Lecture 21: Order statistics

Size: px
Start display at page:

Download "Lecture 21: Order statistics"

Transcription

1 Lecture : Order sttistics Suppose we hve N mesurements of sclr, x i =, N Tke ll mesurements nd sort them into scending order x x x 3 x N Define the mesured running integrl S N (x) = 0 for x < x = i/n for x i x < x i+ = for x x N 474

2 Order sttistics So S N (x) looks like this: /Ν /Ν 0 x x x N 475

3 Order sttistics We would like to compre this with the predicted x function F(x ) = P(x < x H 0 ) = f x H ) dx ( 0 /Ν /Ν 0 x x x N 476

4 Order sttistics The most fmous sttistic is D N mx S N (x) F(x) D N /Ν /Ν 0 x x x N 477

5 Kolmogorov-Smirnov test Turns out the probbility function for N / D N is distribution-free nd clculble for N lrge ( 0 or so) α = P(N / D N > z) = = ( ) exp( z ) z> few exp( z ) 478

6 Kolmogorov-Smirnov test D N nd P(N ½ D N > z) form the K-S test which is Independent of binning Vlid for smll/medium smple sizes (lso lrge, of course) Loses sensitivity ner endpoints (x or x N ), since both integrls tend to sme vlue (0 or ) (this shortcoming is ddressed in some of the vrints discussed in the book) Like χ, cn be generlized to the cse of compring two mesured distributions to see if they re drwn from different smples 479

7 Kolmogorov-Smirnov test Compring two different smples, our mesured running integrls re S M nd S N Defining D NM = mx S M (x) S N (x), the probbility of (MN/[M+N]) ½ D NM exceeds given vlue z is gin α = = P([NM/(N = ( ) (i.e. (MN/[M+N]) ½ D NM replces N ½ D N ) + M)] / exp( D z NM ) > z) 480

8 Crmer-Von Mises-Smirnov test Less well known is the sttistic W = ( S ( x) F( x)) f ( x) dx = ( S ( x) F( x)) df N 0 N The quntity NW is lso distribution free nd hs clculble probbility function α = P(NW > z) = = ( ) / (4 + ) / exp( [4 + ] /6z) K / 4 ([4 + ] /6z) Binomil coeff. Modified Bessel fn 48

9 Crmer-Von Mises-Smirnov test This test works for very smll smples (N 3 or so) is more sensitive thn K-S ner the endpoints is the most powerful -D test cnnot be esily generlized to compre -D mesured distributions cn be written in more esily evluted form: N (i ) W = + F( xi ) N N i= N 48

10 Modeling dt So fr, we hve discussed only hypothesis testing. Often, we ssume some composite hypothesis nd wish to constrin its dustble prmeters by experiment Suppose there re m unknown prmeters, (with =,m) nd N dt points 483

11 Modeling dt The dt re typiclly of two kinds: ) We vry some externl vrible x, nd mke N mesurements of some quntity y to obtin the results y i (x i ) ± σ i (with i =,N) where σ i is the Gussin uncertinty on y i Exmple: we dust the voltge x i = V i cross diode to N vlues nd mesure the current y i = I i ±σ i for ech vlue 484

12 Modeling dt The dt re typiclly of two kinds: ) We mesure N vlues of the rndom vrible x i in n experiment Exmple: mesurement of individul photon energies in X-ry stronomy 485

13 Modeling dt In both cses, we would like to determine the prmeter set tht best pproximtes the dt Need n estimtor which mesures how well the model mtches the dt For experiments of the first type, we commonly use the oint Gussin probbility function P( y ) exp( ½χ ( )) = N i= πσ i We wnt to mximize P(y ) by minimizing χ () (nd cn lso see if the model fits by clculting the significnce) 486

14 Confidence intervls Suppose we hve crried out the minimiztion of χ () The vlue of t the minimum yields our BEST ESTIMATE of the free prmeters, i cll this * Question: wht re our confidence limits on the i? 487

