Exploiting Structure in Probability Distributions Irit Gat-Viks

Size: px
Start display at page:

Download "Exploiting Structure in Probability Distributions Irit Gat-Viks"

Transcription

1 Explotng Structure n rolty Dstrutons Irt Gt-Vks Bsed on presentton nd lecture notes of Nr Fredmn, Herew Unversty

2 Generl References: D. Koller nd N. Fredmn, prolstc grphcl models erl, rolstc Resonng n Intellgent Systems Jensen, An Introducton to Byesn Networks Heckermn, A tutorl on lernng wth Byesn networks

3 Exmple I Reltonshps n oesty Trglycerds n lowdensty lpoprotens LDLs Cholesterol n lowdensty lpoprotens LDLs Hert rte

4 Exmple II The currently ccepted consensus network of humn prmry CD4 T cells, downstrem of CD3, CD8, nd LFA- 1 ctvton 10 erturtons y smll molecules 11 Colored nodes: Mesured sgnlng protens Cusl roten-sgnlng Networks Derved from Multprmeter Sngle-Cell Dt. Kren Schs, et l. 005.

5 Byesn network results KC->KA ws vldted expermentlly. Akt ws not ffected y Erk n ddtonl experments

6 Exmple III: Byesn network models for trnscrpton fctor-dna ndng motf wth 5 postons SSM Byesn network

7 Exmple IV: Dgnostc Byesn network model

8 Bsc rolty Defntons roduct Rule: A,BA B*B B A*A Independence etween A nd B: A,BA*B, or lterntvely: ABA, BAB. Totl prolty theorem: n U B Ω, j 1 j BI B φ n A A, B B * A B n 1 1

9 Bsc rolty Defntons Byes Rule: A B B A A B A B, C B A, C A C B C Chn Rule:,..., 1 n,...,,...,,...,... 1 n 3 n 3 4 n n 1 n n

10 Explotng Independence roperty G: whether the womn s pregnnt D: whether the doctor s test s postve The jont dstruton representton g,d: G D G,D Fctorl representton Usng condtonl prolty: g,dg*dg. The dstruton of g, dg: G g0 g dg d0 d1 D g0 g Exmple: g0,d10.06 vs. g0*d1g00.6*

11 Explotng Independence roperty H: home test Independence ssumpton: IndH;DG.e., gven G, H s ndependent of D. Jont dstruton d,h,gd,hg*gdg* hg*g Fctorl representton roduct rule IndH;DG G g0 g h0 h1 d0 d1 g H D g g g

12 Explotng Independence roperty No. of prmeters Addng new vrle H representton of d,g,h jont dstruton 7 chngng the dstruton entrely fctored dstruton 5 Modulrty: reuse the locl prolty model. Only new locl prolty model for H. G g0 g Locl prolty g0 h0 0.9 h1 0.1 H D g0 d0 0.9 d1 0.1 g g > Byesn networks: Explotng ndependence propertes of the dstruton n order to llow compct nd nturl representton.

13 Outlne Introducton Byesn Networks» Representton & Semntcs Inference n Byesn networks Lernng Byesn networks

14 Representng the Uncertnty Erthquke Burglry A story wth fve rndom vrles: Burglry, Erthquke, Alrm, Neghor Cll, Rdo Announcement Rdo Specfy jont dstruton wth 5 3 prmeters Alrm Cll mye An expert system for montorng ntensve cre ptents Specfy jont dstruton over 37 vrles wth t lest 37 prmeters no wy!!!

15 rolstc Independence: Key for Representton nd Resonng Recll tht f nd Y re ndependent gven Z then In our story f urglry nd erthquke re ndependent lrm sound nd rdo re ndependent gven erthquke urglry nd rdo re ndependent gven erthquke then nsted of 15 prmeters we need 8,,,,,, B B E B E R B E R A B E R A,,,, B E E R B E A B E A R, Y Y Z versus Need lnguge to represent ndependence sttements

16 Mrkov Assumpton Ancestor Generlzng: A chld s condtonlly ndependent from ts non-descendents, gven the vlue of ts prents. Ind ; NonDescendnt Y 1 Y rent It s nturl ssumpton for mny cusl processes Descendent Non-descendent Descendent

17 Mrkov Assumpton cont. Exmples: R s ndependent of A, B, C, gven E A s ndependent of R, gven B nd E C s ndependent of B, E, R, gven A Erthquke Rdo Burglry Alrm Cll

18 Byesn Network Semntcs R E A C B Qulttve prt condtonl ndependence sttements n BN structure Quntttve prt locl prolty + Models e.g., multnoml, lner Gussn Unque jont dstruton over domn Compct & effcent representton: nodes hve k prents O k n vs. O n prms prmeters pertn to locl nterctons C,A,R,E,B B*EB*RE,B*AR,B,E*CA,R,B,E versus C,A,R,E,B B*E * RE * AB,E * CA In generl: x1,..., x x n x 1,.., n

19 Byesn networks Effcent representton of prolty dstrutons v condtonl ndependence Qulttve prt: sttstcl ndependence sttements Drected cyclc grph DAG Nodes - rndom vrles of nterest exhustve nd mutully exclusve sttes Edges - drect nfluence Erthquke Rdo Burglry Alrm Cll E e e e e B A E,B Quntttve prt: Locl prolty models. Set of condtonl prolty dstrutons.

