Forward and Reverse Gradient-Based Hyperparameter Optimization

Size: px
Start display at page:

Download "Forward and Reverse Gradient-Based Hyperparameter Optimization"

Transcription

1 Forward and Reverse Gradient-Based Hyperparameter Optimization Luca Franceschi 1,2, Michele Donini 1, Paolo Frasconi 3, Massimiliano Pontil 1,2 1 Istituto Italiano di Tecnologia, Genoa, Italy 2 Dept of Computer Science, University College London, UK 3 Dept of Information Engineering, Universit degli Studi di Firenze, Italy ICML 2017/ Presenter: Ji Gao Gradient-Based ( Istituto Hyperparameter Italiano di ICML Tecnologia, 2017/ Optimization Presenter: Genoa, Italy) Ji Gao 1 /

2 Outline 1 Motivation 2 Method Overview Optimization 3 Complexity analysis 4 Experiment Gradient-Based ( Istituto Hyperparameter Italiano di ICML Tecnologia, 2017/ Optimization Presenter: Genoa, Italy) Ji Gao 2 /

3 Motivation Choose hyperparameters in optimization are hard Could we automatically select hyperparameters? Hyperparameter optimization: Construct a response function of the hyperparameters and explore the hyperparameter space to seek an optimum Gradient-Based ( Istituto Hyperparameter Italiano di ICML Tecnologia, 2017/ Optimization Presenter: Genoa, Italy) Ji Gao 3 /

4 Related Work Grid search: List parameters on a grid and train all of them. Problem: Impractical when number of hyperparameters is large. Even outperform by random search. Bayesian optimization: Treat the global process as a random function and place a prior over it. After that, construct an acquisition function (referred to as infill sampling criteria) that determines the next query point. Gradient-based methods: Use the gradient method to optimize hyperparameters. Gradient-Based ( Istituto Hyperparameter Italiano di ICML Tecnologia, 2017/ Optimization Presenter: Genoa, Italy) Ji Gao 4 /

5 Hyperparameters s: state in R d, including weights (object) and hyperparameters λ. An example in such definition: s t = Φ t (s t 1, λ) Gradient Descent with Momentum w: weights. J: objective function. λ: hyperparameters s t = (v t, w t ) : In this case: λ = (µ, η) v t = µv t 1 + J t (w t 1 ) w t = w t 1 η(µv t 1 J t (w t 1 )) uca Franceschi, Michele Donini, Paolo Frasconi Forward, Massimiliano and ReversePontil Gradient-Based ( Istituto Hyperparameter Italiano di ICML Tecnologia, 2017/ Optimization Presenter: Genoa, Italy) Ji Gao 5 /

6 Problem formulation Goal of hyperparameter optimization Solve: min f (λ) λ Where a response function f : R m R is defined at λ R m as E: Validation error f (λ) = E(s T (λ)) Gradient-Based ( Istituto Hyperparameter Italiano di ICML Tecnologia, 2017/ Optimization Presenter: Genoa, Italy) Ji Gao 6 /

7 Problem formulation - Optimization Goal of hyperparameter optimization Solve: min λ,s 1,...s t E(s T ) Subject to: s t = Φ t (s t 1, λ) Lagrangian: T L(s, λ, α) = E(s T ) + α t (Φ t (s t 1, λ) s t ) t=1 Gradient-Based ( Istituto Hyperparameter Italiano di ICML Tecnologia, 2017/ Optimization Presenter: Genoa, Italy) Ji Gao 7 /

8 Problem formulation - Optimization Lagrangian: L(s, λ, α) = E(s T ) + Derivatives of Lagrangian: T α t (Φ t (s t 1, λ) s t ) t=1 L = Φ t (s t 1, λ) s t, t = 1..T a t L Φ t (s t, λ) = a t+1 a t, t = 1..T s t s t L = E(s T ) a T s T L T λ = Φ t (s t 1, λ) α t λ t=1 Gradient-Based ( Istituto Hyperparameter Italiano di ICML Tecnologia, 2017/ Optimization Presenter: Genoa, Italy) Ji Gao 8 /

9 Problem formulation - Optimization Solution: Solution can be achieved by setting each derivatives to 0. Let A t = Φt(s t 1,λ) s t 1, B t = Φt(s t 1,λ) λ The the solution is: a t = E(s T )A t+1..a T And we have: L λ = E(s T ) T (A t+1..a T )B t (1) t=1 Gradient-Based ( Istituto Hyperparameter Italiano di ICML Tecnologia, 2017/ Optimization Presenter: Genoa, Italy) Ji Gao 9 /

10 Algorithm ICML 2017/ Presenter: Ji Gao 10 /

11 Another way to Calculate We have: Let Z t = ds T dλ, Lead to a recursive solution f (λ) = E(S T ) ds T dλ Z t = A t Z t 1 + B t ICML 2017/ Presenter: Ji Gao 11 /

