

Math 231 Final Exam Review Math Final Eam Review Find the equation of the line tangent to the curve 4y y at the point (, ) Find the slope of the normal line to y ) ( e at the point (,) dy Find d if cos( y) y 4 y 4 Find the eact

More information

Fall 2013 Hour Exam 2 11/08/13 Time Limit: 50 Minutes

Fall 2013 Hour Exam 2 11/08/13 Time Limit: 50 Minutes Math 8 Fall Hour Exam /8/ Time Limit: 5 Minutes Name (Print): This exam contains 9 pages (including this cover page) and 7 problems. Check to see if any pages are missing. Enter all requested information

More information

Question 1. (8 points) The following diagram shows the graphs of eight equations.

Question 1. (8 points) The following diagram shows the graphs of eight equations. MAC 2233/-6 Business Calculus, Spring 2 Final Eam Name: Date: 5/3/2 Time: :am-2:nn Section: Show ALL steps. One hundred points equal % Question. (8 points) The following diagram shows the graphs of eight

More information

dx dx x sec tan d 1 4 tan 2 2 csc d 2 ln 2 x 2 5x 6 C 2 ln 2 ln x ln x 3 x 2 C Now, suppose you had observed that x 3

dx dx x sec tan d 1 4 tan 2 2 csc d 2 ln 2 x 2 5x 6 C 2 ln 2 ln x ln x 3 x 2 C Now, suppose you had observed that x 3 CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8. Partial Fractions Understand the concept of a partial fraction decomposition. Use partial fraction decomposition with

More information

AB 1: Find lim. x a.

AB 1: Find lim. x a. AB 1: Find lim x a f ( x) AB 1 Answer: Step 1: Find f ( a). If you get a zero in the denominator, Step 2: Factor numerator and denominator of f ( x). Do any cancellations and go back to Step 1. If you

More information

π 2π More Tutorial at 1. (3 pts) The function y = is a composite function y = f( g( x)) and the outer function y = f( u)

π 2π   More Tutorial at 1. (3 pts) The function y = is a composite function y = f( g( x)) and the outer function y = f( u) 1. ( pts) The function y = is a composite function y = f( g( )). 6 + Identify the inner function u = g( ) and the outer function y = f( u). A) u = g( ) = 6+, y = f( u) = u B) u = g( ) =, y = f( u) = 6u+

More information

Math 142, Final Exam. 12/7/10.

Math 142, Final Exam. 12/7/10. Math 4, Final Exam. /7/0. No notes, calculator, or text. There are 00 points total. Partial credit may be given. Write your full name in the upper right corner of page. Number the pages in the upper right

More information

Name: Date: Period: Calculus Honors: 4-2 The Product Rule

Name: Date: Period: Calculus Honors: 4-2 The Product Rule Name: Date: Period: Calculus Honors: 4- The Product Rule Warm Up: 1. Factor and simplify. 9 10 0 5 5 10 5 5. Find ' f if f How did you go about finding the derivative? Let s Eplore how to differentiate

More information

Math 125 Practice Problems for Test #3

Math 125 Practice Problems for Test #3 Math Practice Problems for Test # Also stud the assigned homework problems from the book. Donʹt forget to look over Test # and Test #! Find the derivative of the function. ) Know the derivatives of all

More information

WORKSHEET 1 SOLUTION Chapter 2 Differentiation

WORKSHEET 1 SOLUTION Chapter 2 Differentiation United Arab Emirates University College of Sciences Department of Mathematical Sciences WORKSHEET SOLUTION Chapter Differentiation Calculus I for Engineering MATH SECTION CRN : :5 on Sunday & Tuesday Due

More information

AP CALCULUS BC - FIRST SEMESTER EXAM REVIEW: Complete this review for five extra percentage points on the semester exam.

AP CALCULUS BC - FIRST SEMESTER EXAM REVIEW: Complete this review for five extra percentage points on the semester exam. AP CALCULUS BC - FIRST SEMESTER EXAM REVIEW: Complete this review for five etra percentage points on the semester eam. *Even though the eam will have a calculator active portion with 0 of the 8 questions,

More information

1998 AP Calculus AB: Section I, Part A

1998 AP Calculus AB: Section I, Part A 55 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number.. What is the -coordinate of the point

More information

Partial Fractions. dx dx x sec tan d 1 4 tan 2. 2 csc d. csc cot C. 2x 5. 2 ln. 2 x 2 5x 6 C. 2 ln. 2 ln x

Partial Fractions. dx dx x sec tan d 1 4 tan 2. 2 csc d. csc cot C. 2x 5. 2 ln. 2 x 2 5x 6 C. 2 ln. 2 ln x 460_080.qd //04 :08 PM Page CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8. Partial Fractions Understand the concept of a partial fraction decomposition. Use partial

