Geometry and Motion, MA 134 Week 1

Size: px
Start display at page:

Download "Geometry and Motion, MA 134 Week 1"

Transcription

1 Geometry and Motion, MA 134 Week 1 Mario J. Micallef Spring, 2007 Warning. These handouts are not intended to be complete lecture notes. They should be supplemented by your own notes and, importantly, by relevant books. 1 Curves and their Parameterisation We shall start with some familiar curves in the plane. Then, in 1.3, we shall give definitions that encapsulate features that are common to these curves and, indeed, should be common to all curves. 1.1 Equation of a line in the plane You are undoubtedly familiar with the Cartesian equation y = mx + c of the line L of slope m and y-intercept c; L is the subset of 2 defined by L := {(x, y) y = mx + c, x }. More generally, given two real numbers a and b, not both zero, the line L := {(x, y) 2 ax + by = c} (1.1) is orthogonal to the vector (a, b) at a distance c / a 2 + b 2 from the origin. (You should be able to prove these facts; if you cannot, please consult your supervisor.) You will also be familiar with the Vector form of the equation of a line. A line L n through r 0 in the direction of a 0 is {r(t) := r 0 + ta t }. (1.2) Digression. Definition of direction of a nonzero vector. Given a nonzero vector r = (x 1,..., x n) n \ {0}, the direction of r is the unit vector ˆr := r r where r is variously called the norm, length or magnitude of r and is defined as Thus, if r 0, r := 12 nx xi! 2 i=1 r = r ˆr which is the mathematical way of saying that a (nonzero) vector is a quantity which has magnitude and direction. End of digression and definition.. emarks (i) a in (1.2) does not have to be a unit vector. (ii) When n = 2, (1.2) has an advantage over the form y = mx + c in that it allows vertical lines by taking a = (0, 1). (iii) When n = 2, how do we go between (1.1) and (1.2)? More precisely, what is the formula that relates a, b, c in (1.1) to r 0 = (x 0, y 0 ), a = (a 1, a 2 ) in (1.2)? There are, in fact, many such formulas; can you see why? Convince yourself that one which works is: c r 0 := a 2 (a, b), a = ( b, a). + b2 1

2 1.2 Conic sections These are the curves obtained by intersecting a (double) cone in 3-space by a plane Equation of a circle C, centred at (a, b), of radius The Cartesian equation of C follows from the geometric definition of C as the set of points whose distance from (a, b) is : C := {(x, y) (x a) 2 + (y b) 2 = 2 }. Therefore ( ) x a 2 ( ) y b 2 + = 1 and so, there exists t [0, 2π) such that cos t = x a y b and sin t =, yielding C = {(a + cos t, b + sin t) t [0, 2π)}. (1.3) This is the parametric representation of C, and t is the parameter associated to each point of C. The choice of parameterisation is not unique: we could, somewhat perversely, have said that there exists τ [0, (2π) 1/3 ) such that cos τ 3 = x a and sin τ 3 = y b, and then C = {(a + cos τ 3, b + sin τ 3 ) τ [0, (2π) 1/3 )}. Note that (1.2) is the parametric representation of L. A precise definition of parameterisation will be given in Ellipse Geometric definition The ellipse is the set of points P in the plane such that the sum of the distances F 1 P and F 2 P of P from two given points F 1 and F 2 (called foci) is constant. Of course, F 1 = F 2 gives a circle. To aw an ellipse, place pins at F 1, F 2. Loop a piece of string around F 1 and F 2 and trace out the ellipse with pencil at P, keeping the string taut: Equation Place F 1 at ( c, 0) and F 2 at (c, 0). If P = (x, y) is a point on the ellipse then, the geometric definition of the ellipse yields: (x + c) 2 + y 2 } {{ } F 1 P + (x c) 2 + y }{{} 2 = 2a F 2 P where a := 1 2 ( F 1 P + F 2 P ) > c (by the triangle inequality). So: (x + c) 2 + y 2 = 4a 2 + (x c) 2 + y 2 4a (x c) 2 + y 2 i.e. 4xc = 4a 2 4a (x c) 2 + y 2. 2

3 It follows that (xc a 2 ) 2 = a 2( (x c) 2 +y 2) which, on expanding both sides, rearranging and cancelling, yields x 2 (a 2 c 2 ) + a 2 y 2 = a 2 (a 2 c 2 ) i.e. x 2 a 2 + y2 b 2 = 1 where b := a 2 c 2. We can now parameterise the ellipse in the same way we parameterised the circle: there exists t [0, 2π) such that x = a cos t, y = b sin t, i.e. What is the geometric significance of t? ellipse = {(a cos t, b sin t) t [0, 2π)} Hyperbola This is the set of points P in the plane for which the absolute value of the difference of the distances F 1 P and F 2 P of P from two given points F 1 and F 2 (again called foci) is constant. The equation of a hyperbola can be derived in the same way as for an ellipse, except that F 1 P F 2 P is now set equal to 2a and a < c. The equation is then x 2 a 2 y2 b 2 = 1, where b := c 2 a 2. The hyperbola has two branches, one where F 1 P F 2 P = 2a and one where F 2 P F 1 P = 2a. The first branch can be parameterised by making use of the identity sec 2 t tan 2 t 1 which enables us to set x := a sec t, y := b tan t, t ( π/2, π/2). 3