12 Algorithm2 Can be real-time updated. ICML 2017/ Presenter: Ji Gao 12 /

13 Background: Algorithmic (Automatic) Differentiation Algorithmic Differentiation: Techniques to numerically evaluate the derivative of a function. Two modes of AD: Forward mode and Reverse mode. ICML 2017/ Presenter: Ji Gao 13 /

14 Complexity of Algorithmic Differentiation Complexity of calculating the Jacobian matrix (the matrix of all first-order partial derivatives): Suppose f : R n R p can be evaluated in time c(n, p) and space s(n, p). We have: For any vector r R n, product of r and Jacobian matrix J F r can be evaluated in time O(c(n, p)) and space O(s(n, p)) using forward mode AD. For any vector q R p, product of q and Jacobian matrix q T J F can be evaluated in time O(c(n, p)) and space O(s(n, p)) using reverse mode AD. Jacobian can be calculated in time O(nc(n, p)) using forward mode, and O(pc(n, p)) using reverse mode. ICML 2017/ Presenter: Ji Gao 14 /

15 Complexity Suppose s t = Φ t (s t 1, λ) can updated in time g(d, m) and space h(d, m). For Algorithm 1: Each step of a t+1 A t+1 and a t B t cost O(g(d, m)) time. So it s totally O(Tg(d, m)) time. For space, we need to store all s t, which requires O(Th(d, m)) space. ICML 2017/ Presenter: Ji Gao 15 /

16 Complexity - Algorithm 2 For Algorithm 2: Each step of A t Z t+1 require m Jacobian vector multiplication, so the cost is O(mg(d, m)) time. So it s totally O(Tmg(d, m)) time. For space, we only need to store the current s t, which requires O(h(d, m)) space. ICML 2017/ Presenter: Ji Gao 16 /

17 Experiment 1 - Data Hyper-cleaning Task: Have a large dataset with corrupted labels. Can only afford to clean a subset. Train a model. Method: Weighting every training sample a hyperparameter in [0,1]. Train with a weighted loss on the cleaned validation set. Train a plain softmax regression model with weight W and bias b Optimization problem: min λ E val (W T, b T ) Subject to: λ [0, 1] Ntr, λ 1 R Experiment design: 5000 examples from MNIST dataset as the training data, corrupt 2500 of them. Have 5000 more as validation data, and as test set. ICML 2017/ Presenter: Ji Gao 17 /

18 Experiment 1 result Oracle: Train with 2500 correct samples together with validation set. Baseline: Train with corrupted data and validation set. DH-R: Optimize and find a cleaned subset D c with a different R value, and finally train with D c and the validation set. ICML 2017/ Presenter: Ji Gao 18 /

19 Experiment 1 result It can successfully discard corrupted samples. ICML 2017/ Presenter: Ji Gao 19 /

20 Experiment 2 - Multiple task learning Task: Find simultaneously the model of several different related tasks. For example, few shot learning. Experiment design: Try both CIFAR-10 and CIFAR samples on CIFAR-10, 300 samples on CIFAR-100 as training set. Same size of validation set, and all rest for testing. Use pretrained Inception-V3 model to fetch the feature. Use a regularizer from [Evgeniou et al., 2005] Ω A,ρ (W ) = K j,k=1 A j,k w j w k ρ K k=1 w k 2 Training error E tr (W ) = i l(wx i + b, y i ) + Ω A,ρ (W ) Optimization problem: min λ E val (W T, b T ) Subject to: ρ 0, A 0 ICML 2017/ Presenter: Ji Gao 20 /

21 Experiment 2 result HMTL-S algorithm find the following relationship graph: ICML 2017/ Presenter: Ji Gao 21 /

22 Experiment 3 - Phone classification Task: Phone state classification over 183 classes. Experiment design: Data: TIMIT phonetic recognition dataset. Model: A previous multi task learning framework [Badino,2016]. Hyperparameters: learning rate η, momentum µ and ρ, a hyperparameter of the algorithm ICML 2017/ Presenter: Ji Gao 22 /

23 Experiment 3 result ICML 2017/ Presenter: Ji Gao 23 /

24 Experiment 3 result ICML 2017/ Presenter: Ji Gao /

ON HYPERPARAMETER OPTIMIZATION IN LEARNING SYSTEMS

ON HYPERPARAMETER OPTIMIZATION IN LEARNING SYSTEMS ON HYPERPARAMETER OPTIMIZATION IN LEARNING SYSTEMS Luca Franceschi 1,2, Michele Donini 1, Paolo Frasconi 3, Massimiliano Pontil 1,2 (1) Istituto Italiano di Tecnologia, Genoa, 16163 Italy (2) Dept of Computer

