Introduction to SAS proc mixed

Size: px
Start display at page:

Download "Introduction to SAS proc mixed"

Transcription

1 Faculty of Health Sciences Introduction to SAS proc mixed Analysis of repeated measurements, 2017 Julie Forman Department of Biostatistics, University of Copenhagen 2 / 28 Preparing data for analysis The long format Most often raw data is stored in the wide format (e.g. in Excell). one row per subject several columns with the outcomes for different occations Each row contains only one observation of the outcome. A time-variable identifies the time of measurement. An id-variable identifies measurements from same subject. Example: id sex age group aix0 aix1 aix To fit a linear mixed model with any statistical software data must be in the so-called long format... 3 / 28 Obs id sex age group week aix / 28

2 From wide to long format Data is transformed from the wide to the long format with: DATA ckd (DROP = aix-aix2); SET ckd_wide; week = 0; aix = aix0; OUTPUT; week = 12; aix = aix1; OUTPUT; week = 24; aix = aix2; OUTPUT; Note: We keep the baseline variable aix0 for the ANCOVA. 5 / 28 6 / 28 Spaghettiplots Summary statistics and pairwise scatterplots The spaghettiplots from the lecture were made with: PROC SGPANEL DATA=ckd; PANELBY group; SERIES x = week y = aix / GROUP=id; Note: Applies to data in the long format. PROC SORT DATA=ckd_wide; BY group; ODS GRAPHICS ON; PROC CORR DATA=ckd_wide PLOT=MATRIX(HISTOGRAM) NOPROB; BY group; VAR aix0-aix2; Note: Applies to data in the wide format. 7 / 28 8 / 28

3 Plotting averages over time The plot of group-time-averages were made with: PROC MEANS DATA=ckd NWAY; CLASS group week; VAR aix; OUTPUT OUT=ckdmeans MEAN=average; PROC SGPLOT DATA=ckdmeans; SERIES x = week y = average / GROUP = group markers; Note: Applies to data in the long format. 9 / / 28 Syntax: Analysis of response profiles The option DDFM=KENWARDROGERS (aka KR) PROC MIXED DATA=ckd PLOTS=all; CLASS id week (ref= 0 ) group (ref= 0 ); MODEL aix = week group group*week / SOLUTION CL DDFM=KR OUTPM=ckdfit; Syntax is similar to PROC GLM with a MODEL specifying the (linear) relation between outcome and covariates. Categorical variable must be declared with CLASS. The model for the covariance (UN=ustructured) is specified in a separate REPEATED-statement. Fitted values and residuals are saved in a dataset ckdfit. Use the PLOTS-option to get some residual plots. (or DDFM=SATTERTHWAITE). A technical option intended to improve the statistical performance of the t-tests and F-tests. It has no effect on balanced data. In unbalanced situations (i.e for almost all observational studies and in case of missing observations) degrees of freedom are computed by a more complicated formulae. The computations may require a little more time, but in most cases this will not be noticable. When in doubt, use it! 11 / / 28

4 Estimated response profiles Alternative model specifications Use the output data (ckdfit) to plot the estimated profiles: PROC SORT DATA=ckdfit; BY group week id; PROC SGPLOT DATA=ckdfit; SERIES x = week y = pred / GROUP = group MARKERS; The same model can be phrased differently to highlight differences between groups at specific time points or changes over time. To compare change over time between groups: Include both main effects and the interaction term. MODEL aix = time group time*group / SOLUTION CL; To get mean differences between groups at each time point: Omit the main effect of group and the intercept. MODEL aix = time time*group / NOINT SOLUTION CL; To get the means for all combinations of group and time. Include only the interaction term and omit the intercept. MODEL aix = time*group / NOINT SOLUTION CL; Note: Usually combined with LSMEANS (on the next slide) 13 / / 28 LSMEANS Estimates the means for all time and group combination, and all possible differences between them (DIFF-option). PROC MIXED DATA=ckd; CLASS id week group; MODEL aix = group*week / NOINT DDFM=KR; LSMEANS group*week / DIFF SLICE=week CL; NOINT means that the model does not include an intercept (so there is no need to specifiy reference groups) Use SLICE=week to test for overall differences between multiple groups at each time separately (like one-way ANOVA). 15 / / 28

5 First we get a summary of what data and methods proc mixed has used. (some we have specified and other are SAS defaults) Dimensions The Mixed Procedure Data Set Dependent Variable Covariance Structure Subject Effect Estimation Method Residual Variance Method Fixed Effects SE Method Degrees of Freedom Method Model Information WORK.CKD aix Unstructured id REML None Kenward-Roger Kenward-Roger Class Level Information Class Levels Values id week group / 28 Covariance Parameters 6 Columns in X 12 Columns in Z 0 Subjects 51 Max Obs Per Subject 3 This is a summary of the mathematical model specification which is explained in lecture 4. Number of Observations Number of Observations Read 153 Number of Observations Used 144 Number of Observations Not Used 9 ATT: Missing data due to drop out and failed measurements. 18 / 28 In contrary to the ordinary linear models, no explicit formulae for the maximum likelihood estimates exist for linear mixed models in general. Therefore SAS uses numerical optimisation to compute esitmates of the mean and covariance parameters. Iteration History Iteration Evaluations -2 Res Log Like Criterion Convergence criteria met. Always check that the numerical optimisation has converged! 19 / 28 Options R and RCORR makes SAS print the estimated covariance and correlation matrices. 20 / 28 Estimated R Matrix for id 1 Row Col1 Col2 Col Estimated R Correlation Matrix for id 1 Row Col1 Col2 Col

