Non-Linear Models. Estimating Parameters from a Non-linear Regression Model

Size: px
Start display at page:

Download "Non-Linear Models. Estimating Parameters from a Non-linear Regression Model"

Transcription

1 Non-Linear Models Mohammad Ehsanul Karim Institute of Statistical Research and training; University of Dhaka, Dhaka, Bangladesh Estimating Parameters from a Non-linear Regression Model Illustrative Example: Let the data I file is in c:\ draper.txt, which is as follows: t Y.8.. Let that, we have to estimate the parameter θ in the non-linear model from the above observations. t Y e θ + ε Now for starting analysis, we need a initial value. But we have no prior information about what values θ might take. There are a few suggestions for such situations: one of which is to make a grid search using Statistical Software. Let us demonstrate how we can do this. See updates on this at Using Statistical Software: SAS: Making a Grid Search We write the following program in SAS (I used SAS. to get an estimate (note that we told SAS to do the search in Linearization technique by setting METHODNEWTON: DATA DS; INPUT T Y; DATALINES;.8.. RUN; I We are using this simple and small data set just for easy illustration purpose. This data set is taken from Draper, Smith (998 Applied Regression Analysis, Third ed., Page, Exercise.A.

2 PROC NLIN DATADS METHODNEWTON; PARAMETERS G- TO BY.; MODEL Y EXP(-(G*T; OUTPUT OUTNLINOUT PREDICTEDPRED L9ML9MEAN U9MU9MEAN L9L9IND U9U9IND; RUN; PROC PRINT DATANLINOUT; RUN; There will be an enormous search to find this estimate since we assumed our potential parameter (in the program, we wrote θ G space to be to and told SAS to look within each. interval (so that we can get minimum residual SS or minima. However, after some iteration (when a convergent value will be found SAS will bring the following output (edited to shorten the length but the key parts of the output is unedited: The SAS System : Sunday, (Detailed Results on Non-Linear Least Squares Grid Search is omitted from here. Non-Linear Least Squares Iterative Phase Dependent Variable Y Method: Newton Iter G Sum of Squares NOTE: Convergence criterion met. The SAS System : Sunday, April, 99 Non-Linear Least Squares Summary Statistics Dependent Variable Y Source DF Sum of Squares Mean Square Regression Residual.8.98 Uncorrected Total.8 (Corrected Total.89 Parameter Estimate Asymptotic Asymptotic 9 % Std. Error Confidence Interval Lower Upper G Asymptotic Correlation Matrix Corr G ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ G The SAS System : Sunday, April, 99 OBS T Y PRED L9MEAN U9MEAN L9IND U9IND Therefore, from SAS, we get estimate of θ.888. So we may suppose that the actual value may be around zero for now and check it in other ways.

3 Calculation By Hand: Non-linear Regression: We will now go through some iterations just to see how the process works. Readers may think it as a slow motion of what happens to any Statistical Software when we run a non-linear regression. Iteration : We have the function Y f( ξθ, + ε e θt + ε in our hand with approximated initial value θ (as our grid search indicates note that, since we have to estimate only one value, this is just a scaler, but for multi-parameter case, we would have a vertor. t f f( ξθ, e since t is a vector. Y f.8 -. Now, y Y f Y f. -. Y f. -.9 f( ξθ, t Z ( t e θ θ + + ( ( -. ( f Z Y (-. (-+(-. (-+(-.9 (-. b ( Z ( Y f...9 θ ˆ θ ˆ + b Iteration : We have the function Y f( ξθ, + ε e θt + ε in our hand with.9..9 ˆ t e θ.88 since t is a vector.. Y f -. Now, y Y f Y f -.88 Y f f( ξθ, ˆ t Z ( t e θ -.89 θ θ -.. ( (. -

4 Z Y.889 ( f b ( Z ( Y f.89 θ ˆ θ ˆ + b.9 Iteration : We have the function Y f( ξθ, + ε e θt + ε in our hand with.9..8 ˆ t e θ.8 since t is a vector..88 Y f -.9 Now, y Y f Y f -. Y f f( ξθ, ˆ t Z ( t e θ -.98 θ θ ( (9.8 - ( f Z Y.9 b ( Z ( Y f. θ ˆ θ ˆ + b.8 Iteration : We have the function Y f( ξθ, + ε e θt + ε in our hand with ˆ t e θ.8 since t is a vector..98 Y f Now, y Y f Y f -.8 Y f f( ξθ, ˆ t Z ( t e θ θ θ ( ( ( f Z Y.8 b ( Z ( Y f.99 θ ˆ θ ˆ + b.