4 For the second branch we set: x := a sec t, y := b tan t, t ( π/2, π/2). The lines y = b a x and y = b ax are asymptotes of the hyperbola. The parameter t does not have a simple geometric interpretation. Digression. Hyperbolic trigonometric functions The functions cosh and sinh are defined by: cosh t := et + e t Verify that they have the following properties: (i) cosh 2 t sinh 2 t 1, 2 and d d (ii) cosh t = sinh t, sinh t = cosh t, (iii) cosh 2t = cosh 2 t + sinh 2 t, sinh 2t = 2 cosh t sinh t. Sketch the graphs of cosh and sinh and also of tanh t := sinh t cosh t web) to check your answers. End of digression sinh t := et e t, t. 2 cosh t and coth t :=. Consult an appropriate book (or the sinh t An alternative parameterisation of the right branch of the hyperbola is obtained by setting x := a cosh t, y := b sinh t, t. 1.3 Definitions of curve and parameterisation Compare the vector equation of L in (1.2) and the parameterisation (1.3) of C: In both cases we have a set of the form L = {(x 0 + ta 1, y 0 + ta 2 ) t } where a = (a 1, a 2 ) C = {(a + cos t, b + sin t) t [0, 2π)}. {(x(t), y(t)) t I} where I is an interval. The same is true for the ellipse and the hyperbola. We are therefore led to the following definition of a curve and its parameterisations: Definition of a curve such that C n is a curve (or path) if there exists a continuous map r : I n C = {r(t) t I}, where I is an interval. Definition of a parameterisation The mapping t r(t): I n is called a parameterisation of C. It consists of n functions, x 1 (t),..., x n (t), the components of r, of one variable, t. More definitions; nomenclature The parameterisation r is regular if it is differentiable and 0 t I. The curve C is regular if it can be parameterised by a regular parameterisation. A regular curve has a tangent line at each of its points whose direction at r(t) is that of. In particular, a regular curve cannot have sharp corners. An exercise on Examples Sheet 1 shows that a curve with a differentiable parameterisation may have sharp corners if is allowed to be 0. We shall only consider regular curves. 4

5 A parameterisation orients a curve in the direction of increasing t. If I = [a, b], the curve is called closed if r(a) = r(b): A closed curve is also called a loop. A closed curve is regular if 0 t I and (a) = (b). The curve is embedded or simple if r is injective, i.e., t 1 t 2 r(t 1 ) r(t 2 ) or {t 1, t 2 } = {a, b} where a and b are the endpoints of I. Thus a simple/embedded curve has no self-intersections. A Jordan curve is a curve in the plane which is both simple and closed. emarks (i) A parameterisation can be thought of as motion of a particle along the curve. r(t) is then the position of the particle at time t. is the velocity of the particle and is its speed. (ii) Let ϕ: J I be a continuous bijection between the intervals I and J. parameterisation of C then so is r ϕ := r ϕ, r ϕ : J n. If r : I n is a 5

6 Thus the same curve can be parameterised in infinitely many different ways because there are infinitely many choices of such bijections ϕ. From the mechanical point of view this corresponds to the fact that the speed of a particle along a given path can vary in an arbitrary manner. 1.4 Elementary curve sketching It is important to be able to sketch the curves defined by elementary parameterisations. Note that the slope of the tangent line to a regular curve in the plane at r(t) = (x(t), y(t)) is given by: Examples 1. r(t) = (t 2, t 3 ). dy dx = dy/ dx/. 2. The logarithmic spiral, r(t) = e t (cos t, sin t). 3. r(t) = (1 + e t )(cos t, sin t). 6

7 1.5 Length of Curves Discovering the definition of length Let C be a curve in n which is parameterised by r : [a, b] n. Chop [a, b] into n equal segments. Let t n := b a n and t n = b. We can then approximate: and let t i := a + i t n, 0 i n so that t 0 = a But r(t i+1 ) r(t i ) (t i) t n, and so, n 1 length of C r(t i+1 ) r(t i ). i=0 i=0 n 1 length of C = lim n (t i) t n = So it seems reasonable to define l(c) as follows. b a. Definition of length of a curve Let I be an interval whose end-points are a and b, a < b and let r : I n be a differentiable parameterisation of a curve C n. The length of C, l(c), is then defined by: b l(c) :=. In mechanics language, this says that distance travelled = speed. But l(c) should not depend on the parameterisation of C. We verify this. a Proposition Let r : [a, b] n and r ϕ : [h, k] n be two parameterisations of C where r ϕ = r ϕ and ϕ: [h, k] [a, b] is a differentiable bijection so that u [h, k], ϕ (u) > 0. Then k h φ b du du =. a Proof 7