6 Fit statistics can be used for comparison of different models. Fit Statistics -2 Res Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better) Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq <.0001 The test of "all means are the same" is hardly ever of interest. Make sure to use the PROC MIXED METHOD=ML-option if you want to use this to test nested models for the mean-structure (lecture 2). 21 / 28 At last what is most interesting: estimates and tests. Solution for Fixed Effects Effect week treat Estimate StdError DF t Value Pr > t Intercept <.0001 week week week group group week*group week*group week*group week*group week*group week*group (confidence intervals omitted due to lack of space) Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > F week group week*group / 28 Standardized (aka Studentized) residuals: Normal distribution? (Other 23 / 28 residuals and boxplots of residuals vs time and group omitted) 24 / 28

7 Which model should I choose? Results from the clmm and the ANCOVA model are usually very similar. We recommed the clmm. Programming and interpretation is easier. It is slightly better at handling missing data. Exception: If randomization was performed conditionally on baseline measurements, then the ANCOVA is a valid model while the clmm is not. The constrained linear mixed model (clmm) To fit the constrained model: 1. Define a new treatment variable by joining groups at baseline. 2. Leave out the main term treat in the model statement. DATA ckd; SET ckd; treat = group; IF week = 0 THEN treat = 0; PROC MIXED DATA=ckd; CLASS id week (ref= 0 ) treat (ref= 0 ); MODEL aix = week treat*week / SOLUTION CL DDFM=KR; 25 / / 28 ANCOVA ANCOVA To prepare for the analysis. Baseline must be included as a covariate in the data. Only follow-up times are used when running the analysis. For ease of interpretation and numerical stability we center the baseline variable around its mean. For ease of quantification we use change-since-baseline as outcome. DATA followup; SET ckd; IF week > 0; baseline = aix0 - xxxx; aixchange=aix-aix0; To run the analysis with proc mixed: Include the baseline*time interaction in the model. Since the analysis is based on follow-up data, the most natural reference point for time is now the last follow-up. The treatment effect (af last follow-up) is estimated by the group-effect. PROC MIXED DATA=followup; CLASS id week (ref= 24 ) group (ref= 0 ); MODEL aixchange = group week group*week baseline*week / SOLUTION CL DDFM=KR; 27 / / 28

Introduction to SAS proc mixed

Introduction to SAS proc mixed Faculty of Health Sciences Introduction to SAS proc mixed Analysis of repeated measurements, 2017 Julie Forman Department of Biostatistics, University of Copenhagen Outline Data in wide and long format

More information

Answer to exercise: Blood pressure lowering drugs

Answer to exercise: Blood pressure lowering drugs Answer to exercise: Blood pressure lowering drugs The data set bloodpressure.txt contains data from a cross-over trial, involving three different formulations of a drug for lowering of blood pressure:

More information

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study 1.4 0.0-6 7 8 9 10 11 12 13 14 15 16 17 18 19 age Model 1: A simple broken stick model with knot at 14 fit with

More information

SAS Syntax and Output for Data Manipulation:

SAS Syntax and Output for Data Manipulation: CLP 944 Example 5 page 1 Practice with Fixed and Random Effects of Time in Modeling Within-Person Change The models for this example come from Hoffman (2015) chapter 5. We will be examining the extent

More information

Covariance Structure Approach to Within-Cases

Covariance Structure Approach to Within-Cases Covariance Structure Approach to Within-Cases Remember how the data file grapefruit1.data looks: Store sales1 sales2 sales3 1 62.1 61.3 60.8 2 58.2 57.9 55.1 3 51.6 49.2 46.2 4 53.7 51.5 48.3 5 61.4 58.7

More information

Models for longitudinal data

Models for longitudinal data Faculty of Health Sciences Contents Models for longitudinal data Analysis of repeated measurements, NFA 016 Julie Lyng Forman & Lene Theil Skovgaard Department of Biostatistics, University of Copenhagen

More information

ANOVA Longitudinal Models for the Practice Effects Data: via GLM

ANOVA Longitudinal Models for the Practice Effects Data: via GLM Psyc 943 Lecture 25 page 1 ANOVA Longitudinal Models for the Practice Effects Data: via GLM Model 1. Saturated Means Model for Session, E-only Variances Model (BP) Variances Model: NO correlation, EQUAL

More information

Odor attraction CRD Page 1

Odor attraction CRD Page 1 Odor attraction CRD Page 1 dm'log;clear;output;clear'; options ps=512 ls=99 nocenter nodate nonumber nolabel FORMCHAR=" ---- + ---+= -/\*"; ODS LISTING; *** Table 23.2 ********************************************;

More information

Analysis of Longitudinal Data: Comparison Between PROC GLM and PROC MIXED. Maribeth Johnson Medical College of Georgia Augusta, GA