15 Confidence intervls Becuse our probbility distribution is symmetric under interchnge of nd y i ( x, ) i, we cn use y i P( y) exp( ½χ ( )) = P( y ) = N πσ i= i 488

16 489 Confidence intervls Let s use Tylor expnsion for χ (): where nd the probbility density is * ) ( k k C = χ Zero *) ( *) ( *) ( *) *)( ( *) ( *) ( ) ( *, * C T k k k + = + + = χ χ χ χ χ *)] ( *) ½( exp[ ) ½ exp( ) ( C P T = χ

17 Confidence intervls Define Δ = * Then Δχ = χ χ min with Δχ = Δ T C Δ C = Δ Δ T / Δχ which is clled the error mtrix 490

18 Confidence intervls The digonl elements of the error mtrix (C ) ii tell us (Δ i ) / Δχ for ech prmeter provided tht the nd order Tylor expnsion is dequte Thus, the Byesin probbility for given vlue of Δ i is P(Δ i y) exp( ½Δχ ) exp( ½(Δ i ) / (C ) ii ). Gussin with men 0 nd stndrd devition σ i = (C ) ii 49

19 The -D problem Let s consider the -D problem in which we hve ust two free prmeters nd The dt yield Δχ (, ) = χ (, ) χ 0 = [c (Δ ) + c (Δ ) +c (Δ Δ )] +. Note tht contours of fixed Δχ re ellipses in the (, ) plne 49

20 The -D problem Picture: Δχ = *+σ * * σ * σ * *+σ 493

21 The -D problem We find tht σ = (C ) = c /(c c c ) σ = (C ) = c /(c c c ) The 68% confidence limit on is * ± σ The 68% confidence limit on is * ± σ 494

22 The -D problem The oint probbility tht nd lie within the Δχ = ellipse is NOT 68%, however. The oint probbility content within the ellipse comes out to be exp( ½Δχ ) = 0.39 nd the ellipse with 68% probbility content hs Δχ =

23 The -D problem Esy to prove this for the cse where c = c = c, nd c = c = 0 Δχ = *+σ * * σ σ = σ = σ * σ * *+σ 496

24 The -D problem In this cse, the oint probbility is P exp( ½Δχ ) d d = exp( ½c( Δ = exp( ½c( r + Δ ))πrdr exp( ½Δχ ) d( Δχ ) )) d d = π exp( ½c( r )) dr nd thus the probbility tht Δχ exceeds some vlue, z, is simply e ½ z 497

25 Non Gussinity So fr we hve ssumed tht the nd order Tylor expnsion is dequte out to some vlue of Δχ This isn t necessrily the true for the desired vlue of Δχ In tht cse, we hve to plot the ctul contours nd get our confidence limits from them Leds to non-symmetric confidence intervls 498

26 Non Gussinity Recent exmple: limits on the pressure nd HD/H bundnce rtio in interstellr gs clouds observed with the Spitzer Spce Telescope Δχ = nd 499

27 Summry: sttisticl tsks nd tools Tsks Sttistic Test/method Hypothesis testing (reection criterion) ) Simple hypothesis H versus simple hypothesis H 0 b) Simple hypothesis H 0 lone Likelihood rtio, P(t H )/P(t H 0 ) Chi-squred Neymn-Person P(t H )/P(t H 0 ) > k P(χ > χ 0 H 0 ) < α c) Composite hypothesis H 0 lone d) Simple hypothesis H 0 lone, where the dt re the counts of smll number of events e) Hypothesis tht two dt sets re drw for the sme distribution Modeling of dt (prmeter fitting) Minimum χ Order sttistic, D N Order sttistic, W Chi-squred Order sttistic, D NM Chi-squred P(χ > χ min H 0 ) < α Kolmogorov-Smirnov Crmer-Von Mises- Smirnov P(χ > χ 0 H 0 ) < α Kolmogorov-Smirnov χ minimiztion with c.l. from Δχ contours or error mtrix 500

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Introduction Lecture 3 Gussin Probbility Distribution Gussin probbility distribution is perhps the most used distribution in ll of science. lso clled bell shped curve or norml distribution Unlike the binomil