8 1.5.2 Examples Example 1 Find the length of the graph of y = x 2 between x = 0 and x = 2. Solution Example 2 The length of an ellipse C: r(t) = (a cos t, b sin t), t [0, 2π] a = 2 sin 2 t + b 2 cos 2 t 2π l(c) = a 2 sin 2 t + b 2 cos 2 t = 0 2π 0 (a 2 b 2 ) sin 2 t + b 2 This is a so-called elliptic integral. Elliptic integrals cannot be expressed in terms of elementary fuctions. Go to the 3rd year course on elliptic curves to learn more about these integrals! 8

Conic Sections Session 3: Hyperbola

Conic Sections Session 3: Hyperbola Conic Sections Session 3: Hyperbola Toh Pee Choon NIE Oct 2017 Toh Pee Choon (NIE) Session 3: Hyperbola Oct 2017 1 / 16 Problem 3.1 1 Recall that an ellipse is defined as the locus of points P such that

More information

Conic Sections: THE ELLIPSE

Conic Sections: THE ELLIPSE Conic Sections: THE ELLIPSE An ellipse is the set of all points,such that the sum of the distance between, and two distinct points is a constant. These two distinct points are called the foci (plural of

More information

Chapter 10: Conic Sections; Polar Coordinates; Parametric Equations

Chapter 10: Conic Sections; Polar Coordinates; Parametric Equations Chapter 10: Conic Sections; Polar Coordinates; Parametric Equations Section 10.1 Geometry of Parabola, Ellipse, Hyperbola a. Geometric Definition b. Parabola c. Ellipse d. Hyperbola e. Translations f.

More information

6.7 Hyperbolic Functions

6.7 Hyperbolic Functions 6.7 6.7 Hyperbolic Functions Even and Odd Parts of an Exponential Function We recall that a function f is called even if f( x) = f(x). f is called odd if f( x) = f(x). The sine function is odd while the

More information

Revision Checklist. Unit FP3: Further Pure Mathematics 3. Assessment information

Revision Checklist. Unit FP3: Further Pure Mathematics 3. Assessment information Revision Checklist Unit FP3: Further Pure Mathematics 3 Unit description Further matrix algebra; vectors, hyperbolic functions; differentiation; integration, further coordinate systems Assessment information

More information

Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A2 optional unit

Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A2 optional unit Unit FP3 Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A optional unit FP3.1 Unit description Further matrix algebra; vectors, hyperbolic

More information

The Distance Formula. The Midpoint Formula

The Distance Formula. The Midpoint Formula Math 120 Intermediate Algebra Sec 9.1: Distance Midpoint Formulas The Distance Formula The distance between two points P 1 = (x 1, y 1 ) P 2 = (x 1, y 1 ), denoted by d(p 1, P 2 ), is d(p 1, P 2 ) = (x

More information

Vector-Valued Functions

Vector-Valued Functions Vector-Valued Functions 1 Parametric curves 8 ' 1 6 1 4 8 1 6 4 1 ' 4 6 8 Figure 1: Which curve is a graph of a function? 1 4 6 8 1 8 1 6 4 1 ' 4 6 8 Figure : A graph of a function: = f() 8 ' 1 6 4 1 1

More information

Exercises for Multivariable Differential Calculus XM521

Exercises for Multivariable Differential Calculus XM521 This document lists all the exercises for XM521. The Type I (True/False) exercises will be given, and should be answered, online immediately following each lecture. The Type III exercises are to be done

More information

Distance and Midpoint Formula 7.1

Distance and Midpoint Formula 7.1 Distance and Midpoint Formula 7.1 Distance Formula d ( x - x ) ( y - y ) 1 1 Example 1 Find the distance between the points (4, 4) and (-6, -). Example Find the value of a to make the distance = 10 units

More information

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8).

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8). Worksheet A 1 A curve is given by the parametric equations x = t + 1, y = 4 t. a Write down the coordinates of the point on the curve where t =. b Find the value of t at the point on the curve with coordinates

More information

Things you should have learned in Calculus II

Things you should have learned in Calculus II Things you should have learned in Calculus II 1 Vectors Given vectors v = v 1, v 2, v 3, u = u 1, u 2, u 3 1.1 Common Operations Operations Notation How is it calculated Other Notation Dot Product v u

More information

2. Determine the domain of the function. Verify your result with a graph. f(x) = 25 x 2

2. Determine the domain of the function. Verify your result with a graph. f(x) = 25 x 2 29 April PreCalculus Final Review 1. Find the slope and y-intercept (if possible) of the equation of the line. Sketch the line: y = 3x + 13 2. Determine the domain of the function. Verify your result with

More information

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 13.1

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 13.1 OHSx XM521 Multivariable Differential Calculus: Homework Solutions 13.1 (37) If a bug walks on the sphere x 2 + y 2 + z 2 + 2x 2y 4z 3 = 0 how close and how far can it get from the origin? Solution: Complete

More information

Exam 4 SCORE. MA 114 Exam 4 Spring Section and/or TA:

Exam 4 SCORE. MA 114 Exam 4 Spring Section and/or TA: Exam 4 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may