Analysis of Longitudinal Data: Comparison Between PROC GLM and PROC MIXED. Maribeth Johnson Medical College of Georgia Augusta, GA Analysis of Longitudinal Data: Comparison Between PROC GLM and PROC MIXED Maribeth Johnson Medical College of Georgia Augusta, GA Overview Introduction to longitudinal data Describe the data for examples

More information

dm'log;clear;output;clear'; options ps=512 ls=99 nocenter nodate nonumber nolabel FORMCHAR=" = -/\<>*"; ODS LISTING;

dm'log;clear;output;clear'; options ps=512 ls=99 nocenter nodate nonumber nolabel FORMCHAR= = -/\<>*; ODS LISTING; dm'log;clear;output;clear'; options ps=512 ls=99 nocenter nodate nonumber nolabel FORMCHAR=" ---- + ---+= -/\*"; ODS LISTING; *** Table 23.2 ********************************************; *** Moore, David

More information

over Time line for the means). Specifically, & covariances) just a fixed variance instead. PROC MIXED: to 1000 is default) list models with TYPE=VC */

over Time line for the means). Specifically, & covariances) just a fixed variance instead. PROC MIXED: to 1000 is default) list models with TYPE=VC */ CLP 944 Example 4 page 1 Within-Personn Fluctuation in Symptom Severity over Time These data come from a study of weekly fluctuation in psoriasis severity. There was no intervention and no real reason

More information

MIXED MODELS FOR REPEATED (LONGITUDINAL) DATA PART 2 DAVID C. HOWELL 4/1/2010

MIXED MODELS FOR REPEATED (LONGITUDINAL) DATA PART 2 DAVID C. HOWELL 4/1/2010 MIXED MODELS FOR REPEATED (LONGITUDINAL) DATA PART 2 DAVID C. HOWELL 4/1/2010 Part 1 of this document can be found at http://www.uvm.edu/~dhowell/methods/supplements/mixed Models for Repeated Measures1.pdf

More information

SAS Code for Data Manipulation: SPSS Code for Data Manipulation: STATA Code for Data Manipulation: Psyc 945 Example 1 page 1

SAS Code for Data Manipulation: SPSS Code for Data Manipulation: STATA Code for Data Manipulation: Psyc 945 Example 1 page 1 Psyc 945 Example page Example : Unconditional Models for Change in Number Match 3 Response Time (complete data, syntax, and output available for SAS, SPSS, and STATA electronically) These data come from

More information

Correlated data. Repeated measurements over time. Typical set-up for repeated measurements. Traditional presentation of data

Correlated data. Repeated measurements over time. Typical set-up for repeated measurements. Traditional presentation of data Faculty of Health Sciences Repeated measurements over time Correlated data NFA, May 22, 2014 Longitudinal measurements Julie Lyng Forman & Lene Theil Skovgaard Department of Biostatistics University of

More information

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS Duration - 3 hours Aids Allowed: Calculator LAST NAME: FIRST NAME: STUDENT NUMBER: There are 27 pages

More information

Topic 20: Single Factor Analysis of Variance

Topic 20: Single Factor Analysis of Variance Topic 20: Single Factor Analysis of Variance Outline Single factor Analysis of Variance One set of treatments Cell means model Factor effects model Link to linear regression using indicator explanatory

More information

Variance component models part I

Variance component models part I Faculty of Health Sciences Variance component models part I Analysis of repeated measurements, 30th November 2012 Julie Lyng Forman & Lene Theil Skovgaard Department of Biostatistics, University of Copenhagen

More information

Testing Indirect Effects for Lower Level Mediation Models in SAS PROC MIXED

Testing Indirect Effects for Lower Level Mediation Models in SAS PROC MIXED Testing Indirect Effects for Lower Level Mediation Models in SAS PROC MIXED Here we provide syntax for fitting the lower-level mediation model using the MIXED procedure in SAS as well as a sas macro, IndTest.sas

More information

Time-Invariant Predictors in Longitudinal Models

Time-Invariant Predictors in Longitudinal Models Time-Invariant Predictors in Longitudinal Models Today s Class (or 3): Summary of steps in building unconditional models for time What happens to missing predictors Effects of time-invariant predictors

More information

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model Topic 17 - Single Factor Analysis of Variance - Fall 2013 One way ANOVA Cell means model Factor effects model Outline Topic 17 2 One-way ANOVA Response variable Y is continuous Explanatory variable is

More information

Time-Invariant Predictors in Longitudinal Models

Time-Invariant Predictors in Longitudinal Models Time-Invariant Predictors in Longitudinal Models Topics: What happens to missing predictors Effects of time-invariant predictors Fixed vs. systematically varying vs. random effects Model building strategies

More information

WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS

WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS 1 WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS I. Single-factor designs: the model is: yij i j ij ij where: yij score for person j under treatment level i (i = 1,..., I; j = 1,..., n) overall mean βi treatment

More information

Multi-factor analysis of variance

Multi-factor analysis of variance Faculty of Health Sciences Outline Multi-factor analysis of variance Basic statistics for experimental researchers 2015 Two-way ANOVA and interaction Mathed samples ANOVA Random vs systematic variation