20 Outlne Introducton Byesn Networks Representton & Semntcs» Inference n Byesn networks Lernng Byesn networks

21 Inference n Byesn networks A Byesn network represents prolty dstruton. Cn we nswer queres out ths dstruton? Exmples: YZz Most prole estmton Mxmum posteror ME W Z z rg mx w w, z MA Y Z z rg mx y z y

22 Inference n Byesn networks Gol: compute Ee,A n the followng Byesn network: A B C D E Usng defnton of prolty, we hve, e,, c, d, e c d c d c d c e d

23 Elmntng d, we get A B C E D c c d c d c e F c d e c d c d e c d c e, 1, Inference n Byesn networks ec

24 Elmntng c, we get A B C E D c c e F c e c c e c e,, Inference n Byesn networks pe

25 Fnlly, we elmnte A B C E D, 3, e F e p e p e Inference n Byesn networks pe

26 Vrle Elmnton Algorthm Generl de: Wrte query n the form x L x p 1 x x x k 3 Itertvely Move ll rrelevnt terms outsde of nnermost sum erform nnermost sum, gettng new term Insert the new term nto the product In cse of evdence x 1 evdence x j, use: x x x, x / x j j j

27 Complexty of nference Nïve exct nference exponentl n the numer of vrles n the network Vrle elmnton complexty exponentl n the sze of lrgest fctor polynoml n the numer of vrles n the network Vrle elmnton computton depend on order of elmnton mny heurstcs, e.g., clque tree lgorthm.

28 Outlne Introducton Byesn Networks Representton & Semntcs Inference n Byesn networks» Lernng Byesn networks rmeter Lernng Structure Lernng

29 Lernng rocess Input: dtset nd pror nformton Output: Byesn network E B Dt + ror nformton Lernng R A C

30 The Lernng rolem Complete Dt Incomplete Dt Known Structure Sttstcl prmetrc estmton closed-form eq. rmetrc optmzton EM, grdent descent... Unknown Structure Dscrete optmzton over structures dscrete serch Comned Structurl EM, mxture models We wll focus on complete dt for the rest of the tlk The stuton wth ncomplete dt s more nvolved

31 Outlne Introducton Byesn Networks Representton & Semntcs Inference n Byesn networks Lernng Byesn networks»rmeter Lernng Structure Lernng

32 Lernng rmeters Key concept: the lkelhood functon L θ : D D θ x[ m] θ mesures how the prolty of the dt chnges when we chnge prmeters m Estmton: MLE: choose prmeters tht mxmze lkelhood Byesn: tret prmeters s n unknown quntty, nd mrgnlze over t

33 MLE prncple for Bnoml Dt Dt: H, H, T, H, H. Θs the unknown prolty H. Nk Lkelhood functon: L Θ : D θk L θ : D θ θ 1 θ θ θ k 0,1 Estmton tsk: Gven sequence of smples x[1], x[] x[m], we wnt to estmte the prolty H θ nd T1-θ. MLE prncple: choose prmeter tht mxmze the lkelhood functon. Applyng the MLE prncple we get NH θ N + N H MLE for H s 4/5 0.8 T Lθ :D θ 33

34 MLE prncple for Multnoml Dt Suppose cn hve the vlues 1,,,k. We wnt to lern the prmeters θ 1,, θ k. N 1,,N k - The numer of tmes ech outcome s oserved. Lkelhood functon: The MLE s: θ L Θ : D N l 1,..., k N l K k 1 θ N k k Count of k th outcome n D rolty of k th outcome

35 MLE prncple for Byesn networks E B Trnng dt hs the form: Assume..d. smples D E [1] E [ M] B[1] B[ M] A[1] A[ M] C [1] C [ M] A C L Θ: D E[ m], B[ m], A[ m], C[ m] : Θ m By defnton of network m E[ m]: Θ B[ m]: Θ A[ m] B[ m], E[ m]: Θ C[ m] A[ m]: Θ m m m E[ m]: Θ B[ m]: Θ A[ m] B[ m], E[ m]: Θ m C[ m] A[ m]: Θ E[1] E [ M] B[1] B[ M] A[1] A[ M] C[1] C[ M] E [1] E [ M ] B [1] B [ M ] A[1] A[ M ] C [1] C [ M ]

36 MLE prncple for Byesn networks Generlzng for ny Byesn network: L Θ : D x [ m] [ m]: Θ L Θ : D m L θ : D x [ m] [ m]: θ m x p : θ p x N x N x, p, p x p p x θ The lkelhood decomposes ccordng to the network structure. Decomposton Independent estmton prolems If the prmeters for ech fmly re not relted For ech vlue p of the prent of we get ndependent multnoml prolem. The MLE s ˆ θx p N x, p N p