More information

Calculus and Parametric Equations

Calculus and Parametric Equations Calculus and Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Given a pair a parametric equations x = f (t) y = g(t) for a t b we know how

More information

MAS153/MAS159. MAS153/MAS159 1 Turn Over SCHOOL OF MATHEMATICS AND STATISTICS hours. Mathematics (Materials) Mathematics For Chemists

MAS153/MAS159. MAS153/MAS159 1 Turn Over SCHOOL OF MATHEMATICS AND STATISTICS hours. Mathematics (Materials) Mathematics For Chemists Data provided: Formula sheet MAS53/MAS59 SCHOOL OF MATHEMATICS AND STATISTICS Mathematics (Materials Mathematics For Chemists Spring Semester 203 204 3 hours All questions are compulsory. The marks awarded

More information

10.1 Review of Parametric Equations

10.1 Review of Parametric Equations 10.1 Review of Parametric Equations Recall that often, instead of representing a curve using just x and y (called a Cartesian equation), it is more convenient to define x and y using parametric equations

More information

SKILL BUILDER TEN. Graphs of Linear Equations with Two Variables. If x = 2 then y = = = 7 and (2, 7) is a solution.

SKILL BUILDER TEN. Graphs of Linear Equations with Two Variables. If x = 2 then y = = = 7 and (2, 7) is a solution. SKILL BUILDER TEN Graphs of Linear Equations with Two Variables A first degree equation is called a linear equation, since its graph is a straight line. In a linear equation, each term is a constant or

More information

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET 017-018 Name: 1. This packet is to be handed in on Monday August 8, 017.. All work must be shown on separate paper attached to the packet. 3.

More information

Lecture for Week 6 (Secs ) Derivative Miscellany I

Lecture for Week 6 (Secs ) Derivative Miscellany I Lecture for Week 6 (Secs. 3.6 9) Derivative Miscellany I 1 Implicit differentiation We want to answer questions like this: 1. What is the derivative of tan 1 x? 2. What is dy dx if x 3 + y 3 + xy 2 + x

More information

Chapter 11 Parametric Equations, Polar Curves, and Conic Sections

Chapter 11 Parametric Equations, Polar Curves, and Conic Sections Chapter 11 Parametric Equations, Polar Curves, and Conic Sections ü 11.1 Parametric Equations Students should read Sections 11.1-11. of Rogawski's Calculus [1] for a detailed discussion of the material

More information

Learning Objectives for Math 166

Learning Objectives for Math 166 Learning Objectives for Math 166 Chapter 6 Applications of Definite Integrals Section 6.1: Volumes Using Cross-Sections Draw and label both 2-dimensional perspectives and 3-dimensional sketches of the

More information

4.1 Analysis of functions I: Increase, decrease and concavity

4.1 Analysis of functions I: Increase, decrease and concavity 4.1 Analysis of functions I: Increase, decrease and concavity Definition Let f be defined on an interval and let x 1 and x 2 denote points in that interval. a) f is said to be increasing on the interval

More information

MATH-1420 Review Concepts (Haugen)

MATH-1420 Review Concepts (Haugen) MATH-40 Review Concepts (Haugen) Unit : Equations, Inequalities, Functions, and Graphs Rational Expressions Determine the domain of a rational expression Simplify rational expressions -factor and then

More information

10.3 Parametric Equations. 1 Math 1432 Dr. Almus

10.3 Parametric Equations. 1 Math 1432 Dr. Almus Math 1432 DAY 39 Dr. Melahat Almus almus@math.uh.edu OFFICE HOURS (212 PGH) MW12-1:30pm, F:12-1pm. If you email me, please mention the course (1432) in the subject line. Check your CASA account for Quiz

More information

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A Midpoint and Distance Formula Class Work M is the midpoint of A and B. Use the given information to find the missing point. 1. A(4, 2) and B(3, -8), find M 2. A(5, 7) and B( -2, -9), find M 3. A( 2,0)

More information

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period:

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period: AP Calculus (BC) Chapter 10 Test No Calculator Section Name: Date: Period: Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The graph in the xy-plane represented

More information

Mathematics Specialist Units 3 & 4 Program 2018

Mathematics Specialist Units 3 & 4 Program 2018 Mathematics Specialist Units 3 & 4 Program 018 Week Content Assessments Complex numbers Cartesian Forms Term 1 3.1.1 review real and imaginary parts Re(z) and Im(z) of a complex number z Week 1 3.1. review

More information

Table of contents. Jakayla Robbins & Beth Kelly (UK) Precalculus Notes Fall / 53

Table of contents. Jakayla Robbins & Beth Kelly (UK) Precalculus Notes Fall / 53 Table of contents The Cartesian Coordinate System - Pictures of Equations Your Personal Review Graphs of Equations with Two Variables Distance Equations of Circles Midpoints Quantifying the Steepness of

More information

17.3. Parametric Curves. Introduction. Prerequisites. Learning Outcomes

17.3. Parametric Curves. Introduction. Prerequisites. Learning Outcomes Parametric Curves 7.3 Introduction In this Section we eamine et another wa of defining curves - the parametric description. We shall see that this is, in some was, far more useful than either the Cartesian

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

ECM Calculus and Geometry. Revision Notes

ECM Calculus and Geometry. Revision Notes ECM1702 - Calculus and Geometry Revision Notes Joshua Byrne Autumn 2011 Contents 1 The Real Numbers 1 1.1 Notation.................................................. 1 1.2 Set Notation...............................................