More information

Section 11.5 Estimation of difference of two proportions

Section 11.5 Estimation of difference of two proportions ection.5 Estimtion of difference of two proportions As seen in estimtion of difference of two mens for nonnorml popultion bsed on lrge smple sizes, one cn use CLT in the pproximtion of the distribution

More information

Numerical Analysis: Trapezoidal and Simpson s Rule

Numerical Analysis: Trapezoidal and Simpson s Rule nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =

More information

Chapter 9: Inferences based on Two samples: Confidence intervals and tests of hypotheses

Chapter 9: Inferences based on Two samples: Confidence intervals and tests of hypotheses Chpter 9: Inferences bsed on Two smples: Confidence intervls nd tests of hypotheses 9.1 The trget prmeter : difference between two popultion mens : difference between two popultion proportions : rtio of

More information

CS667 Lecture 6: Monte Carlo Integration 02/10/05

CS667 Lecture 6: Monte Carlo Integration 02/10/05 CS667 Lecture 6: Monte Crlo Integrtion 02/10/05 Venkt Krishnrj Lecturer: Steve Mrschner 1 Ide The min ide of Monte Crlo Integrtion is tht we cn estimte the vlue of n integrl by looking t lrge number of

More information

Continuous Random Variables

Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

Normal Distribution. Lecture 6: More Binomial Distribution. Properties of the Unit Normal Distribution. Unit Normal Distribution

Normal Distribution. Lecture 6: More Binomial Distribution. Properties of the Unit Normal Distribution. Unit Normal Distribution Norml Distribution Lecture 6: More Binomil Distribution If X is rndom vrible with norml distribution with men µ nd vrince σ 2, X N (µ, σ 2, then P(X = x = f (x = 1 e 1 (x µ 2 2 σ 2 σ Sttistics 104 Colin

More information

Math 426: Probability Final Exam Practice

Math 426: Probability Final Exam Practice Mth 46: Probbility Finl Exm Prctice. Computtionl problems 4. Let T k (n) denote the number of prtitions of the set {,..., n} into k nonempty subsets, where k n. Argue tht T k (n) kt k (n ) + T k (n ) by

More information

8 Laplace s Method and Local Limit Theorems

8 Laplace s Method and Local Limit Theorems 8 Lplce s Method nd Locl Limit Theorems 8. Fourier Anlysis in Higher DImensions Most of the theorems of Fourier nlysis tht we hve proved hve nturl generliztions to higher dimensions, nd these cn be proved

More information

For the percentage of full time students at RCC the symbols would be:

For the percentage of full time students at RCC the symbols would be: Mth 17/171 Chpter 7- ypothesis Testing with One Smple This chpter is s simple s the previous one, except it is more interesting In this chpter we will test clims concerning the sme prmeters tht we worked

More information

Lecture 12: Numerical Quadrature

Lecture 12: Numerical Quadrature Lecture 12: Numericl Qudrture J.K. Ryn@tudelft.nl WI3097TU Delft Institute of Applied Mthemtics Delft University of Technology 5 December 2012 () Numericl Qudrture 5 December 2012 1 / 46 Outline 1 Review

More information

38.2. The Uniform Distribution. Introduction. Prerequisites. Learning Outcomes

38.2. The Uniform Distribution. Introduction. Prerequisites. Learning Outcomes The Uniform Distribution 8. Introduction This Section introduces the simplest type of continuous probbility distribution which fetures continuous rndom vrible X with probbility density function f(x) which

More information

Chapter 5 : Continuous Random Variables

Chapter 5 : Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 216 Néhémy Lim Chpter 5 : Continuous Rndom Vribles Nottions. N {, 1, 2,...}, set of nturl numbers (i.e. ll nonnegtive integers); N {1, 2,...}, set of ll