5 Iteration : We have the function Y f( ξθ, + ε e θt + ε in our hand with..8 ˆ t e θ. since t is a vector..9 Y f -. Now, y Y f Y f.9 Y f f( ξθ, ˆ t Z ( t e θ -.88 θ θ ( (.98 - ( f Z Y.98 b ( Z ( Y f.8 θ ˆ θ ˆ + b.8 Iteration : We have the function Y f( ξθ, + ε e θt + ε in our hand with.8.89 ˆ t e θ.989 since t is a vector..88 Y f Now, y Y f Y f.88 Y f f( ξθ, ˆ t Z ( t e θ -. θ θ ( (.89 - ( f Z Y.8 - b ( Z ( Y f.8 - θ ˆ θ ˆ + b.8 Iteration : We have the function Y f( ξθ, + ε e θt + ε in our hand with.8

6 .89 ˆ t e θ. since t is a vector..888 Y f -.9 Now, y Y f Y f.89 Y f f( ξθ, ˆ t Z ( t e θ -.9 θ θ ( (.89 - ( f Z Y. - b ( Z ( Y f.98 - θ ˆ θ ˆ + b.89 Iteration : We have the function Y f( ξθ, + ε e θt + ε in our hand with ˆ t e θ.8 since t is a vector..88 Y f Now, y Y f Y f.888 Y f f( ξθ, ˆ t Z ( t e θ -.9 θ θ ( ( ( f Z Y. -9 b ( Z ( Y f θ ˆ θ ˆ + b.89 8 Since θ ˆ ˆ 8 θ we terminate the process and declare θ ˆ 8.89 as our desired estimate.

7 8 Using Statistical Software: R: Non-linear Regression Now, using Statistical Software like R (I used R.. we can do the whole procedure just in a blink (and of course, without pain! by writing the following commands in the R console: > options(prompt" R> " R> draper<-read.table("c:\\draper.txt",headert R> draper.data<-data.frame(draper R> attach(draper.data R> nls(y~exp(-(g*t, datadraper.data, start c(g, trace T. :.999 :.9. :.9.9 :.8. :..8 :.8.8 :.8.8 :.89 Nonlinear regression model model: Y ~ exp(-(g * t data: draper.data g.89 residual sum-of-squares:.8 R> coef(nls(y~exp(-(g*t, datadraper.data, start c(g, trace T (--- g.89 Note that, the estimated value of θ.89 approximately in all our (slow motion hand calculation and R results within a blink cases which matches our SAS result too. Thus, we declare.89 as our estimate of the parameter θ based on the given data (See for the details discussions on it and more.

SplineLinear.doc 1 # 9 Last save: Saturday, 9. December 2006

SplineLinear.doc 1 # 9 Last save: Saturday, 9. December 2006 SplineLinear.doc 1 # 9 Problem:... 2 Objective... 2 Reformulate... 2 Wording... 2 Simulating an example... 3 SPSS 13... 4 Substituting the indicator function... 4 SPSS-Syntax... 4 Remark... 4 Result...

More information

Some general observations.

Some general observations. Modeling and analyzing data from computer experiments. Some general observations. 1. For simplicity, I assume that all factors (inputs) x1, x2,, xd are quantitative. 2. Because the code always produces

More information

Selection of the Best Regression Equation by sorting out Variables

Selection of the Best Regression Equation by sorting out Variables Selection of the Best Regression Equation by sorting out Variables Mohammad Ehsanul Karim Institute of Statistical Research and training; University of Dhaka, Dhaka 1000, Bangladesh

More information

Non-Linear Models Topic Outlines

Non-Linear Models Topic Outlines Non-Linear Models Mohammad Ehsanl Karim Institte of Statistical Research and training; University of Dhaka, Dhaka, Bangladesh Topic Otlines Intrinsically Linear Regression Models Intrinsically

More information

Confidence Interval for the mean response

Confidence Interval for the mean response Week 3: Prediction and Confidence Intervals at specified x. Testing lack of fit with replicates at some x's. Inference for the correlation. Introduction to regression with several explanatory variables.

More information

Lecture 11: Simple Linear Regression

Lecture 11: Simple Linear Regression Lecture 11: Simple Linear Regression Readings: Sections 3.1-3.3, 11.1-11.3 Apr 17, 2009 In linear regression, we examine the association between two quantitative variables. Number of beers that you drink

More information

Answer to exercise 'height vs. age' (Juul)

Answer to exercise 'height vs. age' (Juul) Answer to exercise 'height vs. age' (Juul) Question 1 Fitting a straight line to height for males in the age range 5-20 and making the corresponding illustration is performed by writing: proc reg data=juul;

More information

Lecture 1 Linear Regression with One Predictor Variable.p2

Lecture 1 Linear Regression with One Predictor Variable.p2 Lecture Linear Regression with One Predictor Variablep - Basics - Meaning of regression parameters p - β - the slope of the regression line -it indicates the change in mean of the probability distn of

More information

Intro to Linear Regression

Intro to Linear Regression Intro to Linear Regression Introduction to Regression Regression is a statistical procedure for modeling the relationship among variables to predict the value of a dependent variable from one or more predictor

More information

Intro to Linear Regression

Intro to Linear Regression Intro to Linear Regression Introduction to Regression Regression is a statistical procedure for modeling the relationship among variables to predict the value of a dependent variable from one or more predictor

More information

Nonlinear regression. Nonlinear regression analysis. Polynomial regression. How can we model non-linear effects?