More information

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India NPTEL web course on Complex Analysis A. Swaminathan I.I.T. Roorkee, India and V.K. Katiyar I.I.T. Roorkee, India A.Swaminathan and V.K.Katiyar (NPTEL) Complex Analysis 1 / 19 Complex Analysis Module: 8:

More information

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4 MATH2202 Notebook 1 Fall 2015/2016 prepared by Professor Jenny Baglivo Contents 1 MATH2202 Notebook 1 3 1.1 Single Variable Calculus versus Multivariable Calculus................... 3 1.2 Rectangular Coordinate

More information

5 t + t2 4. (ii) f(x) = ln(x 2 1). (iii) f(x) = e 2x 2e x + 3 4

5 t + t2 4. (ii) f(x) = ln(x 2 1). (iii) f(x) = e 2x 2e x + 3 4 Study Guide for Final Exam 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its expression to be well-defined. Some examples of the conditions are: What

More information

Coordinate goemetry in the (x, y) plane

Coordinate goemetry in the (x, y) plane Coordinate goemetr in the (x, ) plane In this chapter ou will learn how to solve problems involving parametric equations.. You can define the coordinates of a point on a curve using parametric equations.

More information

MATH 12 CLASS 5 NOTES, SEP

MATH 12 CLASS 5 NOTES, SEP MATH 12 CLASS 5 NOTES, SEP 30 2011 Contents 1. Vector-valued functions 1 2. Differentiating and integrating vector-valued functions 3 3. Velocity and Acceleration 4 Over the past two weeks we have developed

More information

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves 7.1 Ellipse An ellipse is a curve that is the locus of all points in the plane the sum of whose distances r1 and r from two fixed

More information

Analytic Geometry MAT 1035

Analytic Geometry MAT 1035 Analytic Geometry MAT 035 5.09.04 WEEKLY PROGRAM - The first week of the semester, we will introduce the course and given a brief outline. We continue with vectors in R n and some operations including

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES 10.5 Conic Sections In this section, we will learn: How to derive standard equations for conic sections. CONIC SECTIONS

More information

Limits for parametric and polar curves

Limits for parametric and polar curves Roberto s Notes on Differential Calculus Chapter : Resolving indeterminate forms Section 7 Limits for parametric and polar curves What you need to know already: How to handle limits for functions of the

More information

Classical transcendental curves

Classical transcendental curves Classical transcendental curves Reinhard Schultz May, 2008 In his writings on coordinate geometry, Descartes emphasized that he was only willing to work with curves that could be defined by algebraic equations.

More information

ARE YOU READY FOR CALCULUS?? Name: Date: Period:

ARE YOU READY FOR CALCULUS?? Name: Date: Period: ARE YOU READY FOR CALCULUS?? Name: Date: Period: Directions: Complete the following problems. **You MUST show all work to receive credit.**(use separate sheets of paper.) Problems with an asterisk (*)

More information

MATH The Derivative as a Function - Section 3.2. The derivative of f is the function. f x h f x. f x lim

MATH The Derivative as a Function - Section 3.2. The derivative of f is the function. f x h f x. f x lim MATH 90 - The Derivative as a Function - Section 3.2 The derivative of f is the function f x lim h 0 f x h f x h for all x for which the limit exists. The notation f x is read "f prime of x". Note that

More information

Arc Length and Riemannian Metric Geometry

Arc Length and Riemannian Metric Geometry Arc Length and Riemannian Metric Geometry References: 1 W F Reynolds, Hyperbolic geometry on a hyperboloid, Amer Math Monthly 100 (1993) 442 455 2 Wikipedia page Metric tensor The most pertinent parts

More information

1 The Derivative and Differrentiability

1 The Derivative and Differrentiability 1 The Derivative and Differrentiability 1.1 Derivatives and rate of change Exercise 1 Find the equation of the tangent line to f (x) = x 2 at the point (1, 1). Exercise 2 Suppose that a ball is dropped

More information

MATH20411 PDEs and Vector Calculus B

MATH20411 PDEs and Vector Calculus B MATH2411 PDEs and Vector Calculus B Dr Stefan Güttel Acknowledgement The lecture notes and other course materials are based on notes provided by Dr Catherine Powell. SECTION 1: Introctory Material MATH2411

More information

Conic Sections in Polar Coordinates

Conic Sections in Polar Coordinates Conic Sections in Polar Coordinates MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction We have develop the familiar formulas for the parabola, ellipse, and hyperbola

More information

MATH 2433 Homework 1

MATH 2433 Homework 1 MATH 433 Homework 1 1. The sequence (a i ) is defined recursively by a 1 = 4 a i+1 = 3a i find a closed formula for a i in terms of i.. In class we showed that the Fibonacci sequence (a i ) defined by

More information

ALGEBRA 2 X. Final Exam. Review Packet

ALGEBRA 2 X. Final Exam. Review Packet ALGEBRA X Final Exam Review Packet Multiple Choice Match: 1) x + y = r a) equation of a line ) x = 5y 4y+ b) equation of a hyperbola ) 4) x y + = 1 64 9 c) equation of a parabola x y = 1 4 49 d) equation

More information

Conic Sections. Geometry - Conics ~1~ NJCTL.org. Write the following equations in standard form.