37 Contnuous Gussn vrles Dscrete L θ : D x [ m] [ m]: θ m Y Y ~ N µ, σ L Θ : D x [ m] [ m]: Θ L Θ : D m ~ N µ, σ,, The lkelhood decomposes ccordng to the network structure. Decomposton Independent estmton prolems If the prmeters for ech fmly re not relted For ech vlue p of the prent of we get ndependent mxmzton prolem. The MLE s µ σ,, m: [ m] p N p x [ m] x m: [ m] p [ m] µ N p,

38 Contnuous Gussn vrles ~ N µ, σ Y ~ N x +, σ Y ~ N µ, σ ~ N p +, σ L Θ : D x [ m] [ m]: Θ L Θ : D m L θ : D x [ m] [ m]: θ m The lkelhood decomposes Independent estmton prolems The MLE s ~ N p +, σ

39 Sttstcl ckground - regresson Assume Y + + Z, σ, µ re populton vrnce nd men of. Thus : 1.. Y ~ N Usng lest - squres estmton of nd :, rg mn Solvng mx lkelhood estmton of Y : x y x µ µ + x, rg mx log LY n 1 rg mx ln πσ rg mn +, σ. y y z x x where Z + y + ~ N0, σ, x + z / σ Ind,Z.

40 1... E usng populton prmeters Express Y E EY -, cov rg mn, xy y x x y xy y x y x y xy x y x y x y x y xy x y x xy x Y Vr Y Y x y ρ σ µ σ σ ρ µ µ µ µ µ ρ σ σ µ µ µ µ σ σ ρ σ σ σ ρ σ Sttstcl ckground - regresson

41 Contnuous Gussn vrles 1 E xy y x x y xy y Y Vr Y ρ σ µ σ σ ρ µ +, ~ σ p N + Y, ~ N σ µ 1 E Vr ρ σ µ σ σ ρ µ +, ~ σ x N Y +, ~ N σ µ

42 Lernng rmeters Key concept: the lkelhood functon L θ : D D θ x[ m] θ mesures how the prolty of the dt chnges when we chnge prmeters m Estmton: MLE: choose prmeters tht mxmze lkelhood Byesn: tret prmeters s n unknown quntty, nd mrgnlze over t

43 The Byesn Approch to lernng Fnd the posteror! [ M + 1] H D [ M + 1] H θ, D θ D dθ [ M + 1] H θ θ D dθ θ D θ [ M + 1] H θ dθ D [ M + 1] H θ θ D θ dθ θ D θ dθ θ θ D θ dθ θ D θ dθ

44 Byesn pproch for Bnoml Dt H θ. ror: unform for θ n [0,1]. therefore, θ1 Dt: N H,N T 4,1 MLE for H s N H /N H+ N T 4/5 0.8 Byesn predcton s: θ θ D θ dθ x[ M + 1] H D θ D θ dθ NH NT θ 1 θ 1 θ dθ 5 NH NT 1 θ 1 θ dθ K

45 Byesn pproch for Multnoml Dt Recll tht the lkelhood functon s L Θ : D K k 1 θ N k k Drchlet pror wth hyperprmeters α 1,,α K α 1! j K j 1 αk 1 θk 1 k k 1 Θ α 1! α 1!... α 1! k the posteror: Drchlet wth hyperprmeters α 1 +N 1,,α K +N K Θ D Θ c α Nk Θ D θk D D k α + N 1! K K αk 1 θk k 1 k 1 j j K j 1 αk + Nk 1 θk 1 + N1 + N k + Nk k 1 α 1! α 1!... α 1!

46 Byesn pproch for Multnoml Dt If Θ s Drchlet wth hyperprmeters α 1,,α K The posteror s lso Drchlet: ΘD s Drchlet wth hyperprmeters α 1 +N 1,α K + N k nd thus we get [ M + 1] k D θ θ D dθ k α k + l l N k α + N l

47 Lernng rmeters for Byesn networks : Summry For multnomls: counts Nx,p rmeter estmton ˆ θx p N x, p N p ~ θ x p α x, p + N x, p α p + N p MLE Byesn Drchlet Both cn e mplemented n n on-lne mnner y ccumultng counts.

48 Outlne Introducton Byesn Networks Representton & Semntcs Inference n Byesn networks Lernng Byesn networks rmeter Lernng»Structure Lernng

49 Lernng Structure: Motvton Erthquke Alrm Set Burglry Sound Addng n rc Mssng n rc Erthquke Alrm Set Burglry Erthquke Alrm Set Burglry Sound Sound

50 Optmzton rolem Input: Trnng dt Scorng functon ncludng prors Set of possle structures Output: A network or networks tht mxmze the score Key roperty: Decomposlty: the score of network s sum of terms.