Nonlinear regression. Nonlinear regression analysis. Polynomial regression. How can we model non-linear effects? Nonlinear regression Nonlinear regression analysis Peter Dalgaard (orig. Lene Theil Skovgaard) Department of Biostatistics University of Copenhagen Simple kinetic model Compartment models Michaelis Menten

More information

Stat 5100 Handout #26: Variations on OLS Linear Regression (Ch. 11, 13)

Stat 5100 Handout #26: Variations on OLS Linear Regression (Ch. 11, 13) Stat 5100 Handout #26: Variations on OLS Linear Regression (Ch. 11, 13) 1. Weighted Least Squares (textbook 11.1) Recall regression model Y = β 0 + β 1 X 1 +... + β p 1 X p 1 + ε in matrix form: (Ch. 5,

More information

Week 7.1--IES 612-STA STA doc

Week 7.1--IES 612-STA STA doc Week 7.1--IES 612-STA 4-573-STA 4-576.doc IES 612/STA 4-576 Winter 2009 ANOVA MODELS model adequacy aka RESIDUAL ANALYSIS Numeric data samples from t populations obtained Assume Y ij ~ independent N(μ

More information

Specification Error: Omitted and Extraneous Variables

Specification Error: Omitted and Extraneous Variables Specification Error: Omitted and Extraneous Variables Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised February 5, 05 Omitted variable bias. Suppose that the correct

More information

Statistics 5100 Spring 2018 Exam 1

Statistics 5100 Spring 2018 Exam 1 Statistics 5100 Spring 2018 Exam 1 Directions: You have 60 minutes to complete the exam. Be sure to answer every question, and do not spend too much time on any part of any question. Be concise with all

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

STA 6207 Practice Problems Nonlinear Regression

STA 6207 Practice Problems Nonlinear Regression STA 6207 Practice Problems Nonlinear Regression Q.1. A study was conducted to measure the effects of pea density (X 1, in plants/m 2 ) and volunteer barley density (X 2, in plants/m 2 ) on pea seed yield

More information

Regression without measurement error using proc calis

Regression without measurement error using proc calis Regression without measurement error using proc calis /* calculus2.sas */ options linesize=79 pagesize=500 noovp formdlim='_'; title 'Calculus 2: Regression with no measurement error'; title2 ''; data

More information

Model Selection Procedures

Model Selection Procedures Model Selection Procedures Statistics 135 Autumn 2005 Copyright c 2005 by Mark E. Irwin Model Selection Procedures Consider a regression setting with K potential predictor variables and you wish to explore

More information

Ratio of Polynomials Fit Many Variables

Ratio of Polynomials Fit Many Variables Chapter 376 Ratio of Polynomials Fit Many Variables Introduction This program fits a model that is the ratio of two polynomials of up to fifth order. Instead of a single independent variable, these polynomials

More information

Handout 1: Predicting GPA from SAT

Handout 1: Predicting GPA from SAT Handout 1: Predicting GPA from SAT appsrv01.srv.cquest.utoronto.ca> appsrv01.srv.cquest.utoronto.ca> ls Desktop grades.data grades.sas oldstuff sasuser.800 appsrv01.srv.cquest.utoronto.ca> cat grades.data

More information

PLS205 Lab 2 January 15, Laboratory Topic 3

PLS205 Lab 2 January 15, Laboratory Topic 3 PLS205 Lab 2 January 15, 2015 Laboratory Topic 3 General format of ANOVA in SAS Testing the assumption of homogeneity of variances by "/hovtest" by ANOVA of squared residuals Proc Power for ANOVA One-way

More information

Analysis of variance and regression. November 29, 2007

Analysis of variance and regression. November 29, 2007 Analysis of variance and regression November 29, 2007 Nonlinear regression: Simple kinetic model Compartment models Michaelis Menten reaction Dose-response relationships Lene Theil Skovgaard, Dept. of

More information

Business Statistics. Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220. Dr. Mohammad Zainal

Business Statistics. Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220 Dr. Mohammad Zainal Chapter Goals After completing

More information

Lecture 3: Inference in SLR

Lecture 3: Inference in SLR Lecture 3: Inference in SLR STAT 51 Spring 011 Background Reading KNNL:.1.6 3-1 Topic Overview This topic will cover: Review of hypothesis testing Inference about 1 Inference about 0 Confidence Intervals

More information

Nonlinear Regression. Summary. Sample StatFolio: nonlinear reg.sgp

Nonlinear Regression. Summary. Sample StatFolio: nonlinear reg.sgp Nonlinear Regression Summary... 1 Analysis Summary... 4 Plot of Fitted Model... 6 Response Surface Plots... 7 Analysis Options... 10 Reports... 11 Correlation Matrix... 12 Observed versus Predicted...