More information

Forward and Reverse Gradient-based Hyperparameter Optimization

Forward and Reverse Gradient-based Hyperparameter Optimization Forward and Reverse Gradient-based Hyperparameter Optimization Luca Franceschi 1,2, Michele Donini 1, Paolo Frasconi 3 and Massimilano Pontil 1,2 massimiliano.pontil@iit.it (1) Istituto Italiano di Tecnologia,

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

CSC321 Lecture 2: Linear Regression

CSC321 Lecture 2: Linear Regression CSC32 Lecture 2: Linear Regression Roger Grosse Roger Grosse CSC32 Lecture 2: Linear Regression / 26 Overview First learning algorithm of the course: linear regression Task: predict scalar-valued targets,

More information

Machine Learning Basics

Machine Learning Basics Security and Fairness of Deep Learning Machine Learning Basics Anupam Datta CMU Spring 2019 Image Classification Image Classification Image classification pipeline Input: A training set of N images, each

More information

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat Neural Networks, Computation Graphs CMSC 470 Marine Carpuat Binary Classification with a Multi-layer Perceptron φ A = 1 φ site = 1 φ located = 1 φ Maizuru = 1 φ, = 2 φ in = 1 φ Kyoto = 1 φ priest = 0 φ

More information

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 Multi-layer networks Steve Renals Machine Learning Practical MLP Lecture 3 7 October 2015 MLP Lecture 3 Multi-layer networks 2 What Do Single

More information

Convolutional Neural Network Architecture

Convolutional Neural Network Architecture Convolutional Neural Network Architecture Zhisheng Zhong Feburary 2nd, 2018 Zhisheng Zhong Convolutional Neural Network Architecture Feburary 2nd, 2018 1 / 55 Outline 1 Introduction of Convolution Motivation

More information

Visual meta-learning for planning and control

Visual meta-learning for planning and control Visual meta-learning for planning and control Seminar on Current Works in Computer Vision @ Chair of Pattern Recognition and Image Processing. Samuel Roth Winter Semester 2018/19 Albert-Ludwigs-Universität

More information

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS16

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS16 COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS6 Lecture 3: Classification with Logistic Regression Advanced optimization techniques Underfitting & Overfitting Model selection (Training-

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks Oliver Schulte - CMPT 310 Neural Networks Neural networks arise from attempts to model human/animal brains Many models, many claims of biological plausibility We will focus on

More information

Introduction Neural Networks - Architecture Network Training Small Example - ZIP Codes Summary. Neural Networks - I. Henrik I Christensen

Introduction Neural Networks - Architecture Network Training Small Example - ZIP Codes Summary. Neural Networks - I. Henrik I Christensen Neural Networks - I Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Neural Networks 1 /

More information

Afternoon Meeting on Bayesian Computation 2018 University of Reading

Afternoon Meeting on Bayesian Computation 2018 University of Reading Gabriele Abbati 1, Alessra Tosi 2, Seth Flaxman 3, Michael A Osborne 1 1 University of Oxford, 2 Mind Foundry Ltd, 3 Imperial College London Afternoon Meeting on Bayesian Computation 2018 University of

More information

Some tensor decomposition methods for machine learning

Some tensor decomposition methods for machine learning Some tensor decomposition methods for machine learning Massimiliano Pontil Istituto Italiano di Tecnologia and University College London 16 August 2016 1 / 36 Outline Problem and motivation Tucker decomposition

More information

Classification with Perceptrons. Reading:

Classification with Perceptrons. Reading: Classification with Perceptrons Reading: Chapters 1-3 of Michael Nielsen's online book on neural networks covers the basics of perceptrons and multilayer neural networks We will cover material in Chapters

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Professor Ameet Talwalkar November 12, 2015 Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 1 / 16 Outline 1 Review of last lecture AdaBoost

More information

Regularization in Neural Networks

Regularization in Neural Networks Regularization in Neural Networks Sargur Srihari 1 Topics in Neural Network Regularization What is regularization? Methods 1. Determining optimal number of hidden units 2. Use of regularizer in error function

More information

Large-Scale Feature Learning with Spike-and-Slab Sparse Coding

Large-Scale Feature Learning with Spike-and-Slab Sparse Coding Large-Scale Feature Learning with Spike-and-Slab Sparse Coding Ian J. Goodfellow, Aaron Courville, Yoshua Bengio ICML 2012 Presented by Xin Yuan January 17, 2013 1 Outline Contributions Spike-and-Slab

More information

A Spectral Regularization Framework for Multi-Task Structure Learning

A Spectral Regularization Framework for Multi-Task Structure Learning A Spectral Regularization Framework for Multi-Task Structure Learning Massimiliano Pontil Department of Computer Science University College London (Joint work with A. Argyriou, T. Evgeniou, C.A. Micchelli,