51 Scores For exmple. The BDE score: Score G : D G D D G G D G, θ θ G dθ G When the dt s complete, the score s decomposle: G Score G : D Score : D

52 Heurstc Serch cont. Typcl opertons: S C S C Add C D E E D Remove C E D Reverse C E S C S C E D E D

53 Heurstc Serch We ddress the prolem y usng heurstc serch Trverse the spce of possle networks, lookng for hgh-scorng structures Serch technques: Greedy hll-clmng Smulted Annelng...

54 Outlne Introducton Byesn Networks Representton & Semntcs Inference n Byesn networks Lernng Byesn networks Concluson Applctons

CIS587 - Artificial Intelligence. Uncertainty CIS587 - AI. KB for medical diagnosis. Example.

CIS587 - Artificial Intelligence. Uncertainty CIS587 - AI. KB for medical diagnosis. Example. CIS587 - rtfcl Intellgence Uncertnty K for medcl dgnoss. Exmple. We wnt to uld K system for the dgnoss of pneumon. rolem descrpton: Dsese: pneumon tent symptoms fndngs, l tests: Fever, Cough, leness, WC

More information

3/6/00. Reading Assignments. Outline. Hidden Markov Models: Explanation and Model Learning

3/6/00. Reading Assignments. Outline. Hidden Markov Models: Explanation and Model Learning 3/6/ Hdden Mrkov Models: Explnton nd Model Lernng Brn C. Wllms 6.4/6.43 Sesson 2 9/3/ courtesy of JPL copyrght Brn Wllms, 2 Brn C. Wllms, copyrght 2 Redng Assgnments AIMA (Russell nd Norvg) Ch 5.-.3, 2.3

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

Least squares. Václav Hlaváč. Czech Technical University in Prague

Least squares. Václav Hlaváč. Czech Technical University in Prague Lest squres Václv Hlváč Czech echncl Unversty n Prgue hlvc@fel.cvut.cz http://cmp.felk.cvut.cz/~hlvc Courtesy: Fred Pghn nd J.P. Lews, SIGGRAPH 2007 Course; Outlne 2 Lner regresson Geometry of lest-squres

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Bayesian Networks: Approximate Inference

Bayesian Networks: Approximate Inference pproches to inference yesin Networks: pproximte Inference xct inference Vrillimintion Join tree lgorithm pproximte inference Simplify the structure of the network to mkxct inferencfficient (vritionl methods,

More information

Advanced Machine Learning. An Ising model on 2-D image

Advanced Machine Learning. An Ising model on 2-D image Advnced Mchne Lernng Vrtonl Inference Erc ng Lecture 12, August 12, 2009 Redng: Erc ng Erc ng @ CMU, 2006-2009 1 An Isng model on 2-D mge odes encode hdden nformton ptchdentty. They receve locl nformton

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

Definition of Tracking

Definition of Tracking Trckng Defnton of Trckng Trckng: Generte some conclusons bout the moton of the scene, objects, or the cmer, gven sequence of mges. Knowng ths moton, predct where thngs re gong to project n the net mge,

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Substitution Matrices and Alignment Statistics. Substitution Matrices

Substitution Matrices and Alignment Statistics. Substitution Matrices Susttuton Mtrces nd Algnment Sttstcs BMI/CS 776 www.ostt.wsc.edu/~crven/776.html Mrk Crven crven@ostt.wsc.edu Ferur 2002 Susttuton Mtrces two oulr sets of mtrces for roten seuences PAM mtrces [Dhoff et

More information

Statistics 423 Midterm Examination Winter 2009

Statistics 423 Midterm Examination Winter 2009 Sttstcs 43 Mdterm Exmnton Wnter 009 Nme: e-ml: 1. Plese prnt your nme nd e-ml ddress n the bove spces.. Do not turn ths pge untl nstructed to do so. 3. Ths s closed book exmnton. You my hve your hnd clcultor

More information

An Ising model on 2-D image

An Ising model on 2-D image School o Coputer Scence Approte Inerence: Loopy Bele Propgton nd vrnts Prolstc Grphcl Models 0-708 Lecture 4, ov 7, 007 Receptor A Knse C Gene G Receptor B Knse D Knse E 3 4 5 TF F 6 Gene H 7 8 Hetunndn

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Scence Prolstc Grphcl Models Vrtonl Inference Erc ng Lecture 13, Ferury 24, 2014 Redng: See clss weste Erc ng @ CMU, 2005-2014 1 Inference Prolems Compute the lelhood of oserved dt Compute

More information

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk Chpter 5 Supplementl Text Mterl 5-. Expected Men Squres n the Two-fctor Fctorl Consder the two-fctor fxed effects model y = µ + τ + β + ( τβ) + ε k R S T =,,, =,,, k =,,, n gven s Equton (5-) n the textook.