More information

A First Course on Kinetics and Reaction Engineering Supplemental Unit S4. Numerically Fitting Models to Data

A First Course on Kinetics and Reaction Engineering Supplemental Unit S4. Numerically Fitting Models to Data Supplemental Unit S4. Numerically Fitting Models to Data Defining the Problem Many software routines for fitting a model to experimental data can only be used when the model is of a pre-defined mathematical

More information

General Linear Model (Chapter 4)

General Linear Model (Chapter 4) General Linear Model (Chapter 4) Outcome variable is considered continuous Simple linear regression Scatterplots OLS is BLUE under basic assumptions MSE estimates residual variance testing regression coefficients

More information

* IVEware Analysis Examples Replication for ASDA 2nd Edition * Berglund April 2017 * Chapter 13 ;

* IVEware Analysis Examples Replication for ASDA 2nd Edition * Berglund April 2017 * Chapter 13 ; IVEware Analysis Example Replication C13 * IVEware Analysis Examples Replication for ASDA 2nd Edition * Berglund April 2017 * Chapter 13 ; * 13.3.3 Alternative Approaches to Fitting GLMMs to Survey Data:

More information

Case of single exogenous (iv) variable (with single or multiple mediators) iv à med à dv. = β 0. iv i. med i + α 1

Case of single exogenous (iv) variable (with single or multiple mediators) iv à med à dv. = β 0. iv i. med i + α 1 Mediation Analysis: OLS vs. SUR vs. ISUR vs. 3SLS vs. SEM Note by Hubert Gatignon July 7, 2013, updated November 15, 2013, April 11, 2014, May 21, 2016 and August 10, 2016 In Chap. 11 of Statistical Analysis

More information

Introduction to SAS proc mixed

Introduction to SAS proc mixed Faculty of Health Sciences Introduction to SAS proc mixed Analysis of repeated measurements, 2017 Julie Forman Department of Biostatistics, University of Copenhagen 2 / 28 Preparing data for analysis The

More information

Chapter 8 (More on Assumptions for the Simple Linear Regression)

Chapter 8 (More on Assumptions for the Simple Linear Regression) EXST3201 Chapter 8b Geaghan Fall 2005: Page 1 Chapter 8 (More on Assumptions for the Simple Linear Regression) Your textbook considers the following assumptions: Linearity This is not something I usually

More information

Model Estimation Example

Model Estimation Example Ronald H. Heck 1 EDEP 606: Multivariate Methods (S2013) April 7, 2013 Model Estimation Example As we have moved through the course this semester, we have encountered the concept of model estimation. Discussions

More information

Measuring relationships among multiple responses

Measuring relationships among multiple responses Measuring relationships among multiple responses Linear association (correlation, relatedness, shared information) between pair-wise responses is an important property used in almost all multivariate analyses.

More information

SAS Example 3: Deliberately create numerical problems

SAS Example 3: Deliberately create numerical problems SAS Example 3: Deliberately create numerical problems Four experiments 1. Try to fit this model, failing the parameter count rule. 2. Set φ 12 =0 to pass the parameter count rule, but still not identifiable.

More information

BE640 Intermediate Biostatistics 2. Regression and Correlation. Simple Linear Regression Software: SAS. Emergency Calls to the New York Auto Club

BE640 Intermediate Biostatistics 2. Regression and Correlation. Simple Linear Regression Software: SAS. Emergency Calls to the New York Auto Club BE640 Intermediate Biostatistics 2. Regression and Correlation Simple Linear Regression Software: SAS Emergency Calls to the New York Auto Club Source: Chatterjee, S; Handcock MS and Simonoff JS A Casebook

More information

Nonparametric Principal Components Regression

Nonparametric Principal Components Regression Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS031) p.4574 Nonparametric Principal Components Regression Barrios, Erniel University of the Philippines Diliman,

More information

Special Topics. Handout #4. Diagnostics. Residual Analysis. Nonlinearity

Special Topics. Handout #4. Diagnostics. Residual Analysis. Nonlinearity Special Topics Diagnostics Residual Analysis As with linear regression, an analysis of residuals is necessary to assess the model adequacy. The same techniques may be employed such as plotting residuals

More information

Introduction to SAS proc mixed

Introduction to SAS proc mixed Faculty of Health Sciences Introduction to SAS proc mixed Analysis of repeated measurements, 2017 Julie Forman Department of Biostatistics, University of Copenhagen Outline Data in wide and long format

More information

Overview Scatter Plot Example

Overview Scatter Plot Example Overview Topic 22 - Linear Regression and Correlation STAT 5 Professor Bruce Craig Consider one population but two variables For each sampling unit observe X and Y Assume linear relationship between variables

More information

AN EXACT CONFIDENCE INTERVAL FOR THE RATIO OF MEANS USING NONLINEAR REGRESSION ThponRoy Boehringer Ingelheim PharmaceuticaIs, Inc.