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Steve Renals Automatic Speech Recognition ASR Lecture 10 24 February 2014 ASR Lecture 10 Introduction to Neural Networks 1 Neural networks for speech recognition Introduction

More information

MODULE -4 BAYEIAN LEARNING

MODULE -4 BAYEIAN LEARNING MODULE -4 BAYEIAN LEARNING CONTENT Introduction Bayes theorem Bayes theorem and concept learning Maximum likelihood and Least Squared Error Hypothesis Maximum likelihood Hypotheses for predicting probabilities

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Algorithms for Learning Good Step Sizes

Algorithms for Learning Good Step Sizes 1 Algorithms for Learning Good Step Sizes Brian Zhang (bhz) and Manikant Tiwari (manikant) with the guidance of Prof. Tim Roughgarden I. MOTIVATION AND PREVIOUS WORK Many common algorithms in machine learning,

More information

Multilayer Neural Networks. (sometimes called Multilayer Perceptrons or MLPs)

Multilayer Neural Networks. (sometimes called Multilayer Perceptrons or MLPs) Multilayer Neural Networks (sometimes called Multilayer Perceptrons or MLPs) Linear separability Hyperplane In 2D: w x + w 2 x 2 + w 0 = 0 Feature x 2 = w w 2 x w 0 w 2 Feature 2 A perceptron can separate

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

arxiv: v1 [cs.cl] 21 May 2017

arxiv: v1 [cs.cl] 21 May 2017 Spelling Correction as a Foreign Language Yingbo Zhou yingbzhou@ebay.com Utkarsh Porwal uporwal@ebay.com Roberto Konow rkonow@ebay.com arxiv:1705.07371v1 [cs.cl] 21 May 2017 Abstract In this paper, we

More information

Least Mean Squares Regression

Least Mean Squares Regression Least Mean Squares Regression Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Lecture Overview Linear classifiers What functions do linear classifiers express? Least Squares Method

More information

Stochastic Variance Reduction for Nonconvex Optimization. Barnabás Póczos

Stochastic Variance Reduction for Nonconvex Optimization. Barnabás Póczos 1 Stochastic Variance Reduction for Nonconvex Optimization Barnabás Póczos Contents 2 Stochastic Variance Reduction for Nonconvex Optimization Joint work with Sashank Reddi, Ahmed Hefny, Suvrit Sra, and

More information

Learning Task Grouping and Overlap in Multi-Task Learning

Learning Task Grouping and Overlap in Multi-Task Learning Learning Task Grouping and Overlap in Multi-Task Learning Abhishek Kumar Hal Daumé III Department of Computer Science University of Mayland, College Park 20 May 2013 Proceedings of the 29 th International

More information

Neural Networks: Backpropagation

Neural Networks: Backpropagation Neural Networks: Backpropagation Seung-Hoon Na 1 1 Department of Computer Science Chonbuk National University 2018.10.25 eung-hoon Na (Chonbuk National University) Neural Networks: Backpropagation 2018.10.25

More information

Neural Networks DWML, /25

Neural Networks DWML, /25 DWML, 2007 /25 Neural networks: Biological and artificial Consider humans: Neuron switching time 0.00 second Number of neurons 0 0 Connections per neuron 0 4-0 5 Scene recognition time 0. sec 00 inference

More information

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 6: Multi-Layer Perceptrons I

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 6: Multi-Layer Perceptrons I Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 6: Multi-Layer Perceptrons I Phil Woodland: pcw@eng.cam.ac.uk Michaelmas 2012 Engineering Part IIB: Module 4F10 Introduction In

More information

Hidden CRFs for Human Activity Classification from RGBD Data

Hidden CRFs for Human Activity Classification from RGBD Data H Hidden s for Human from RGBD Data Avi Singh & Ankit Goyal IIT-Kanpur CS679: Machine Learning for Computer Vision April 13, 215 Overview H 1 2 3 H 4 5 6 7 Statement H Input An RGBD video with a human

More information

Neural Networks Learning the network: Backprop , Fall 2018 Lecture 4

Neural Networks Learning the network: Backprop , Fall 2018 Lecture 4 Neural Networks Learning the network: Backprop 11-785, Fall 2018 Lecture 4 1 Recap: The MLP can represent any function The MLP can be constructed to represent anything But how do we construct it? 2 Recap:

More information

Single layer NN. Neuron Model

Single layer NN. Neuron Model Single layer NN We consider the simple architecture consisting of just one neuron. Generalization to a single layer with more neurons as illustrated below is easy because: M M The output units are independent

More information

Don t Decay the Learning Rate, Increase the Batch Size. Samuel L. Smith, Pieter-Jan Kindermans, Quoc V. Le December 9 th 2017

Don t Decay the Learning Rate, Increase the Batch Size. Samuel L. Smith, Pieter-Jan Kindermans, Quoc V. Le December 9 th 2017 Don t Decay the Learning Rate, Increase the Batch Size Samuel L. Smith, Pieter-Jan Kindermans, Quoc V. Le December 9 th 2017 slsmith@ Google Brain Three related questions: What properties control generalization?