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market CHAPTER - 7 Frefly Algorthm sed Strtegc Bddng to Mxmze Proft of IPPs n Compettve Electrcty Mrket 7. Introducton The renovton of electrc power systems plys mjor role on economc nd relle operton of power

More information

Model Fitting and Robust Regression Methods

Model Fitting and Robust Regression Methods Dertment o Comuter Engneerng Unverst o Clorn t Snt Cruz Model Fttng nd Robust Regresson Methods CMPE 64: Imge Anlss nd Comuter Vson H o Fttng lnes nd ellses to mge dt Dertment o Comuter Engneerng Unverst

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

A Family of Multivariate Abel Series Distributions. of Order k

A Family of Multivariate Abel Series Distributions. of Order k Appled Mthemtcl Scences, Vol. 2, 2008, no. 45, 2239-2246 A Fmly of Multvrte Abel Seres Dstrbutons of Order k Rupk Gupt & Kshore K. Ds 2 Fculty of Scence & Technology, The Icf Unversty, Agrtl, Trpur, Ind

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

A Tri-Valued Belief Network Model for Information Retrieval

A Tri-Valued Belief Network Model for Information Retrieval December 200 A Tr-Vlued Belef Networ Model for Informton Retrevl Fernndo Ds-Neves Computer Scence Dept. Vrgn Polytechnc Insttute nd Stte Unversty Blcsburg, VA 24060. IR models t Combnng Evdence Grphcl

More information

Decomposition of Boolean Function Sets for Boolean Neural Networks

Decomposition of Boolean Function Sets for Boolean Neural Networks Decomposton of Boolen Functon Sets for Boolen Neurl Netorks Romn Kohut,, Bernd Stenbch Freberg Unverst of Mnng nd Technolog Insttute of Computer Scence Freberg (Schs), Germn Outlne Introducton Boolen Neuron

More information

SVMs for regression Non-parametric/instance based classification method

SVMs for regression Non-parametric/instance based classification method S 75 Mchne ernng ecture Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre SVMs for regresson Non-prmetrc/nstnce sed cssfcton method S 75 Mchne ernng Soft-mrgn SVM Aos some fet on crossng the seprtng hperpne

More information

Constructing Free Energy Approximations and GBP Algorithms

Constructing Free Energy Approximations and GBP Algorithms 3710 Advnced Topcs n A ecture 15 Brnslv Kveton kveton@cs.ptt.edu 5802 ennott qure onstructng Free Energy Approxtons nd BP Algorths ontent Why? Belef propgton (BP) Fctor grphs egon-sed free energy pproxtons

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Linear Regression & Least Squares!

Linear Regression & Least Squares! Lner Regresson & Lest Squres Al Borj UWM CS 790 Slde credt: Aykut Erdem Ths&week Lner&regresson&prolem&& ' con0nuous&outputs& ' smple&model Introduce&key&concepts:&& ' loss&func0ons& ' generlz0on& ' op0mz0on&

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Lecture 22: Logic Synthesis (1)

Lecture 22: Logic Synthesis (1) Lecture 22: Logc Synthess (1) Sldes courtesy o Demng Chen Some sldes Courtesy o Pro. J. Cong o UCLA Outlne Redng Synthess nd optmzton o dgtl crcuts, G. De Mchel, 1994, Secton 2.5-2.5.1 Overvew Boolen lgebr

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

4 7x =250; 5 3x =500; Read section 3.3, 3.4 Announcements: Bell Ringer: Use your calculator to solve

4 7x =250; 5 3x =500; Read section 3.3, 3.4 Announcements: Bell Ringer: Use your calculator to solve Dte: 3/14/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: Use your clcultor to solve 4 7x =250; 5 3x =500; HW Requests: Properties of Log Equtions

More information

Support vector machines for regression

Support vector machines for regression S 75 Mchne ernng ecture 5 Support vector mchnes for regresson Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre S 75 Mchne ernng he decson oundr: ˆ he decson: Support vector mchnes ˆ α SV ˆ sgn αˆ SV!!: Decson

More information

Artificial Intelligence Bayesian Networks

Artificial Intelligence Bayesian Networks Artfcal Intellgence Bayesan Networks Adapted from sldes by Tm Fnn and Mare desjardns. Some materal borrowed from Lse Getoor. 1 Outlne Bayesan networks Network structure Condtonal probablty tables Condtonal

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus: More on χ nd errors : uppose tht we re fttng for sngle -prmeter, mnmzng: If we epnd The vlue χ ( ( ( ; ( wth respect to. χ n Tlor seres n the vcnt of ts mnmum vlue χ ( mn χ χ χ χ + + + mn mnmzes χ, nd

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

Sparse and Overcomplete Representation: Finding Statistical Orders in Natural Images

Sparse and Overcomplete Representation: Finding Statistical Orders in Natural Images Sprse nd Overcomplete Representton: Fndng Sttstcl Orders n Nturl Imges Amr Rez Sffr Azr Insttute for Theoretcl Computer Scence, Grz Unversty of Technology mr@g.tugrz.t Outlne Vsul Cortex. Sprse nd Overcomplete

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 17

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 17 EECS 70 Discrete Mthemtics nd Proility Theory Spring 2013 Annt Shi Lecture 17 I.I.D. Rndom Vriles Estimting the is of coin Question: We wnt to estimte the proportion p of Democrts in the US popultion,