AN EXACT CONFIDENCE INTERVAL FOR THE RATIO OF MEANS USING NONLINEAR REGRESSION ThponRoy Boehringer Ingelheim PharmaceuticaIs, Inc. AN EXACT CONFIDENCE INTERVAL FOR THE RATIO OF MEANS USING NONLINEAR REGRESSION ThponRoy Boehringer Ingelheim PharmaceuticaIs, Inc. ABSTRACT In several statistical applications, the ratio of means is of

More information

Topic 14: Inference in Multiple Regression

Topic 14: Inference in Multiple Regression Topic 14: Inference in Multiple Regression Outline Review multiple linear regression Inference of regression coefficients Application to book example Inference of mean Application to book example Inference

More information

FIN822 project 2 Project 2 contains part I and part II. (Due on November 10, 2008)

FIN822 project 2 Project 2 contains part I and part II. (Due on November 10, 2008) FIN822 project 2 Project 2 contains part I and part II. (Due on November 10, 2008) Part I Logit Model in Bankruptcy Prediction You do not believe in Altman and you decide to estimate the bankruptcy prediction

More information

Chapter 1 Linear Regression with One Predictor

Chapter 1 Linear Regression with One Predictor STAT 525 FALL 2018 Chapter 1 Linear Regression with One Predictor Professor Min Zhang Goals of Regression Analysis Serve three purposes Describes an association between X and Y In some applications, the

More information

Introduction to Linear regression analysis. Part 2. Model comparisons

Introduction to Linear regression analysis. Part 2. Model comparisons Introduction to Linear regression analysis Part Model comparisons 1 ANOVA for regression Total variation in Y SS Total = Variation explained by regression with X SS Regression + Residual variation SS Residual

More information

Linear models Analysis of Covariance

Linear models Analysis of Covariance Esben Budtz-Jørgensen April 22, 2008 Linear models Analysis of Covariance Confounding Interactions Parameterizations Analysis of Covariance group comparisons can become biased if an important predictor

More information

Topic 28: Unequal Replication in Two-Way ANOVA

Topic 28: Unequal Replication in Two-Way ANOVA Topic 28: Unequal Replication in Two-Way ANOVA Outline Two-way ANOVA with unequal numbers of observations in the cells Data and model Regression approach Parameter estimates Previous analyses with constant

More information

Inference for the Regression Coefficient

Inference for the Regression Coefficient Inference for the Regression Coefficient Recall, b 0 and b 1 are the estimates of the slope β 1 and intercept β 0 of population regression line. We can shows that b 0 and b 1 are the unbiased estimates

More information

Outline. Topic 22 - Interaction in Two Factor ANOVA. Interaction Not Significant. General Plan

Outline. Topic 22 - Interaction in Two Factor ANOVA. Interaction Not Significant. General Plan Topic 22 - Interaction in Two Factor ANOVA - Fall 2013 Outline Strategies for Analysis when interaction not present when interaction present when n ij = 1 when factor(s) quantitative Topic 22 2 General

More information

3 Variables: Cyberloafing Conscientiousness Age

3 Variables: Cyberloafing Conscientiousness Age title 'Cyberloafing, Mike Sage'; run; PROC CORR data=sage; var Cyberloafing Conscientiousness Age; run; quit; The CORR Procedure 3 Variables: Cyberloafing Conscientiousness Age Simple Statistics Variable

More information

Orthogonal and Non-orthogonal Polynomial Constrasts

Orthogonal and Non-orthogonal Polynomial Constrasts Orthogonal and Non-orthogonal Polynomial Constrasts We had carefully reviewed orthogonal polynomial contrasts in class and noted that Brian Yandell makes a compelling case for nonorthogonal polynomial

More information

ssh tap sas913, sas

ssh tap sas913, sas B. Kedem, STAT 430 SAS Examples SAS8 ===================== ssh xyz@glue.umd.edu, tap sas913, sas https://www.statlab.umd.edu/sasdoc/sashtml/onldoc.htm Multiple Regression ====================== 0. Show

More information

A new algorithm for deriving optimal designs

A new algorithm for deriving optimal designs A new algorithm for deriving optimal designs Stefanie Biedermann, University of Southampton, UK Joint work with Min Yang, University of Illinois at Chicago 18 October 2012, DAE, University of Georgia,

More information

An Iterative Descent Method

An Iterative Descent Method Conjugate Gradient: An Iterative Descent Method The Plan Review Iterative Descent Conjugate Gradient Review : Iterative Descent Iterative Descent is an unconstrained optimization process x (k+1) = x (k)