Conic Sections. Geometry - Conics ~1~ NJCTL.org. Write the following equations in standard form. Conic Sections Midpoint and Distance Formula M is the midpoint of A and B. Use the given information to find the missing point. 1. A(, 2) and B(3, -), find M 2. A(5, 7) and B( -2, -), find M 3. A( 2,0)

More information

Extra FP3 past paper - A

Extra FP3 past paper - A Mark schemes for these "Extra FP3" papers at https://mathsmartinthomas.files.wordpress.com/04//extra_fp3_markscheme.pdf Extra FP3 past paper - A More FP3 practice papers, with mark schemes, compiled from

More information

Chapter 3 Differentiation Rules (continued)

Chapter 3 Differentiation Rules (continued) Chapter 3 Differentiation Rules (continued) Sec 3.5: Implicit Differentiation (continued) Implicit Differentiation What if you want to find the slope of the tangent line to a curve that is not the graph

More information

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) =

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) = MATH1003 REVISION 1. Differentiate the following functions, simplifying your answers when appropriate: (i) f(x) = (x 3 2) tan x (ii) y = (3x 5 1) 6 (iii) y 2 = x 2 3 (iv) y = ln(ln(7 + x)) e 5x3 (v) g(t)

More information

Analytic Geometry MAT 1035

Analytic Geometry MAT 1035 Analytic Geometry MAT 035 5.09.04 WEEKLY PROGRAM - The first week of the semester, we will introduce the course and given a brief outline. We continue with vectors in R n and some operations including

More information

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Background knowledge: (a) The arithmetic of integers (including HCFs and LCMs), of fractions, and of real numbers.

More information

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16 Physics 307 Mathematical Physics Luis Anchordoqui 1 Bibliography L. A. Anchordoqui and T. C. Paul, ``Mathematical Models of Physics Problems (Nova Publishers, 2013) G. F. D. Duff and D. Naylor, ``Differential

More information

MATH Final Review

MATH Final Review MATH 1592 - Final Review 1 Chapter 7 1.1 Main Topics 1. Integration techniques: Fitting integrands to basic rules on page 485. Integration by parts, Theorem 7.1 on page 488. Guidelines for trigonometric

More information

H2 MATHS SET D PAPER 1

H2 MATHS SET D PAPER 1 H Maths Set D Paper H MATHS Exam papers with worked solutions SET D PAPER Compiled by THE MATHS CAFE P a g e b The curve y ax c x 3 points, and, H Maths Set D Paper has a stationary point at x 3. It also

More information

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A Midpoint and Distance Formula Class Work M is the midpoint of A and B. Use the given information to find the missing point. 1. A(, 2) and B(3, -8), find M 2. A(5, 7) and B( -2, -), find M (3. 5, 3) (1.

More information

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253 SOLUTIONS TO HOMEWORK ASSIGNMENT #, Math 5. Find the equation of a sphere if one of its diameters has end points (, 0, 5) and (5, 4, 7). The length of the diameter is (5 ) + ( 4 0) + (7 5) = =, so the

More information

PURE MATHEMATICS Unit 1

PURE MATHEMATICS Unit 1 PURE MATHEMATICS Unit 1 FOR CAPE EXAMINATIONS DIPCHAND BAHALL CAPE is a registered trade mark of the Caribbean Examinations Council (CXC). Pure Mathematics for CAPE Examinations Unit 1 is an independent

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

1 Sets of real numbers

1 Sets of real numbers 1 Sets of real numbers Outline Sets of numbers, operations, functions Sets of natural, integer, rational and real numbers Operations with real numbers and their properties Representations of real numbers

More information

Calculus Vector Principia Mathematica. Lynne Ryan Associate Professor Mathematics Blue Ridge Community College

Calculus Vector Principia Mathematica. Lynne Ryan Associate Professor Mathematics Blue Ridge Community College Calculus Vector Principia Mathematica Lynne Ryan Associate Professor Mathematics Blue Ridge Community College Defining a vector Vectors in the plane A scalar is a quantity that can be represented by a

More information

Circles. Example 2: Write an equation for a circle if the enpoints of a diameter are at ( 4,5) and (6, 3).

Circles. Example 2: Write an equation for a circle if the enpoints of a diameter are at ( 4,5) and (6, 3). Conics Unit Ch. 8 Circles Equations of Circles The equation of a circle with center ( hk, ) and radius r units is ( x h) ( y k) r. Example 1: Write an equation of circle with center (8, 3) and radius 6.