More information

1B40 Practical Skills

1B40 Practical Skills B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need

More information

1/4/13. Outline. Markov Models. Frequency & profile model. A DNA profile (matrix) Markov chain model. Markov chains

1/4/13. Outline. Markov Models. Frequency & profile model. A DNA profile (matrix) Markov chain model. Markov chains /4/3 I529: Mhne Lernng n onformts (Sprng 23 Mrkov Models Yuzhen Ye Shool of Informts nd omputng Indn Unversty, loomngton Sprng 23 Outlne Smple model (frequeny & profle revew Mrkov hn pg slnd queston Model

More information

CS 188: Artificial Intelligence Spring 2007

CS 188: Artificial Intelligence Spring 2007 CS 188: Artificil Intelligence Spring 2007 Lecture 3: Queue-Bsed Serch 1/23/2007 Srini Nrynn UC Berkeley Mny slides over the course dpted from Dn Klein, Sturt Russell or Andrew Moore Announcements Assignment

More information

Hidden Markov Model. a ij. Observation : O1,O2,... States in time : q1, q2,... All states : s1, s2,..., sn

Hidden Markov Model. a ij. Observation : O1,O2,... States in time : q1, q2,... All states : s1, s2,..., sn Hdden Mrkov Model S S servon : 2... Ses n me : 2... All ses : s s2... s 2 3 2 3 2 Hdden Mrkov Model Con d Dscree Mrkov Model 2 z k s s s s s s Degree Mrkov Model Hdden Mrkov Model Con d : rnson roly from

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

CS667 Lecture 6: Monte Carlo Integration 02/10/05

CS667 Lecture 6: Monte Carlo Integration 02/10/05 CS667 Lecture 6: Monte Crlo Integrtion 02/10/05 Venkt Krishnrj Lecturer: Steve Mrschner 1 Ide The min ide of Monte Crlo Integrtion is tht we cn estimte the vlue of n integrl by looking t lrge number of

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

In this Chapter. Chap. 3 Markov chains and hidden Markov models. Probabilistic Models. Example: CpG Islands

In this Chapter. Chap. 3 Markov chains and hidden Markov models. Probabilistic Models. Example: CpG Islands In ths Chpter Chp. 3 Mrov chns nd hdden Mrov models Bontellgence bortory School of Computer Sc. & Eng. Seoul Ntonl Unversty Seoul 5-74, Kore The probblstc model for sequence nlyss HMM (hdden Mrov model)

More information

Dynamic Power Management in a Mobile Multimedia System with Guaranteed Quality-of-Service

Dynamic Power Management in a Mobile Multimedia System with Guaranteed Quality-of-Service Dynmc Power Mngement n Moble Multmed System wth Gurnteed Qulty-of-Servce Qnru Qu, Qng Wu, nd Mssoud Pedrm Dept. of Electrcl Engneerng-Systems Unversty of Southern Clforn Los Angeles CA 90089 Outlne! Introducton

More information

Read section 3.3, 3.4 Announcements:

Read section 3.3, 3.4 Announcements: Dte: 3/1/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: 1. f x = 3x 6, find the inverse, f 1 x., Using your grphing clcultor, Grph 1. f x,f

More information

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O 1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

More information

Hidden Markov Models

Hidden Markov Models CM229S: Machne Learnng for Bonformatcs Lecture 12-05/05/2016 Hdden Markov Models Lecturer: Srram Sankararaman Scrbe: Akshay Dattatray Shnde Edted by: TBD 1 Introducton For a drected graph G we can wrte

More information

Maximum Likelihood Estimation for Allele Frequencies. Biostatistics 666

Maximum Likelihood Estimation for Allele Frequencies. Biostatistics 666 Mximum Likelihood Estimtion for Allele Frequencies Biosttistics 666 Previous Series of Lectures: Introduction to Colescent Models Comuttionlly efficient frmework Alterntive to forwrd simultions Amenble

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundmentl Theorem of Clculus Recll tht if f is nonnegtive nd continuous on [, ], then the re under its grph etween nd is the definite integrl A= f() d Now, for in the intervl [, ], let A() e the re under

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

First Midterm Examination

First Midterm Examination 24-25 Fll Semester First Midterm Exmintion ) Give the stte digrm of DFA tht recognizes the lnguge A over lphet Σ = {, } where A = {w w contins or } 2) The following DFA recognizes the lnguge B over lphet

More information

Reinforcement Learning with a Gaussian Mixture Model

Reinforcement Learning with a Gaussian Mixture Model Renforcement Lernng wth Gussn Mxture Model Alejndro Agostn, Member, IEEE nd Enrc Cely Abstrct Recent pproches to Renforcement Lernng (RL) wth functon pproxmton nclude Neurl Ftted Q Iterton nd the use of

More information

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Solutons Currulum Redy CMMG:, 4, 4 www.mthlets.om Trgonometry Solutons Bss Pge questons. Identfy f the followng trngles re rght ngled or not. Trngles,, d, e re rght ngled ndted