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 15: Examples of hypothesis tests (v5) Ramesh Johari ramesh.johari@stanford.edu 1 / 32 The recipe 2 / 32 The hypothesis testing recipe In this lecture we repeatedly apply the

More information

Multicollinearity Exercise

Multicollinearity Exercise Multicollinearity Exercise Use the attached SAS output to answer the questions. [OPTIONAL: Copy the SAS program below into the SAS editor window and run it.] You do not need to submit any output, so there

More information

Lecture notes on Regression & SAS example demonstration

Lecture notes on Regression & SAS example demonstration Regression & Correlation (p. 215) When two variables are measured on a single experimental unit, the resulting data are called bivariate data. You can describe each variable individually, and you can also

More information

8 Nonlinear Regression

8 Nonlinear Regression 8 Nonlinear Regression Nonlinear regression relates to models, where the mean response is not linear in the parameters of the model. A MLRM Y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + ε, ε N (0, σ 2 ) has

More information

17. Example SAS Commands for Analysis of a Classic Split-Plot Experiment 17. 1

17. Example SAS Commands for Analysis of a Classic Split-Plot Experiment 17. 1 17 Example SAS Commands for Analysis of a Classic SplitPlot Experiment 17 1 DELIMITED options nocenter nonumber nodate ls80; Format SCREEN OUTPUT proc import datafile"c:\data\simulatedsplitplotdatatxt"

More information

ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false.

ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false. ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false. 1. A study was carried out to examine the relationship between the number

More information

13. Nonlinear least squares

13. Nonlinear least squares L. Vandenberghe ECE133A (Fall 2018) 13. Nonlinear least squares definition and examples derivatives and optimality condition Gauss Newton method Levenberg Marquardt method 13.1 Nonlinear least squares

More information

STA 302 H1F / 1001 HF Fall 2007 Test 1 October 24, 2007

STA 302 H1F / 1001 HF Fall 2007 Test 1 October 24, 2007 STA 302 H1F / 1001 HF Fall 2007 Test 1 October 24, 2007 LAST NAME: SOLUTIONS FIRST NAME: STUDENT NUMBER: ENROLLED IN: (circle one) STA 302 STA 1001 INSTRUCTIONS: Time: 90 minutes Aids allowed: calculator.

More information

using the beginning of all regression models

using the beginning of all regression models Estimating using the beginning of all regression models 3 examples Note about shorthand Cavendish's 29 measurements of the earth's density Heights (inches) of 14 11 year-old males from Alberta study Half-life

More information

Lab # 11: Correlation and Model Fitting

Lab # 11: Correlation and Model Fitting Lab # 11: Correlation and Model Fitting Objectives: 1. Correlations between variables 2. Data Manipulation, creation of squares 3. Model fitting with regression 4. Comparison of models Correlations between

More information

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #6

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #6 STA 8 Applied Linear Models: Regression Analysis Spring 011 Solution for Homework #6 6. a) = 11 1 31 41 51 1 3 4 5 11 1 31 41 51 β = β1 β β 3 b) = 1 1 1 1 1 11 1 31 41 51 1 3 4 5 β = β 0 β1 β 6.15 a) Stem-and-leaf

More information

Stat 302 Statistical Software and Its Applications SAS: Simple Linear Regression

Stat 302 Statistical Software and Its Applications SAS: Simple Linear Regression 1 Stat 302 Statistical Software and Its Applications SAS: Simple Linear Regression Fritz Scholz Department of Statistics, University of Washington Winter Quarter 2015 February 16, 2015 2 The Spirit of

More information

SAS Procedures Inference about the Line ffl model statement in proc reg has many options ffl To construct confidence intervals use alpha=, clm, cli, c

SAS Procedures Inference about the Line ffl model statement in proc reg has many options ffl To construct confidence intervals use alpha=, clm, cli, c Inference About the Slope ffl As with all estimates, ^fi1 subject to sampling var ffl Because Y jx _ Normal, the estimate ^fi1 _ Normal A linear combination of indep Normals is Normal Simple Linear Regression

More information

sociology 362 regression

sociology 362 regression sociology 36 regression Regression is a means of studying how the conditional distribution of a response variable (say, Y) varies for different values of one or more independent explanatory variables (say,

More information

Ratio of Polynomials Fit One Variable

Ratio of Polynomials Fit One Variable Chapter 375 Ratio of Polynomials Fit One Variable Introduction This program fits a model that is the ratio of two polynomials of up to fifth order. Examples of this type of model are: and Y = A0 + A1 X

More information

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X.

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X. Estimating σ 2 We can do simple prediction of Y and estimation of the mean of Y at any value of X. To perform inferences about our regression line, we must estimate σ 2, the variance of the error term.