More information

STEM-Prep Pathway SLOs

STEM-Prep Pathway SLOs STEM-Prep Pathway SLOs Background: The STEM-Prep subgroup of the MMPT adopts a variation of the student learning outcomes for STEM from the courses Reasoning with Functions I and Reasoning with Functions

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 82 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

Section 8.2: Integration by Parts When you finish your homework, you should be able to

Section 8.2: Integration by Parts When you finish your homework, you should be able to Section 8.2: Integration by Parts When you finish your homework, you should be able to π Use the integration by parts technique to find indefinite integral and evaluate definite integrals π Use the tabular

More information

MAT137 Calculus! Lecture 6

MAT137 Calculus! Lecture 6 MAT137 Calculus! Lecture 6 Today: 3.2 Differentiation Rules; 3.3 Derivatives of higher order. 3.4 Related rates 3.5 Chain Rule 3.6 Derivative of Trig. Functions Next: 3.7 Implicit Differentiation 4.10

More information

Part IB GEOMETRY (Lent 2016): Example Sheet 1

Part IB GEOMETRY (Lent 2016): Example Sheet 1 Part IB GEOMETRY (Lent 2016): Example Sheet 1 (a.g.kovalev@dpmms.cam.ac.uk) 1. Suppose that H is a hyperplane in Euclidean n-space R n defined by u x = c for some unit vector u and constant c. The reflection

More information

Math 113 Final Exam Practice

Math 113 Final Exam Practice Math Final Exam Practice The Final Exam is comprehensive. You should refer to prior reviews when studying material in chapters 6, 7, 8, and.-9. This review will cover.0- and chapter 0. This sheet has three

More information

Conic Sections Session 2: Ellipse

Conic Sections Session 2: Ellipse Conic Sections Session 2: Ellipse Toh Pee Choon NIE Oct 2017 Toh Pee Choon (NIE) Session 2: Ellipse Oct 2017 1 / 24 Introduction Problem 2.1 Let A, F 1 and F 2 be three points that form a triangle F 2

More information

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 2012, Brooks/Cole

More information

SESSION CLASS-XI SUBJECT : MATHEMATICS FIRST TERM

SESSION CLASS-XI SUBJECT : MATHEMATICS FIRST TERM TERMWISE SYLLABUS SESSION-2018-19 CLASS-XI SUBJECT : MATHEMATICS MONTH July, 2018 to September 2018 CONTENTS FIRST TERM Unit-1: Sets and Functions 1. Sets Sets and their representations. Empty set. Finite

More information

FINAL - PART 1 MATH 150 SPRING 2017 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS No notes, books, or calculators allowed.

FINAL - PART 1 MATH 150 SPRING 2017 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS No notes, books, or calculators allowed. Math 150 Name: FINAL - PART 1 MATH 150 SPRING 2017 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS No notes, books, or calculators allowed. 135 points: 45 problems, 3 pts. each. You

More information

MAT1035 Analytic Geometry

MAT1035 Analytic Geometry MAT1035 Analytic Geometry Lecture Notes R.A. Sabri Kaan Gürbüzer Dokuz Eylül University 2016 2 Contents 1 Review of Trigonometry 5 2 Polar Coordinates 7 3 Vectors in R n 9 3.1 Located Vectors..............................................

More information

Portable Assisted Study Sequence ALGEBRA IIB

Portable Assisted Study Sequence ALGEBRA IIB SCOPE This course is divided into two semesters of study (A & B) comprised of five units each. Each unit teaches concepts and strategies recommended for intermediate algebra students. The second half of

More information

3.4 Conic sections. Such type of curves are called conics, because they arise from different slices through a cone

3.4 Conic sections. Such type of curves are called conics, because they arise from different slices through a cone 3.4 Conic sections Next we consider the objects resulting from ax 2 + bxy + cy 2 + + ey + f = 0. Such type of curves are called conics, because they arise from different slices through a cone Circles belong

More information

MA3D9. Geometry of curves and surfaces. T (s) = κ(s)n(s),

MA3D9. Geometry of curves and surfaces. T (s) = κ(s)n(s), MA3D9. Geometry of 2. Planar curves. Let : I R 2 be a curve parameterised by arc-length. Given s I, let T(s) = (s) be the unit tangent. Let N(s) be the unit normal obtained by rotating T(s) through π/2

More information

Pre Calculus Gary Community School Corporation Unit Planning Map

Pre Calculus Gary Community School Corporation Unit Planning Map UNIT/TIME FRAME STANDARDS Functions and Graphs (6 weeks) PC.F.1: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities,

More information

Math 190 (Calculus II) Final Review

Math 190 (Calculus II) Final Review Math 90 (Calculus II) Final Review. Sketch the region enclosed by the given curves and find the area of the region. a. y = 7 x, y = x + 4 b. y = cos ( πx ), y = x. Use the specified method to find the

More information

Time : 3 hours 02 - Mathematics - July 2006 Marks : 100 Pg - 1 Instructions : S E CT I O N - A

Time : 3 hours 02 - Mathematics - July 2006 Marks : 100 Pg - 1 Instructions : S E CT I O N - A Time : 3 hours 0 Mathematics July 006 Marks : 00 Pg Instructions :. Answer all questions.. Write your answers according to the instructions given below with the questions. 3. Begin each section on a new

More information

TS EAMCET 2016 SYLLABUS ENGINEERING STREAM

TS EAMCET 2016 SYLLABUS ENGINEERING STREAM TS EAMCET 2016 SYLLABUS ENGINEERING STREAM Subject: MATHEMATICS 1) ALGEBRA : a) Functions: Types of functions Definitions - Inverse functions and Theorems - Domain, Range, Inverse of real valued functions.