More information

Correlated data. Longitudinal data. Typical set-up for repeated measurements. Examples from literature, I. Faculty of Health Sciences

Correlated data. Longitudinal data. Typical set-up for repeated measurements. Examples from literature, I. Faculty of Health Sciences Faculty of Health Sciences Longitudinal data Correlated data Longitudinal measurements Outline Designs Models for the mean Covariance patterns Lene Theil Skovgaard November 27, 2015 Random regression Baseline

More information

SAS Syntax and Output for Data Manipulation: CLDP 944 Example 3a page 1

SAS Syntax and Output for Data Manipulation: CLDP 944 Example 3a page 1 CLDP 944 Example 3a page 1 From Between-Person to Within-Person Models for Longitudinal Data The models for this example come from Hoffman (2015) chapter 3 example 3a. We will be examining the extent to

More information

Time-Invariant Predictors in Longitudinal Models

Time-Invariant Predictors in Longitudinal Models Time-Invariant Predictors in Longitudinal Models Topics: Summary of building unconditional models for time Missing predictors in MLM Effects of time-invariant predictors Fixed, systematically varying,

More information

A Re-Introduction to General Linear Models (GLM)

A Re-Introduction to General Linear Models (GLM) A Re-Introduction to General Linear Models (GLM) Today s Class: You do know the GLM Estimation (where the numbers in the output come from): From least squares to restricted maximum likelihood (REML) Reviewing

More information

17. Example SAS Commands for Analysis of a Classic Split-Plot Experiment 17. 1

17. Example SAS Commands for Analysis of a Classic Split-Plot Experiment 17. 1 17 Example SAS Commands for Analysis of a Classic SplitPlot Experiment 17 1 DELIMITED options nocenter nonumber nodate ls80; Format SCREEN OUTPUT proc import datafile"c:\data\simulatedsplitplotdatatxt"

More information

Introduction to Within-Person Analysis and RM ANOVA

Introduction to Within-Person Analysis and RM ANOVA Introduction to Within-Person Analysis and RM ANOVA Today s Class: From between-person to within-person ANOVAs for longitudinal data Variance model comparisons using 2 LL CLP 944: Lecture 3 1 The Two Sides

More information

Time-Invariant Predictors in Longitudinal Models

Time-Invariant Predictors in Longitudinal Models Time-Invariant Predictors in Longitudinal Models Today s Topics: What happens to missing predictors Effects of time-invariant predictors Fixed vs. systematically varying vs. random effects Model building

More information

Time Invariant Predictors in Longitudinal Models

Time Invariant Predictors in Longitudinal Models Time Invariant Predictors in Longitudinal Models Longitudinal Data Analysis Workshop Section 9 University of Georgia: Institute for Interdisciplinary Research in Education and Human Development Section

More information

Interactions among Continuous Predictors

Interactions among Continuous Predictors Interactions among Continuous Predictors Today s Class: Simple main effects within two-way interactions Conquering TEST/ESTIMATE/LINCOM statements Regions of significance Three-way interactions (and beyond

More information

Models for binary data

Models for binary data Faculty of Health Sciences Models for binary data Analysis of repeated measurements 2015 Julie Lyng Forman & Lene Theil Skovgaard Department of Biostatistics, University of Copenhagen 1 / 63 Program for

More information

Some general observations.

Some general observations. Modeling and analyzing data from computer experiments. Some general observations. 1. For simplicity, I assume that all factors (inputs) x1, x2,, xd are quantitative. 2. Because the code always produces

More information

Lecture 4. Random Effects in Completely Randomized Design

Lecture 4. Random Effects in Completely Randomized Design Lecture 4. Random Effects in Completely Randomized Design Montgomery: 3.9, 13.1 and 13.7 1 Lecture 4 Page 1 Random Effects vs Fixed Effects Consider factor with numerous possible levels Want to draw inference

More information

This is a Randomized Block Design (RBD) with a single factor treatment arrangement (2 levels) which are fixed.

This is a Randomized Block Design (RBD) with a single factor treatment arrangement (2 levels) which are fixed. EXST3201 Chapter 13c Geaghan Fall 2005: Page 1 Linear Models Y ij = µ + βi + τ j + βτij + εijk This is a Randomized Block Design (RBD) with a single factor treatment arrangement (2 levels) which are fixed.

More information

Dynamic Determination of Mixed Model Covariance Structures. in Double-blind Clinical Trials. Matthew Davis - Omnicare Clinical Research

Dynamic Determination of Mixed Model Covariance Structures. in Double-blind Clinical Trials. Matthew Davis - Omnicare Clinical Research PharmaSUG2010 - Paper SP12 Dynamic Determination of Mixed Model Covariance Structures in Double-blind Clinical Trials Matthew Davis - Omnicare Clinical Research Abstract With the computing power of SAS

More information

Chapter 11. Analysis of Variance (One-Way)

Chapter 11. Analysis of Variance (One-Way) Chapter 11 Analysis of Variance (One-Way) We now develop a statistical procedure for comparing the means of two or more groups, known as analysis of variance or ANOVA. These groups might be the result

More information

Repeated Measures Data

Repeated Measures Data Repeated Measures Data Mixed Models Lecture Notes By Dr. Hanford page 1 Data where subjects are measured repeatedly over time - predetermined intervals (weekly) - uncontrolled variable intervals between

More information

Descriptions of post-hoc tests

Descriptions of post-hoc tests Experimental Statistics II Page 81 Descriptions of post-hoc tests Post-hoc or Post-ANOVA tests! Once you have found out some treatment(s) are different, how do you determine which one(s) are different?