More information

This is a Randomized Block Design (RBD) with a single factor treatment arrangement (2 levels) which are fixed.

This is a Randomized Block Design (RBD) with a single factor treatment arrangement (2 levels) which are fixed. EXST3201 Chapter 13c Geaghan Fall 2005: Page 1 Linear Models Y ij = µ + βi + τ j + βτij + εijk This is a Randomized Block Design (RBD) with a single factor treatment arrangement (2 levels) which are fixed.

More information

Numerical Methods Lecture 3

Numerical Methods Lecture 3 Numerical Methods Lecture 3 Nonlinear Equations by Pavel Ludvík Introduction Definition (Root or zero of a function) A root (or a zero) of a function f is a solution of an equation f (x) = 0. We learn

More information

Lecture 10 Multiple Linear Regression

Lecture 10 Multiple Linear Regression Lecture 10 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 10-1 Topic Overview Multiple Linear Regression Model 10-2 Data for Multiple Regression Y i is the response variable

More information

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression. 10/3/011 Functional Connectivity Correlation and Regression Variance VAR = Standard deviation Standard deviation SD = Unbiased SD = 1 10/3/011 Standard error Confidence interval SE = CI = = t value for

More information

28. SIMPLE LINEAR REGRESSION III

28. SIMPLE LINEAR REGRESSION III 28. SIMPLE LINEAR REGRESSION III Fitted Values and Residuals To each observed x i, there corresponds a y-value on the fitted line, y = βˆ + βˆ x. The are called fitted values. ŷ i They are the values of

More information

EXST Regression Techniques Page 1. We can also test the hypothesis H :" œ 0 versus H :"

EXST Regression Techniques Page 1. We can also test the hypothesis H : œ 0 versus H : EXST704 - Regression Techniques Page 1 Using F tests instead of t-tests We can also test the hypothesis H :" œ 0 versus H :" Á 0 with an F test.! " " " F œ MSRegression MSError This test is mathematically

More information

Lecture#12. Instrumental variables regression Causal parameters III

Lecture#12. Instrumental variables regression Causal parameters III Lecture#12 Instrumental variables regression Causal parameters III 1 Demand experiment, market data analysis & simultaneous causality 2 Simultaneous causality Your task is to estimate the demand function

More information

Introduction to Crossover Trials

Introduction to Crossover Trials Introduction to Crossover Trials Stat 6500 Tutorial Project Isaac Blackhurst A crossover trial is a type of randomized control trial. It has advantages over other designed experiments because, under certain

More information

Chapter 13 Student Lecture Notes Department of Quantitative Methods & Information Systems. Business Statistics

Chapter 13 Student Lecture Notes Department of Quantitative Methods & Information Systems. Business Statistics Chapter 13 Student Lecture Notes 13-1 Department of Quantitative Methods & Information Sstems Business Statistics Chapter 14 Introduction to Linear Regression and Correlation Analsis QMIS 0 Dr. Mohammad

More information

SOCY5601 Handout 8, Fall DETECTING CURVILINEARITY (continued) CONDITIONAL EFFECTS PLOTS

SOCY5601 Handout 8, Fall DETECTING CURVILINEARITY (continued) CONDITIONAL EFFECTS PLOTS SOCY5601 DETECTING CURVILINEARITY (continued) CONDITIONAL EFFECTS PLOTS More on use of X 2 terms to detect curvilinearity: As we have said, a quick way to detect curvilinearity in the relationship between

More information

BSCB 6520: Statistical Computing Homework 4 Due: Friday, December 5

BSCB 6520: Statistical Computing Homework 4 Due: Friday, December 5 BSCB 6520: Statistical Computing Homework 4 Due: Friday, December 5 All computer code should be produced in R or Matlab and e-mailed to gjh27@cornell.edu (one file for the entire homework). Responses to

More information

UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics January, 2018

UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics January, 2018 UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics January, 2018 Work all problems. 60 points needed to pass at the Masters level, 75 to pass at the PhD

More information

Mathematical Notation Math Introduction to Applied Statistics

Mathematical Notation Math Introduction to Applied Statistics Mathematical Notation Math 113 - Introduction to Applied Statistics Name : Use Word or WordPerfect to recreate the following documents. Each article is worth 10 points and should be emailed to the instructor

More information

Steps to take to do the descriptive part of regression analysis:

Steps to take to do the descriptive part of regression analysis: STA 2023 Simple Linear Regression: Least Squares Model Steps to take to do the descriptive part of regression analysis: A. Plot the data on a scatter plot. Describe patterns: 1. Is there a strong, moderate,

More information

Failure Time of System due to the Hot Electron Effect

Failure Time of System due to the Hot Electron Effect of System due to the Hot Electron Effect 1 * exresist; 2 option ls=120 ps=75 nocenter nodate; 3 title of System due to the Hot Electron Effect ; 4 * TIME = failure time (hours) of a system due to drift