More information

Fantope Regularization in Metric Learning

Fantope Regularization in Metric Learning Fantope Regularization in Metric Learning CVPR 2014 Marc T. Law (LIP6, UPMC), Nicolas Thome (LIP6 - UPMC Sorbonne Universités), Matthieu Cord (LIP6 - UPMC Sorbonne Universités), Paris, France Introduction

More information

Deep Learning Lab Course 2017 (Deep Learning Practical)

Deep Learning Lab Course 2017 (Deep Learning Practical) Deep Learning Lab Course 207 (Deep Learning Practical) Labs: (Computer Vision) Thomas Brox, (Robotics) Wolfram Burgard, (Machine Learning) Frank Hutter, (Neurorobotics) Joschka Boedecker University of

More information

Spatial Transformer Networks

Spatial Transformer Networks BIL722 - Deep Learning for Computer Vision Spatial Transformer Networks Max Jaderberg Andrew Zisserman Karen Simonyan Koray Kavukcuoglu Contents Introduction to Spatial Transformers Related Works Spatial

More information

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton Motivation Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses

More information

Learning Deep Architectures for AI. Part II - Vijay Chakilam

Learning Deep Architectures for AI. Part II - Vijay Chakilam Learning Deep Architectures for AI - Yoshua Bengio Part II - Vijay Chakilam Limitations of Perceptron x1 W, b 0,1 1,1 y x2 weight plane output =1 output =0 There is no value for W and b such that the model

More information

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Dynamic Data Modeling, Recognition, and Synthesis Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Contents Introduction Related Work Dynamic Data Modeling & Analysis Temporal localization Insufficient

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning Lei Lei Ruoxuan Xiong December 16, 2017 1 Introduction Deep Neural Network

More information

Online Gradient Descent Learning Algorithms

Online Gradient Descent Learning Algorithms DISI, Genova, December 2006 Online Gradient Descent Learning Algorithms Yiming Ying (joint work with Massimiliano Pontil) Department of Computer Science, University College London Introduction Outline

More information

Multilayer Neural Networks. (sometimes called Multilayer Perceptrons or MLPs)

Multilayer Neural Networks. (sometimes called Multilayer Perceptrons or MLPs) Multilayer Neural Networks (sometimes called Multilayer Perceptrons or MLPs) Linear separability Hyperplane In 2D: w 1 x 1 + w 2 x 2 + w 0 = 0 Feature 1 x 2 = w 1 w 2 x 1 w 0 w 2 Feature 2 A perceptron

More information

Accelerating Stochastic Optimization

Accelerating Stochastic Optimization Accelerating Stochastic Optimization Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem and Mobileye Master Class at Tel-Aviv, Tel-Aviv University, November 2014 Shalev-Shwartz

More information

CMU-Q Lecture 24:

CMU-Q Lecture 24: CMU-Q 15-381 Lecture 24: Supervised Learning 2 Teacher: Gianni A. Di Caro SUPERVISED LEARNING Hypotheses space Hypothesis function Labeled Given Errors Performance criteria Given a collection of input

More information

Implicit Optimization Bias

Implicit Optimization Bias Implicit Optimization Bias as a key to Understanding Deep Learning Nati Srebro (TTIC) Based on joint work with Behnam Neyshabur (TTIC IAS), Ryota Tomioka (TTIC MSR), Srinadh Bhojanapalli, Suriya Gunasekar,

More information

Tutorial on: Optimization I. (from a deep learning perspective) Jimmy Ba

Tutorial on: Optimization I. (from a deep learning perspective) Jimmy Ba Tutorial on: Optimization I (from a deep learning perspective) Jimmy Ba Outline Random search v.s. gradient descent Finding better search directions Design white-box optimization methods to improve computation

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data January 17, 2006 Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Multi-Layer Perceptrons Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole

More information

MMD GAN 1 Fisher GAN 2

MMD GAN 1 Fisher GAN 2 MMD GAN 1 Fisher GAN 1 Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos (CMU, IBM Research) Youssef Mroueh, and Tom Sercu (IBM Research) Presented by Rui-Yi(Roy) Zhang Decemeber

More information

Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions

Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions 2018 IEEE International Workshop on Machine Learning for Signal Processing (MLSP 18) Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions Authors: S. Scardapane, S. Van Vaerenbergh,

More information

Based on the original slides of Hung-yi Lee

Based on the original slides of Hung-yi Lee Based on the original slides of Hung-yi Lee Google Trends Deep learning obtains many exciting results. Can contribute to new Smart Services in the Context of the Internet of Things (IoT). IoT Services

More information

Neural Networks and the Back-propagation Algorithm

Neural Networks and the Back-propagation Algorithm Neural Networks and the Back-propagation Algorithm Francisco S. Melo In these notes, we provide a brief overview of the main concepts concerning neural networks and the back-propagation algorithm. We closely

More information

Feed-forward Networks Network Training Error Backpropagation Applications. Neural Networks. Oliver Schulte - CMPT 726. Bishop PRML Ch.