More information

Repeated Measures Modeling With PROC MIXED E. Barry Moser, Louisiana State University, Baton Rouge, LA

Repeated Measures Modeling With PROC MIXED E. Barry Moser, Louisiana State University, Baton Rouge, LA Paper 188-29 Repeated Measures Modeling With PROC MIXED E. Barry Moser, Louisiana State University, Baton Rouge, LA ABSTRACT PROC MIXED provides a very flexible environment in which to model many types

More information

Topic 23: Diagnostics and Remedies

Topic 23: Diagnostics and Remedies Topic 23: Diagnostics and Remedies Outline Diagnostics residual checks ANOVA remedial measures Diagnostics Overview We will take the diagnostics and remedial measures that we learned for regression and

More information

Analysis of variance and regression. May 13, 2008

Analysis of variance and regression. May 13, 2008 Analysis of variance and regression May 13, 2008 Repeated measurements over time Presentation of data Traditional ways of analysis Variance component model (the dogs revisited) Random regression Baseline

More information

Random Intercept Models

Random Intercept Models Random Intercept Models Edps/Psych/Soc 589 Carolyn J. Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Spring 2019 Outline A very simple case of a random intercept

More information

Introduction and Background to Multilevel Analysis

Introduction and Background to Multilevel Analysis Introduction and Background to Multilevel Analysis Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Background and

More information

Topic 25 - One-Way Random Effects Models. Outline. Random Effects vs Fixed Effects. Data for One-way Random Effects Model. One-way Random effects

Topic 25 - One-Way Random Effects Models. Outline. Random Effects vs Fixed Effects. Data for One-way Random Effects Model. One-way Random effects Topic 5 - One-Way Random Effects Models One-way Random effects Outline Model Variance component estimation - Fall 013 Confidence intervals Topic 5 Random Effects vs Fixed Effects Consider factor with numerous

More information

Outline. Topic 20 - Diagnostics and Remedies. Residuals. Overview. Diagnostics Plots Residual checks Formal Tests. STAT Fall 2013

Outline. Topic 20 - Diagnostics and Remedies. Residuals. Overview. Diagnostics Plots Residual checks Formal Tests. STAT Fall 2013 Topic 20 - Diagnostics and Remedies - Fall 2013 Diagnostics Plots Residual checks Formal Tests Remedial Measures Outline Topic 20 2 General assumptions Overview Normally distributed error terms Independent

More information

STAT 5200 Handout #23. Repeated Measures Example (Ch. 16)

STAT 5200 Handout #23. Repeated Measures Example (Ch. 16) Motivating Example: Glucose STAT 500 Handout #3 Repeated Measures Example (Ch. 16) An experiment is conducted to evaluate the effects of three diets on the serum glucose levels of human subjects. Twelve

More information

Workshop 9.3a: Randomized block designs

Workshop 9.3a: Randomized block designs -1- Workshop 93a: Randomized block designs Murray Logan November 23, 16 Table of contents 1 Randomized Block (RCB) designs 1 2 Worked Examples 12 1 Randomized Block (RCB) designs 11 RCB design Simple Randomized

More information

A Re-Introduction to General Linear Models

A Re-Introduction to General Linear Models A Re-Introduction to General Linear Models Today s Class: Big picture overview Why we are using restricted maximum likelihood within MIXED instead of least squares within GLM Linear model interpretation

More information

Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models

Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models EPSY 905: Multivariate Analysis Spring 2016 Lecture #12 April 20, 2016 EPSY 905: RM ANOVA, MANOVA, and Mixed Models

More information

Statistics for exp. medical researchers Regression and Correlation

Statistics for exp. medical researchers Regression and Correlation Faculty of Health Sciences Regression analysis Statistics for exp. medical researchers Regression and Correlation Lene Theil Skovgaard Sept. 28, 2015 Linear regression, Estimation and Testing Confidence

More information

Lecture 3: Inference in SLR

Lecture 3: Inference in SLR Lecture 3: Inference in SLR STAT 51 Spring 011 Background Reading KNNL:.1.6 3-1 Topic Overview This topic will cover: Review of hypothesis testing Inference about 1 Inference about 0 Confidence Intervals

More information

unadjusted model for baseline cholesterol 22:31 Monday, April 19,

unadjusted model for baseline cholesterol 22:31 Monday, April 19, unadjusted model for baseline cholesterol 22:31 Monday, April 19, 2004 1 Class Level Information Class Levels Values TRETGRP 3 3 4 5 SEX 2 0 1 Number of observations 916 unadjusted model for baseline cholesterol

More information

Changes Report 2: Examples from the Australian Longitudinal Study on Women s Health for Analysing Longitudinal Data