More information

A. Motivation To motivate the analysis of variance framework, we consider the following example.

A. Motivation To motivate the analysis of variance framework, we consider the following example. 9.07 ntroduction to Statistics for Brain and Cognitive Sciences Emery N. Brown Lecture 14: Analysis of Variance. Objectives Understand analysis of variance as a special case of the linear model. Understand

More information

SIMPLE LINEAR REGRESSION

SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION In linear regreion, we conider the frequency ditribution of one variable (Y) at each of everal level of a econd variable (). Y i known a the dependent variable. The variable for

More information

9. Linear Regression and Correlation

9. Linear Regression and Correlation 9. Linear Regression and Correlation Data: y a quantitative response variable x a quantitative explanatory variable (Chap. 8: Recall that both variables were categorical) For example, y = annual income,

More information

CO2 Handout. t(cbind(co2$type,co2$treatment,model.matrix(~type*treatment,data=co2)))

CO2 Handout. t(cbind(co2$type,co2$treatment,model.matrix(~type*treatment,data=co2))) CO2 Handout CO2.R: library(nlme) CO2[1:5,] plot(co2,outer=~treatment*type,layout=c(4,1)) m1co2.lis

More information

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model Topic 17 - Single Factor Analysis of Variance - Fall 2013 One way ANOVA Cell means model Factor effects model Outline Topic 17 2 One-way ANOVA Response variable Y is continuous Explanatory variable is

More information

ECON Introductory Econometrics. Lecture 6: OLS with Multiple Regressors

ECON Introductory Econometrics. Lecture 6: OLS with Multiple Regressors ECON4150 - Introductory Econometrics Lecture 6: OLS with Multiple Regressors Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 6 Lecture outline 2 Violation of first Least Squares assumption

More information

Why ZMPE When You Can MUPE?

Why ZMPE When You Can MUPE? T E C O L O T E R ESE ARC H, I NC. Bridging Engineering and Economics Since 1973 Why ZMPE When You Can MUPE? 6 th Joint ISPA/SCEA Conference Dr. Shu-Ping Hu and Alfred Smith 12-15 June 2007 Los Angeles

More information

PLS205 Lab 6 February 13, Laboratory Topic 9

PLS205 Lab 6 February 13, Laboratory Topic 9 PLS205 Lab 6 February 13, 2014 Laboratory Topic 9 A word about factorials Specifying interactions among factorial effects in SAS The relationship between factors and treatment Interpreting results of an

More information

Empirical Application of Simple Regression (Chapter 2)

Empirical Application of Simple Regression (Chapter 2) Empirical Application of Simple Regression (Chapter 2) 1. The data file is House Data, which can be downloaded from my webpage. 2. Use stata menu File Import Excel Spreadsheet to read the data. Don t forget

More information

Rockefeller College University at Albany

Rockefeller College University at Albany Rockefeller College University at Albany PAD 705 Handout: Polynomial Distributed Lags In the Handouts section of the web site you will find the data sets (GrangerPoly.dta) I constructed for the example

More information

UNIVERSITY OF TORONTO MISSISSAUGA April 2009 Examinations STA431H5S Professor Jerry Brunner Duration: 3 hours

UNIVERSITY OF TORONTO MISSISSAUGA April 2009 Examinations STA431H5S Professor Jerry Brunner Duration: 3 hours Name (Print): Student Number: Signature: Last/Surname First /Given Name UNIVERSITY OF TORONTO MISSISSAUGA April 2009 Examinations STA431H5S Professor Jerry Brunner Duration: 3 hours Aids allowed: Calculator

More information

df=degrees of freedom = n - 1

df=degrees of freedom = n - 1 One sample t-test test of the mean Assumptions: Independent, random samples Approximately normal distribution (from intro class: σ is unknown, need to calculate and use s (sample standard deviation)) Hypotheses:

More information

Testing Indirect Effects for Lower Level Mediation Models in SAS PROC MIXED

Testing Indirect Effects for Lower Level Mediation Models in SAS PROC MIXED Testing Indirect Effects for Lower Level Mediation Models in SAS PROC MIXED Here we provide syntax for fitting the lower-level mediation model using the MIXED procedure in SAS as well as a sas macro, IndTest.sas

More information

How To: Deal with Heteroscedasticity Using STATGRAPHICS Centurion

How To: Deal with Heteroscedasticity Using STATGRAPHICS Centurion How To: Deal with Heteroscedasticity Using STATGRAPHICS Centurion by Dr. Neil W. Polhemus July 28, 2005 Introduction When fitting statistical models, it is usually assumed that the error variance is the

More information

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu Logistic Regression Review 10-601 Fall 2012 Recitation September 25, 2012 TA: Selen Uguroglu!1 Outline Decision Theory Logistic regression Goal Loss function Inference Gradient Descent!2 Training Data

More information