Feed-forward Networks Network Training Error Backpropagation Applications. Neural Networks. Oliver Schulte - CMPT 726. Bishop PRML Ch. Neural Networks Oliver Schulte - CMPT 726 Bishop PRML Ch. 5 Neural Networks Neural networks arise from attempts to model human/animal brains Many models, many claims of biological plausibility We will

More information

CSC 578 Neural Networks and Deep Learning

CSC 578 Neural Networks and Deep Learning CSC 578 Neural Networks and Deep Learning Fall 2018/19 3. Improving Neural Networks (Some figures adapted from NNDL book) 1 Various Approaches to Improve Neural Networks 1. Cost functions Quadratic Cross

More information

Advanced Machine Learning Practical 4b Solution: Regression (BLR, GPR & Gradient Boosting)

Advanced Machine Learning Practical 4b Solution: Regression (BLR, GPR & Gradient Boosting) Advanced Machine Learning Practical 4b Solution: Regression (BLR, GPR & Gradient Boosting) Professor: Aude Billard Assistants: Nadia Figueroa, Ilaria Lauzana and Brice Platerrier E-mails: aude.billard@epfl.ch,

More information

CSCI567 Machine Learning (Fall 2018)

CSCI567 Machine Learning (Fall 2018) CSCI567 Machine Learning (Fall 2018) Prof. Haipeng Luo U of Southern California Sep 12, 2018 September 12, 2018 1 / 49 Administration GitHub repos are setup (ask TA Chi Zhang for any issues) HW 1 is due

More information

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6 Machine Learning for Large-Scale Data Analysis and Decision Making 80-629-17A Neural Networks Week #6 Today Neural Networks A. Modeling B. Fitting C. Deep neural networks Today s material is (adapted)

More information

Least Mean Squares Regression. Machine Learning Fall 2018

Least Mean Squares Regression. Machine Learning Fall 2018 Least Mean Squares Regression Machine Learning Fall 2018 1 Where are we? Least Squares Method for regression Examples The LMS objective Gradient descent Incremental/stochastic gradient descent Exercises

More information

Feature Noising. Sida Wang, joint work with Part 1: Stefan Wager, Percy Liang Part 2: Mengqiu Wang, Chris Manning, Percy Liang, Stefan Wager

Feature Noising. Sida Wang, joint work with Part 1: Stefan Wager, Percy Liang Part 2: Mengqiu Wang, Chris Manning, Percy Liang, Stefan Wager Feature Noising Sida Wang, joint work with Part 1: Stefan Wager, Percy Liang Part 2: Mengqiu Wang, Chris Manning, Percy Liang, Stefan Wager Outline Part 0: Some backgrounds Part 1: Dropout as adaptive

More information

ECE521 Lecture 7/8. Logistic Regression

ECE521 Lecture 7/8. Logistic Regression ECE521 Lecture 7/8 Logistic Regression Outline Logistic regression (Continue) A single neuron Learning neural networks Multi-class classification 2 Logistic regression The output of a logistic regression

More information

CSC 411 Lecture 6: Linear Regression

CSC 411 Lecture 6: Linear Regression CSC 411 Lecture 6: Linear Regression Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 06-Linear Regression 1 / 37 A Timely XKCD UofT CSC 411: 06-Linear Regression

More information

Linear Models for Classification

Linear Models for Classification Linear Models for Classification Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Linear

More information

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis Introduction to Natural Computation Lecture 9 Multilayer Perceptrons and Backpropagation Peter Lewis 1 / 25 Overview of the Lecture Why multilayer perceptrons? Some applications of multilayer perceptrons.

More information

Convolutional Neural Networks

Convolutional Neural Networks Convolutional Neural Networks Books» http://www.deeplearningbook.org/ Books http://neuralnetworksanddeeplearning.com/.org/ reviews» http://www.deeplearningbook.org/contents/linear_algebra.html» http://www.deeplearningbook.org/contents/prob.html»

More information

Neural Networks with Applications to Vision and Language. Feedforward Networks. Marco Kuhlmann

Neural Networks with Applications to Vision and Language. Feedforward Networks. Marco Kuhlmann Neural Networks with Applications to Vision and Language Feedforward Networks Marco Kuhlmann Feedforward networks Linear separability x 2 x 2 0 1 0 1 0 0 x 1 1 0 x 1 linearly separable not linearly separable