Changes Report 2: Examples from the Australian Longitudinal Study on Women s Health for Analysing Longitudinal Data ChangesReport: ExamplesfromtheAustralianLongitudinal StudyonWomen shealthforanalysing LongitudinalData June005 AustralianLongitudinalStudyonWomen shealth ReporttotheDepartmentofHealthandAgeing ThisreportisbasedonthecollectiveworkoftheStatisticsGroupoftheAustralianLongitudinal

More information

Linear Mixed Models with Repeated Effects

Linear Mixed Models with Repeated Effects 1 Linear Mixed Models with Repeated Effects Introduction and Examples Using SAS/STAT Software Jerry W. Davis, University of Georgia, Griffin Campus. Introduction Repeated measures refer to measurements

More information

Random Coefficients Model Examples

Random Coefficients Model Examples Random Coefficients Model Examples STAT:5201 Week 15 - Lecture 2 1 / 26 Each subject (or experimental unit) has multiple measurements (this could be over time, or it could be multiple measurements on a

More information

R Output for Linear Models using functions lm(), gls() & glm()

R Output for Linear Models using functions lm(), gls() & glm() LM 04 lm(), gls() &glm() 1 R Output for Linear Models using functions lm(), gls() & glm() Different kinds of output related to linear models can be obtained in R using function lm() {stats} in the base

More information

Designing Multilevel Models Using SPSS 11.5 Mixed Model. John Painter, Ph.D.

Designing Multilevel Models Using SPSS 11.5 Mixed Model. John Painter, Ph.D. Designing Multilevel Models Using SPSS 11.5 Mixed Model John Painter, Ph.D. Jordan Institute for Families School of Social Work University of North Carolina at Chapel Hill 1 Creating Multilevel Models

More information

ssh tap sas913, sas

ssh tap sas913, sas B. Kedem, STAT 430 SAS Examples SAS8 ===================== ssh xyz@glue.umd.edu, tap sas913, sas https://www.statlab.umd.edu/sasdoc/sashtml/onldoc.htm Multiple Regression ====================== 0. Show

More information

Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models:

Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models: Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models: Marginal models: based on the consequences of dependence on estimating model parameters.

More information

Describing Within-Person Fluctuation over Time using Alternative Covariance Structures

Describing Within-Person Fluctuation over Time using Alternative Covariance Structures Describing Within-Person Fluctuation over Time using Alternative Covariance Structures Today s Class: The Big Picture ACS models using the R matrix only Introducing the G, Z, and V matrices ACS models

More information

Review of CLDP 944: Multilevel Models for Longitudinal Data

Review of CLDP 944: Multilevel Models for Longitudinal Data Review of CLDP 944: Multilevel Models for Longitudinal Data Topics: Review of general MLM concepts and terminology Model comparisons and significance testing Fixed and random effects of time Significance

More information

Introduction to Random Effects of Time and Model Estimation

Introduction to Random Effects of Time and Model Estimation Introduction to Random Effects of Time and Model Estimation Today s Class: The Big Picture Multilevel model notation Fixed vs. random effects of time Random intercept vs. random slope models How MLM =

More information

Regression without measurement error using proc calis

Regression without measurement error using proc calis Regression without measurement error using proc calis /* calculus2.sas */ options linesize=79 pagesize=500 noovp formdlim='_'; title 'Calculus 2: Regression with no measurement error'; title2 ''; data

More information

Lecture 10: Experiments with Random Effects

Lecture 10: Experiments with Random Effects Lecture 10: Experiments with Random Effects Montgomery, Chapter 13 1 Lecture 10 Page 1 Example 1 A textile company weaves a fabric on a large number of looms. It would like the looms to be homogeneous

More information

LINEAR REGRESSION. Copyright 2013, SAS Institute Inc. All rights reserved.

LINEAR REGRESSION. Copyright 2013, SAS Institute Inc. All rights reserved. LINEAR REGRESSION LINEAR REGRESSION REGRESSION AND OTHER MODELS Type of Response Type of Predictors Categorical Continuous Continuous and Categorical Continuous Analysis of Variance (ANOVA) Ordinary Least

More information

Mixed models in R using the lme4 package Part 2: Longitudinal data, modeling interactions

Mixed models in R using the lme4 package Part 2: Longitudinal data, modeling interactions Mixed models in R using the lme4 package Part 2: Longitudinal data, modeling interactions Douglas Bates Department of Statistics University of Wisconsin - Madison Madison January 11, 2011

More information

PLS205 Lab 2 January 15, Laboratory Topic 3

PLS205 Lab 2 January 15, Laboratory Topic 3 PLS205 Lab 2 January 15, 2015 Laboratory Topic 3 General format of ANOVA in SAS Testing the assumption of homogeneity of variances by "/hovtest" by ANOVA of squared residuals Proc Power for ANOVA One-way

More information

T-test: means of Spock's judge versus all other judges 1 12:10 Wednesday, January 5, judge1 N Mean Std Dev Std Err Minimum Maximum

T-test: means of Spock's judge versus all other judges 1 12:10 Wednesday, January 5, judge1 N Mean Std Dev Std Err Minimum Maximum T-test: means of Spock's judge versus all other judges 1 The TTEST Procedure Variable: pcwomen judge1 N Mean Std Dev Std Err Minimum Maximum OTHER 37 29.4919 7.4308 1.2216 16.5000 48.9000 SPOCKS 9 14.6222

More information

Step 2: Select Analyze, Mixed Models, and Linear.