More information

Calculus Summer Packet

Calculus Summer Packet Calculus Summer Packet Congratulations on reaching this level of mathematics in high school. I know some or all of you are bummed out about having to do a summer math packet; but keep this in mind: we

More information

SOLUTIONS TO SECOND PRACTICE EXAM Math 21a, Spring 2003

SOLUTIONS TO SECOND PRACTICE EXAM Math 21a, Spring 2003 SOLUTIONS TO SECOND PRACTICE EXAM Math a, Spring 3 Problem ) ( points) Circle for each of the questions the correct letter. No justifications are needed. Your score will be C W where C is the number of

More information

1. Determine the length of the major & minor axis. List the coordinates of vertices and co-vertices of the following ellipses. Vertices: Co-Vertices:

1. Determine the length of the major & minor axis. List the coordinates of vertices and co-vertices of the following ellipses. Vertices: Co-Vertices: 1. Sec 6.3 Conic Sections Ellipses Name: An ELLIPSE could be accurately described as circle that has been stretched or compressed by a constant ratio towards a diameter of a circle. A circle is actually

More information

ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

More information

Parametric Curves. Calculus 2 Lia Vas

Parametric Curves. Calculus 2 Lia Vas Calculus Lia Vas Parametric Curves In the past, we mostly worked with curves in the form y = f(x). However, this format does not encompass all the curves one encounters in applications. For example, consider

More information

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem Green s Theorem MATH 311, alculus III J. obert Buchanan Department of Mathematics Fall 2011 Main Idea Main idea: the line integral around a positively oriented, simple closed curve is related to a double

More information

Hyperbolic Functions (1A)

Hyperbolic Functions (1A) Hyperbolic Functions (A) 08/3/04 Copyright (c) 0-04 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version. or

More information

Spacecraft Dynamics and Control

Spacecraft Dynamics and Control Spacecraft Dynamics and Control Matthew M. Peet Arizona State University Lecture 5: Hyperbolic Orbits Introduction In this Lecture, you will learn: Hyperbolic orbits Hyperbolic Anomaly Kepler s Equation,

More information

Edexcel past paper questions. Core Mathematics 4. Parametric Equations

Edexcel past paper questions. Core Mathematics 4. Parametric Equations Edexcel past paper questions Core Mathematics 4 Parametric Equations Edited by: K V Kumaran Email: kvkumaran@gmail.com C4 Maths Parametric equations Page 1 Co-ordinate Geometry A parametric equation of

More information

CHAPTER 1. DIFFERENTIATION 18. As x 1, f(x). At last! We are now in a position to sketch the curve; see Figure 1.4.

CHAPTER 1. DIFFERENTIATION 18. As x 1, f(x). At last! We are now in a position to sketch the curve; see Figure 1.4. CHAPTER. DIFFERENTIATION 8 and similarly for x, As x +, fx), As x, fx). At last! We are now in a position to sketch the curve; see Figure.4. Figure.4: A sketch of the function y = fx) =/x ). Observe the

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations 4 The Cartesian Coordinate System- Pictures of Equations Concepts: The Cartesian Coordinate System Graphs of Equations in Two Variables x-intercepts and y-intercepts Distance in Two Dimensions and the

More information

2.2 The derivative as a Function

2.2 The derivative as a Function 2.2 The derivative as a Function Recall: The derivative of a function f at a fixed number a: f a f a+h f(a) = lim h 0 h Definition (Derivative of f) For any number x, the derivative of f is f x f x+h f(x)

More information

Parametric Equations and Polar Coordinates

Parametric Equations and Polar Coordinates Parametric Equations and Polar Coordinates Parametrizations of Plane Curves In previous chapters, we have studied curves as the graphs of functions or equations involving the two variables x and y. Another

More information

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4.

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4. 55 PRACTICE FINAL EXAM SOLUTIONS. First notice that x 2 4 x 2x + 2 x 2 5x +6 x 2x. This function is undefined at x 2. Since, in the it as x 2, we only care about what happens near x 2 an for x less than

More information

Precalculus. Precalculus Higher Mathematics Courses 85

Precalculus. Precalculus Higher Mathematics Courses 85 Precalculus Precalculus combines the trigonometric, geometric, and algebraic techniques needed to prepare students for the study of calculus, and strengthens students conceptual understanding of problems

More information