More information

4. Multilayer Perceptrons

4. Multilayer Perceptrons 4. Multilayer Perceptrons This is a supervised error-correction learning algorithm. 1 4.1 Introduction A multilayer feedforward network consists of an input layer, one or more hidden layers, and an output

More information

Advanced computational methods X Selected Topics: SGD

Advanced computational methods X Selected Topics: SGD Advanced computational methods X071521-Selected Topics: SGD. In this lecture, we look at the stochastic gradient descent (SGD) method 1 An illustrating example The MNIST is a simple dataset of variety

More information

Reading Group on Deep Learning Session 1

Reading Group on Deep Learning Session 1 Reading Group on Deep Learning Session 1 Stephane Lathuiliere & Pablo Mesejo 2 June 2016 1/31 Contents Introduction to Artificial Neural Networks to understand, and to be able to efficiently use, the popular

More information

Midterm: CS 6375 Spring 2018

Midterm: CS 6375 Spring 2018 Midterm: CS 6375 Spring 2018 The exam is closed book (1 cheat sheet allowed). Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, use an additional

More information

Sum-Product Networks. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017

Sum-Product Networks. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017 Sum-Product Networks STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017 Introduction Outline What is a Sum-Product Network? Inference Applications In more depth

More information

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes CS 6501: Deep Learning for Computer Graphics Basics of Neural Networks Connelly Barnes Overview Simple neural networks Perceptron Feedforward neural networks Multilayer perceptron and properties Autoencoders

More information

Neural Networks. Bishop PRML Ch. 5. Alireza Ghane. Feed-forward Networks Network Training Error Backpropagation Applications

Neural Networks. Bishop PRML Ch. 5. Alireza Ghane. Feed-forward Networks Network Training Error Backpropagation Applications Neural Networks Bishop PRML Ch. 5 Alireza Ghane Neural Networks Alireza Ghane / Greg Mori 1 Neural Networks Neural networks arise from attempts to model human/animal brains Many models, many claims of

More information

Internal Covariate Shift Batch Normalization Implementation Experiments. Batch Normalization. Devin Willmott. University of Kentucky.

Internal Covariate Shift Batch Normalization Implementation Experiments. Batch Normalization. Devin Willmott. University of Kentucky. Batch Normalization Devin Willmott University of Kentucky October 23, 2017 Overview 1 Internal Covariate Shift 2 Batch Normalization 3 Implementation 4 Experiments Covariate Shift Suppose we have two distributions,

More information

Neural networks (NN) 1

Neural networks (NN) 1 Neural networks (NN) 1 Hedibert F. Lopes Insper Institute of Education and Research São Paulo, Brazil 1 Slides based on Chapter 11 of Hastie, Tibshirani and Friedman s book The Elements of Statistical

More information

Neural Networks: Backpropagation

Neural Networks: Backpropagation Neural Networks: Backpropagation Machine Learning Fall 2017 Based on slides and material from Geoffrey Hinton, Richard Socher, Dan Roth, Yoav Goldberg, Shai Shalev-Shwartz and Shai Ben-David, and others

More information

Reward-modulated inference

Reward-modulated inference Buck Shlegeris Matthew Alger COMP3740, 2014 Outline Supervised, unsupervised, and reinforcement learning Neural nets RMI Results with RMI Types of machine learning supervised unsupervised reinforcement

More information

Learning with Momentum, Conjugate Gradient Learning

Learning with Momentum, Conjugate Gradient Learning Learning with Momentum, Conjugate Gradient Learning Introduction to Neural Networks : Lecture 8 John A. Bullinaria, 2004 1. Visualising Learning 2. Learning with Momentum 3. Learning with Line Searches

More information

Understanding How ConvNets See

Understanding How ConvNets See Understanding How ConvNets See Slides from Andrej Karpathy Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops) CSC321: Intro to Machine Learning and Neural Networks,

More information

Topic 3: Neural Networks

Topic 3: Neural Networks CS 4850/6850: Introduction to Machine Learning Fall 2018 Topic 3: Neural Networks Instructor: Daniel L. Pimentel-Alarcón c Copyright 2018 3.1 Introduction Neural networks are arguably the main reason why

More information

Stochastic gradient descent; Classification

Stochastic gradient descent; Classification Stochastic gradient descent; Classification Steve Renals Machine Learning Practical MLP Lecture 2 28 September 2016 MLP Lecture 2 Stochastic gradient descent; Classification 1 Single Layer Networks MLP

More information

Predictive analysis on Multivariate, Time Series datasets using Shapelets

Predictive analysis on Multivariate, Time Series datasets using Shapelets 1 Predictive analysis on Multivariate, Time Series datasets using Shapelets Hemal Thakkar Department of Computer Science, Stanford University hemal@stanford.edu hemal.tt@gmail.com Abstract Multivariate,