Step 2: Select Analyze, Mixed Models, and Linear. Example 1a. 20 employees were given a mood questionnaire on Monday, Wednesday and again on Friday. The data will be first be analyzed using a Covariance Pattern model. Step 1: Copy Example1.sav data file

More information

In many situations, there is a non-parametric test that corresponds to the standard test, as described below:

In many situations, there is a non-parametric test that corresponds to the standard test, as described below: There are many standard tests like the t-tests and analyses of variance that are commonly used. They rest on assumptions like normality, which can be hard to assess: for example, if you have small samples,

More information

Longitudinal Modeling with Logistic Regression

Longitudinal Modeling with Logistic Regression Newsom 1 Longitudinal Modeling with Logistic Regression Longitudinal designs involve repeated measurements of the same individuals over time There are two general classes of analyses that correspond to

More information

Analysis of variance and regression. November 22, 2007

Analysis of variance and regression. November 22, 2007 Analysis of variance and regression November 22, 2007 Parametrisations: Choice of parameters Comparison of models Test for linearity Linear splines Lene Theil Skovgaard, Dept. of Biostatistics, Institute

More information

Faculty of Health Sciences. Correlated data. Count variables. Lene Theil Skovgaard & Julie Lyng Forman. December 6, 2016

Faculty of Health Sciences. Correlated data. Count variables. Lene Theil Skovgaard & Julie Lyng Forman. December 6, 2016 Faculty of Health Sciences Correlated data Count variables Lene Theil Skovgaard & Julie Lyng Forman December 6, 2016 1 / 76 Modeling count outcomes Outline The Poisson distribution for counts Poisson models,

More information

Multilevel Models in Matrix Form. Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2

Multilevel Models in Matrix Form. Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Multilevel Models in Matrix Form Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Today s Lecture Linear models from a matrix perspective An example of how to do

More information

Statistical Inference: The Marginal Model

Statistical Inference: The Marginal Model Statistical Inference: The Marginal Model Edps/Psych/Stat 587 Carolyn J. Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Fall 2017 Outline Inference for fixed

More information

Outline. Statistical inference for linear mixed models. One-way ANOVA in matrix-vector form

Outline. Statistical inference for linear mixed models. One-way ANOVA in matrix-vector form Outline Statistical inference for linear mixed models Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark general form of linear mixed models examples of analyses using linear mixed

More information

Practice with Interactions among Continuous Predictors in General Linear Models (as estimated using restricted maximum likelihood in SAS MIXED)

Practice with Interactions among Continuous Predictors in General Linear Models (as estimated using restricted maximum likelihood in SAS MIXED) CLP 944 Example 2b page 1 Practice with Interactions among Continuous Predictors in General Linear Models (as estimated using restricted maximum likelihood in SAS MIXED) The models for this example come

More information

Simple, Marginal, and Interaction Effects in General Linear Models: Part 1

Simple, Marginal, and Interaction Effects in General Linear Models: Part 1 Simple, Marginal, and Interaction Effects in General Linear Models: Part 1 PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 2: August 24, 2012 PSYC 943: Lecture 2 Today s Class Centering and

More information

General Linear Model (Chapter 4)

General Linear Model (Chapter 4) General Linear Model (Chapter 4) Outcome variable is considered continuous Simple linear regression Scatterplots OLS is BLUE under basic assumptions MSE estimates residual variance testing regression coefficients

More information

STAT 501 EXAM I NAME Spring 1999

STAT 501 EXAM I NAME Spring 1999 STAT 501 EXAM I NAME Spring 1999 Instructions: You may use only your calculator and the attached tables and formula sheet. You can detach the tables and formula sheet from the rest of this exam. Show your

More information

Longitudinal Data Analysis of Health Outcomes

Longitudinal Data Analysis of Health Outcomes Longitudinal Data Analysis of Health Outcomes Longitudinal Data Analysis Workshop Running Example: Days 2 and 3 University of Georgia: Institute for Interdisciplinary Research in Education and Human Development

More information

Statistical Distribution Assumptions of General Linear Models

Statistical Distribution Assumptions of General Linear Models Statistical Distribution Assumptions of General Linear Models Applied Multilevel Models for Cross Sectional Data Lecture 4 ICPSR Summer Workshop University of Colorado Boulder Lecture 4: Statistical Distributions

More information

Faculty of Health Sciences. Correlated data. Variance component models. Lene Theil Skovgaard & Julie Lyng Forman.