More information

Math 231E, Lecture 33. Parametric Calculus

Math 231E, Lecture 33. Parametric Calculus Mth 31E, Lecture 33. Prmetric Clculus 1 Derivtives 1.1 First derivtive Now, let us sy tht we wnt the slope t point on prmetric curve. Recll the chin rule: which exists s long s /. = / / Exmple 1.1. Reconsider

More information

Math 426: Probability Final Exam Practice

Math 426: Probability Final Exam Practice Mth 46: Probbility Finl Exm Prctice. Computtionl problems 4. Let T k (n) denote the number of prtitions of the set {,..., n} into k nonempty subsets, where k n. Argue tht T k (n) kt k (n ) + T k (n ) by

More information

Best Approximation in the 2-norm

Best Approximation in the 2-norm Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

More information

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014 SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 014 Mrk Scheme: Ech prt of Question 1 is worth four mrks which re wrded solely for the correct nswer.

More information

Work and Energy (Work Done by a Varying Force)

Work and Energy (Work Done by a Varying Force) Lecture 1 Chpter 7 Physcs I 3.5.14 ork nd Energy (ork Done y Vryng Force) Course weste: http://fculty.uml.edu/andry_dnylov/techng/physcsi Lecture Cpture: http://echo36.uml.edu/dnylov13/physcs1fll.html

More information

Statistics and Probability Letters

Statistics and Probability Letters Sttstcs nd Probblty Letters 79 (2009) 105 111 Contents lsts vlble t ScenceDrect Sttstcs nd Probblty Letters journl homepge: www.elsever.com/locte/stpro Lmtng behvour of movng verge processes under ϕ-mxng

More information

Permutation Genetic Algorithms for Score-Based Bayesian Network Structure Learning

Permutation Genetic Algorithms for Score-Based Bayesian Network Structure Learning Permutton Genetc Algorthms for Score-Bsed Byesn Network Structure Lernng Wllm H. Hsu Roby Joehnes Deprtment of Computng nd Informton Scences, Knss Stte Unversty 234 Nchols Hll, Mnhttn, KS 66506 {bhsu robbyjo}@cs.ksu.edu

More information

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus 7.1 Integrl s Net Chnge nd 7. Ares in the Plne Clculus 7.1 INTEGRAL AS NET CHANGE Notecrds from 7.1: Displcement vs Totl Distnce, Integrl s Net Chnge We hve lredy seen how the position of n oject cn e

More information

M/G/1/GD/ / System. ! Pollaczek-Khinchin (PK) Equation. ! Steady-state probabilities. ! Finding L, W q, W. ! π 0 = 1 ρ

M/G/1/GD/ / System. ! Pollaczek-Khinchin (PK) Equation. ! Steady-state probabilities. ! Finding L, W q, W. ! π 0 = 1 ρ M/G//GD/ / System! Pollcze-Khnchn (PK) Equton L q 2 2 λ σ s 2( + ρ ρ! Stedy-stte probbltes! π 0 ρ! Fndng L, q, ) 2 2 M/M/R/GD/K/K System! Drw the trnston dgrm! Derve the stedy-stte probbltes:! Fnd L,L

More information

Chapter 1: Fundamentals

Chapter 1: Fundamentals Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,

More information

Course Review Introduction to Computer Methods

Course Review Introduction to Computer Methods Course Revew Wht you hopefully hve lerned:. How to nvgte nsde MIT computer system: Athen, UNIX, emcs etc. (GCR). Generl des bout progrmmng (GCR): formultng the problem, codng n Englsh trnslton nto computer

More information

18.7 Artificial Neural Networks

18.7 Artificial Neural Networks 310 18.7 Artfcl Neurl Networks Neuroscence hs hypotheszed tht mentl ctvty conssts prmrly of electrochemcl ctvty n networks of brn cells clled neurons Ths led McCulloch nd Ptts to devse ther mthemtcl model

More information

Chapter 5 : Continuous Random Variables

Chapter 5 : Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 216 Néhémy Lim Chpter 5 : Continuous Rndom Vribles Nottions. N {, 1, 2,...}, set of nturl numbers (i.e. ll nonnegtive integers); N {1, 2,...}, set of ll

More information

An Overview of Integration

An Overview of Integration An Overview of Integrtion S. F. Ellermeyer July 26, 2 The Definite Integrl of Function f Over n Intervl, Suppose tht f is continuous function defined on n intervl,. The definite integrl of f from to is

More information

Joint distribution. Joint distribution. Marginal distributions. Joint distribution

Joint distribution. Joint distribution. Marginal distributions. Joint distribution Joint distribution To specify the joint distribution of n rndom vribles X 1,...,X n tht tke vlues in the smple spces E 1,...,E n we need probbility mesure, P, on E 1... E n = {(x 1,...,x n ) x i E i, i

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

List all of the possible rational roots of each equation. Then find all solutions (both real and imaginary) of the equation. 1.