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Beyond Spatial Pyramids

Beyond Spatial Pyramids Beyond Spatial Pyramids Receptive Field Learning for Pooled Image Features Yangqing Jia 1 Chang Huang 2 Trevor Darrell 1 1 UC Berkeley EECS 2 NEC Labs America Goal coding pooling Bear Analysis of the pooling

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Deep Learning II: Momentum & Adaptive Step Size

Deep Learning II: Momentum & Adaptive Step Size Deep Learning II: Momentum & Adaptive Step Size CS 760: Machine Learning Spring 2018 Mark Craven and David Page www.biostat.wisc.edu/~craven/cs760 1 Goals for the Lecture You should understand the following

More information

Vectorization. Yu Wu, Ishan Patil. October 13, 2017

Vectorization. Yu Wu, Ishan Patil. October 13, 2017 Vectorization Yu Wu, Ishan Patil October 13, 2017 Exercises to be covered We will implement some examples of image classification algorithms using a subset of the MNIST dataset logistic regression for

More information

Summary and discussion of: Dropout Training as Adaptive Regularization

Summary and discussion of: Dropout Training as Adaptive Regularization Summary and discussion of: Dropout Training as Adaptive Regularization Statistics Journal Club, 36-825 Kirstin Early and Calvin Murdock November 21, 2014 1 Introduction Multi-layered (i.e. deep) artificial

More information

Lecture 5: GPs and Streaming regression

Lecture 5: GPs and Streaming regression Lecture 5: GPs and Streaming regression Gaussian Processes Information gain Confidence intervals COMP-652 and ECSE-608, Lecture 5 - September 19, 2017 1 Recall: Non-parametric regression Input space X

More information

Neural Networks. Nicholas Ruozzi University of Texas at Dallas

Neural Networks. Nicholas Ruozzi University of Texas at Dallas Neural Networks Nicholas Ruozzi University of Texas at Dallas Handwritten Digit Recognition Given a collection of handwritten digits and their corresponding labels, we d like to be able to correctly classify

More information

Lecture 4: Perceptrons and Multilayer Perceptrons

Lecture 4: Perceptrons and Multilayer Perceptrons Lecture 4: Perceptrons and Multilayer Perceptrons Cognitive Systems II - Machine Learning SS 2005 Part I: Basic Approaches of Concept Learning Perceptrons, Artificial Neuronal Networks Lecture 4: Perceptrons

More information

Learning Recurrent Neural Networks with Hessian-Free Optimization: Supplementary Materials

Learning Recurrent Neural Networks with Hessian-Free Optimization: Supplementary Materials Learning Recurrent Neural Networks with Hessian-Free Optimization: Supplementary Materials Contents 1 Pseudo-code for the damped Gauss-Newton vector product 2 2 Details of the pathological synthetic problems

More information

Fast Learning with Noise in Deep Neural Nets

Fast Learning with Noise in Deep Neural Nets Fast Learning with Noise in Deep Neural Nets Zhiyun Lu U. of Southern California Los Angeles, CA 90089 zhiyunlu@usc.edu Zi Wang Massachusetts Institute of Technology Cambridge, MA 02139 ziwang.thu@gmail.com

More information

CSC321 Lecture 9: Generalization

CSC321 Lecture 9: Generalization CSC321 Lecture 9: Generalization Roger Grosse Roger Grosse CSC321 Lecture 9: Generalization 1 / 27 Overview We ve focused so far on how to optimize neural nets how to get them to make good predictions

More information

Learning to Disentangle Factors of Variation with Manifold Learning

Learning to Disentangle Factors of Variation with Manifold Learning Learning to Disentangle Factors of Variation with Manifold Learning Scott Reed Kihyuk Sohn Yuting Zhang Honglak Lee University of Michigan, Department of Electrical Engineering and Computer Science 08

More information

Neural Networks. Henrik I. Christensen. Computer Science and Engineering University of California, San Diego

Neural Networks. Henrik I. Christensen. Computer Science and Engineering University of California, San Diego Neural Networks Henrik I. Christensen Computer Science and Engineering University of California, San Diego http://www.hichristensen.net Henrik I. Christensen (UCSD) Neural Networks 1 / 39 Introduction

More information

Multilayer Perceptrons (MLPs)

Multilayer Perceptrons (MLPs) CSE 5526: Introduction to Neural Networks Multilayer Perceptrons (MLPs) 1 Motivation Multilayer networks are more powerful than singlelayer nets Example: XOR problem x 2 1 AND x o x 1 x 2 +1-1 o x x 1-1

More information

Differentiable Fine-grained Quantization for Deep Neural Network Compression

Differentiable Fine-grained Quantization for Deep Neural Network Compression Differentiable Fine-grained Quantization for Deep Neural Network Compression Hsin-Pai Cheng hc218@duke.edu Yuanjun Huang University of Science and Technology of China Anhui, China yjhuang@mail.ustc.edu.cn

More information