Faculty of Health Sciences. Correlated data. Variance component models. Lene Theil Skovgaard & Julie Lyng Forman. Faculty of Health Sciences Correlated data Variance component models Lene Theil Skovgaard & Julie Lyng Forman November 28, 2017 1 / 96 Overview One-way anova with random variation The rabbit example Hierarchical

More information

Correlated data. Overview. Variance component models. Terminology for correlated measurements. Faculty of Health Sciences. Variance component models

Correlated data. Overview. Variance component models. Terminology for correlated measurements. Faculty of Health Sciences. Variance component models Faculty of Health Sciences Overview Correlated data Variance component models Lene Theil Skovgaard & Julie Lyng Forman November 28, 2017 One-way anova with random variation The rabbit example Hierarchical

More information

Week 7.1--IES 612-STA STA doc

Week 7.1--IES 612-STA STA doc Week 7.1--IES 612-STA 4-573-STA 4-576.doc IES 612/STA 4-576 Winter 2009 ANOVA MODELS model adequacy aka RESIDUAL ANALYSIS Numeric data samples from t populations obtained Assume Y ij ~ independent N(μ

More information

Lecture 2. The Simple Linear Regression Model: Matrix Approach

Lecture 2. The Simple Linear Regression Model: Matrix Approach Lecture 2 The Simple Linear Regression Model: Matrix Approach Matrix algebra Matrix representation of simple linear regression model 1 Vectors and Matrices Where it is necessary to consider a distribution

More information

Chapter 9. Multivariate and Within-cases Analysis. 9.1 Multivariate Analysis of Variance

Chapter 9. Multivariate and Within-cases Analysis. 9.1 Multivariate Analysis of Variance Chapter 9 Multivariate and Within-cases Analysis 9.1 Multivariate Analysis of Variance Multivariate means more than one response variable at once. Why do it? Primarily because if you do parallel analyses

More information

This is a Split-plot Design with a fixed single factor treatment arrangement in the main plot and a 2 by 3 factorial subplot.

This is a Split-plot Design with a fixed single factor treatment arrangement in the main plot and a 2 by 3 factorial subplot. EXST3201 Chapter 13c Geaghan Fall 2005: Page 1 Linear Models Y ij = µ + τ1 i + γij + τ2k + ττ 1 2ik + εijkl This is a Split-plot Design with a fixed single factor treatment arrangement in the main plot

More information

36-309/749 Experimental Design for Behavioral and Social Sciences. Dec 1, 2015 Lecture 11: Mixed Models (HLMs)

36-309/749 Experimental Design for Behavioral and Social Sciences. Dec 1, 2015 Lecture 11: Mixed Models (HLMs) 36-309/749 Experimental Design for Behavioral and Social Sciences Dec 1, 2015 Lecture 11: Mixed Models (HLMs) Independent Errors Assumption An error is the deviation of an individual observed outcome (DV)

More information

Analysis of Count Data A Business Perspective. George J. Hurley Sr. Research Manager The Hershey Company Milwaukee June 2013

Analysis of Count Data A Business Perspective. George J. Hurley Sr. Research Manager The Hershey Company Milwaukee June 2013 Analysis of Count Data A Business Perspective George J. Hurley Sr. Research Manager The Hershey Company Milwaukee June 2013 Overview Count data Methods Conclusions 2 Count data Count data Anything with

More information

4.1 Computing section Example: Bivariate measurements on plants Post hoc analysis... 7

4.1 Computing section Example: Bivariate measurements on plants Post hoc analysis... 7 Master of Applied Statistics ST116: Chemometrics and Multivariate Statistical data Analysis Per Bruun Brockhoff Module 4: Computing 4.1 Computing section.................................. 1 4.1.1 Example:

More information

6. Multiple regression - PROC GLM

6. Multiple regression - PROC GLM Use of SAS - November 2016 6. Multiple regression - PROC GLM Karl Bang Christensen Department of Biostatistics, University of Copenhagen. http://biostat.ku.dk/~kach/sas2016/ kach@biostat.ku.dk, tel: 35327491

More information

Value Added Modeling

Value Added Modeling Value Added Modeling Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Background for VAMs Recall from previous lectures

More information

SAS Analysis Examples Replication C8. * SAS Analysis Examples Replication for ASDA 2nd Edition * Berglund April 2017 * Chapter 8 ;

SAS Analysis Examples Replication C8. * SAS Analysis Examples Replication for ASDA 2nd Edition * Berglund April 2017 * Chapter 8 ; SAS Analysis Examples Replication C8 * SAS Analysis Examples Replication for ASDA 2nd Edition * Berglund April 2017 * Chapter 8 ; libname ncsr "P:\ASDA 2\Data sets\ncsr\" ; data c8_ncsr ; set ncsr.ncsr_sub_13nov2015

More information

Generalised linear models. Response variable can take a number of different formats

Generalised linear models. Response variable can take a number of different formats Generalised linear models Response variable can take a number of different formats Structure Limitations of linear models and GLM theory GLM for count data GLM for presence \ absence data GLM for proportion

More information

More Accurately Analyze Complex Relationships

More Accurately Analyze Complex Relationships SPSS Advanced Statistics 17.0 Specifications More Accurately Analyze Complex Relationships Make your analysis more accurate and reach more dependable conclusions with statistics designed to fit the inherent

More information

Coping with Additional Sources of Variation: ANCOVA and Random Effects

Coping with Additional Sources of Variation: ANCOVA and Random Effects Coping with Additional Sources of Variation: ANCOVA and Random Effects 1/49 More Noise in Experiments & Observations Your fixed coefficients are not always so fixed Continuous variation between samples

More information

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont.

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont. TCELL 9/4/205 36-309/749 Experimental Design for Behavioral and Social Sciences Simple Regression Example Male black wheatear birds carry stones to the nest as a form of sexual display. Soler et al. wanted

More information