More information

Old Math 220 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 220 Exams. David M. McClendon. Department of Mathematics Ferris State University Old Math 0 Exams David M. McClendon Department of Mathematics Ferris State University Last updated to include exams from Spring 05 Contents Contents General information about these exams 4 Exams from 0

More information

APPM 1350 Final Exam Fall 2016

APPM 1350 Final Exam Fall 2016 APPM 350 Final Eam Fall 06. (5 pts) Evaluate the following integrals. (a) 0 4 ( d (b) + ) 5 t 5 t dt (c) 0 / 6 d (a) (9 pts) Let u +, du d. 0 4 5 [ ( + ) d u du ] 5 ( 5 ) u + 8 5 (b) (8 pts) Let u 5 t,

More information

The Fundamental Theorem of Calculus Part 3

The Fundamental Theorem of Calculus Part 3 The Fundamental Theorem of Calculus Part FTC Part Worksheet 5: Basic Rules, Initial Value Problems, Rewriting Integrands A. It s time to find anti-derivatives algebraically. Instead of saying the anti-derivative

More information

n and C and D be positive constants so that nn 1

n and C and D be positive constants so that nn 1 Math Activity 0 (Due by end of class August 6). The graph of the equation y is called an astroid. a) Find the length of this curve. {Hint: One-fourth of the curve is given by the graph of y for 0.} b)

More information

Find the volume of the solid generated by revolving the shaded region about the given axis. Use the disc/washer method 1) About the x-axis

Find the volume of the solid generated by revolving the shaded region about the given axis. Use the disc/washer method 1) About the x-axis Final eam practice for Math 6 Disclaimer: The actual eam is different Find the volume of the solid generated b revolving the shaded region about the given ais. Use the disc/washer method ) About the -ais

More information

AP Calculus BC Summer Assignment 2018

AP Calculus BC Summer Assignment 2018 AP Calculus BC Summer Assignment 018 Name: When you come back to school, I will epect you to have attempted every problem. These skills are all different tools that we will pull out of our toolbo at different

More information

Math 180, Exam 2, Spring 2013 Problem 1 Solution

Math 180, Exam 2, Spring 2013 Problem 1 Solution Math 80, Eam, Spring 0 Problem Solution. Find the derivative of each function below. You do not need to simplify your answers. (a) tan ( + cos ) (b) / (logarithmic differentiation may be useful) (c) +

More information

Calculus 1: Sample Questions, Final Exam

Calculus 1: Sample Questions, Final Exam Calculus : Sample Questions, Final Eam. Evaluate the following integrals. Show your work and simplify your answers if asked. (a) Evaluate integer. Solution: e 3 e (b) Evaluate integer. Solution: π π (c)

More information

Review Exercises for Chapter 3. Review Exercises for Chapter r v 0 2. v ft sec. x 1 2 x dx f x x 99.4.

Review Exercises for Chapter 3. Review Exercises for Chapter r v 0 2. v ft sec. x 1 2 x dx f x x 99.4. Review Eercises for Chapter 6. r v 0 sin. Let f, 00, d 0.6. v 0 00 ftsec changes from 0 to dr 00 cos d 6 0 d 0 r dr 80 00 6 96 feet 80 cos 0 96 feet 8080 f f fd d f 99. 00 0.6 9.97 00 Using a calculator:

More information

M151B Practice Problems for Final Exam

M151B Practice Problems for Final Exam M5B Practice Problems for Final Eam Calculators will not be allowed on the eam. Unjustified answers will not receive credit. On the eam you will be given the following identities: n k = n(n + ) ; n k =

More information

Date Period For each problem, find all points of absolute minima and maxima on the given interval.

Date Period For each problem, find all points of absolute minima and maxima on the given interval. Calculus C o_0b1k5k gkbult_ai nsoo\fwtvwhairkew ULNLuCC._ ` naylflu [rhisg^h^tlsi traesgevrpvfe_dl. Final Eam Review Day 1 Name ID: 1 Date Period For each problem, find all points of absolute minima and

More information

1. Find the area enclosed by the curve y = arctan x, the x-axis and the line x = 3. (Total 6 marks)

1. Find the area enclosed by the curve y = arctan x, the x-axis and the line x = 3. (Total 6 marks) 1. Find the area enclosed by the curve y = arctan, the -ais and the line = 3. (Total 6 marks). Show that the points (0, 0) and ( π, π) on the curve e ( + y) = cos (y) have a common tangent. 3. Consider

More information

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x)

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x) APPM 5 Final Eam (5 pts) Fall. The following problems are not related: (a) (5 pts, 5 pts ea.) Find the following limits or show that they do not eist: (i) lim e (ii) lim arcsin() (b) (5 pts) Find and classify

More information