List all of the possible rational roots of each equation. Then find all solutions (both real and imaginary) of the equation. 1. Mth Anlysis CP WS 4.X- Section 4.-4.4 Review Complete ech question without the use of grphing clcultor.. Compre the mening of the words: roots, zeros nd fctors.. Determine whether - is root of 0. Show

More information

ICS 252 Introduction to Computer Design

ICS 252 Introduction to Computer Design ICS 252 Introducton to Computer Desgn Prttonng El Bozorgzdeh Computer Scence Deprtment-UCI Prttonng Decomposton of complex system nto smller susystems Done herrchclly Prttonng done untl ech susystem hs

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

Decision Networks. CS 188: Artificial Intelligence Fall Example: Decision Networks. Decision Networks. Decisions as Outcome Trees

Decision Networks. CS 188: Artificial Intelligence Fall Example: Decision Networks. Decision Networks. Decisions as Outcome Trees CS 188: Artificil Intelligence Fll 2011 Decision Networks ME: choose the ction which mximizes the expected utility given the evidence mbrell Lecture 17: Decision Digrms 10/27/2011 Cn directly opertionlize

More information

STATISTICAL MECHANICS OF THE INVERSE ISING MODEL

STATISTICAL MECHANICS OF THE INVERSE ISING MODEL STATISTICAL MECHANICS OF THE INVESE ISING MODEL Muro Cro Supervsors: rof. Mchele Cselle rof. ccrdo Zecchn uly 2009 INTODUCTION SUMMAY OF THE ESENTATION Defnton of the drect nd nverse prole Approton ethods

More information

LECTURE NOTE #12 PROF. ALAN YUILLE

LECTURE NOTE #12 PROF. ALAN YUILLE LECTURE NOTE #12 PROF. ALAN YUILLE 1. Clustering, K-mens, nd EM Tsk: set of unlbeled dt D = {x 1,..., x n } Decompose into clsses w 1,..., w M where M is unknown. Lern clss models p(x w)) Discovery of

More information

Nondeterminism and Nodeterministic Automata

Nondeterminism and Nodeterministic Automata Nondeterminism nd Nodeterministic Automt 61 Nondeterminism nd Nondeterministic Automt The computtionl mchine models tht we lerned in the clss re deterministic in the sense tht the next move is uniquely

More information

Richard Socher, Henning Peters Elements of Statistical Learning I E[X] = arg min. E[(X b) 2 ]

Richard Socher, Henning Peters Elements of Statistical Learning I E[X] = arg min. E[(X b) 2 ] 1 Prolem (10P) Show that f X s a random varale, then E[X] = arg mn E[(X ) 2 ] Thus a good predcton for X s E[X] f the squared dfference s used as the metrc. The followng rules are used n the proof: 1.

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

Lecture 5 Single factor design and analysis

Lecture 5 Single factor design and analysis Lectue 5 Sngle fcto desgn nd nlss Completel ndomzed desgn (CRD Completel ndomzed desgn In the desgn of expements, completel ndomzed desgns e fo studng the effects of one pm fcto wthout the need to tke

More information

dt. However, we might also be curious about dy

dt. However, we might also be curious about dy Section 0. The Clculus of Prmetric Curves Even though curve defined prmetricly my not be function, we cn still consider concepts such s rtes of chnge. However, the concepts will need specil tretment. For

More information

Module 2: Rate Law & Stoichiomtery (Chapter 3, Fogler)

Module 2: Rate Law & Stoichiomtery (Chapter 3, Fogler) CHE 309: Chemicl Rection Engineering Lecture-8 Module 2: Rte Lw & Stoichiomtery (Chpter 3, Fogler) Topics to be covered in tody s lecture Thermodynmics nd Kinetics Rection rtes for reversible rections

More information

Lecture 21: Order statistics

Lecture 21: Order statistics Lecture : Order sttistics Suppose we hve N mesurements of sclr, x i =, N Tke ll mesurements nd sort them into scending order x x x 3 x N Define the mesured running integrl S N (x) = 0 for x < x = i/n for

More information

Multiple view geometry

Multiple view geometry EECS 442 Computer vson Multple vew geometry Perspectve Structure from Moton - Perspectve structure from moton prolem - mgutes - lgerc methods - Fctorzton methods - Bundle djustment - Self-clrton Redng:

More information

Utility function estimation: The entropy approach

Utility function estimation: The entropy approach Physc A 387 (28) 3862 3867 www.elsever.com/locte/phys Utlty functon estmton: The entropy pproch Andre Donso,, A. Hetor Res b,c, Lus Coelho Unversty of Evor, Center of Busness Studes, CEFAGE-UE, Lrgo Colegs,

More information

Numerical Analysis: Trapezoidal and Simpson s Rule

Numerical Analysis: Trapezoidal and Simpson s Rule nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =

More information

EM and Structure Learning

EM and Structure Learning EM and Structure Learnng Le Song Machne Learnng II: Advanced Topcs CSE 8803ML, Sprng 2012 Partally observed graphcal models Mxture Models N(μ 1, Σ 1 ) Z X N N(μ 2, Σ 2 ) 2 Gaussan mxture model Consder

More information

Overview of Calculus I

Overview of Calculus I Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

More information