More information

AP Calculus Multiple Choice: BC Edition Solutions

AP Calculus Multiple Choice: BC Edition Solutions AP Clculus Multiple Choice: BC Edition Solutions J. Slon Mrch 8, 04 ) 0 dx ( x) is A) B) C) D) E) Divergent This function inside the integrl hs verticl symptotes t x =, nd the integrl bounds contin this

More information

Section 17.2 Line Integrals

Section 17.2 Line Integrals Section 7. Line Integrls Integrting Vector Fields nd Functions long urve In this section we consider the problem of integrting functions, both sclr nd vector (vector fields) long curve in the plne. We

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Tests for the Ratio of Two Poisson Rates

Tests for the Ratio of Two Poisson Rates Chpter 437 Tests for the Rtio of Two Poisson Rtes Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson

More information

Joint distribution. Joint distribution. Marginal distributions. Joint distribution

Joint distribution. Joint distribution. Marginal distributions. Joint distribution Joint distribution To specify the joint distribution of n rndom vribles X 1,...,X n tht tke vlues in the smple spces E 1,...,E n we need probbility mesure, P, on E 1... E n = {(x 1,...,x n ) x i E i, i

More information

1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ),

1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ), 1. Guss-Jcobi qudrture nd Legendre polynomils Simpson s rule for evluting n integrl f(t)dt gives the correct nswer with error of bout O(n 4 ) (with constnt tht depends on f, in prticulr, it depends on

More information

Theoretical foundations of Gaussian quadrature

Theoretical foundations of Gaussian quadrature Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

More information

1 Probability Density Functions

1 Probability Density Functions Lis Yn CS 9 Continuous Distributions Lecture Notes #9 July 6, 28 Bsed on chpter by Chris Piech So fr, ll rndom vribles we hve seen hve been discrete. In ll the cses we hve seen in CS 9, this ment tht our

More information

Chapter 0. What is the Lebesgue integral about?

Chapter 0. What is the Lebesgue integral about? Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous

More information

1 Linear Least Squares

1 Linear Least Squares Lest Squres Pge 1 1 Liner Lest Squres I will try to be consistent in nottion, with n being the number of dt points, nd m < n being the number of prmeters in model function. We re interested in solving

More information

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8 Mth 3 Fll 0 The scope of the finl exm will include: Finl Exm Review. Integrls Chpter 5 including sections 5. 5.7, 5.0. Applictions of Integrtion Chpter 6 including sections 6. 6.5 nd section 6.8 3. Infinite

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

Lecture 3. Limits of Functions and Continuity

Lecture 3. Limits of Functions and Continuity Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

Expectation and Variance

Expectation and Variance Expecttion nd Vrince : sum of two die rolls P(= P(= = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 P(=2) = 1/36 P(=3) = 1/18 P(=4) = 1/12 P(=5) = 1/9 P(=7) = 1/6 P(=13) =? 2 1/36 3 1/18 4 1/12 5 1/9 6 5/36 7 1/6

More information

Abstract inner product spaces

Abstract inner product spaces WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

3.4 Numerical integration

3.4 Numerical integration 3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

X Z Y Table 1: Possibles values for Y = XZ. 1, p

X Z Y Table 1: Possibles values for Y = XZ. 1, p ECE 534: Elements of Informtion Theory, Fll 00 Homework 7 Solutions ll by Kenneth Plcio Bus October 4, 00. Problem 7.3. Binry multiplier chnnel () Consider the chnnel Y = XZ, where X nd Z re independent

More information

APPLICATIONS OF THE DEFINITE INTEGRAL

APPLICATIONS OF THE DEFINITE INTEGRAL APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its cross-section in plne pssing through

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

Data Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading

Data Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading Dt Assimiltion Aln O Neill Dt Assimiltion Reserch Centre University of Reding Contents Motivtion Univrite sclr dt ssimiltion Multivrite vector dt ssimiltion Optiml Interpoltion BLUE 3d-Vritionl Method

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

f(a+h) f(a) x a h 0. This is the rate at which

f(a+h) f(a) x a h 0. This is the rate at which M408S Concept Inventory smple nswers These questions re open-ended, nd re intended to cover the min topics tht we lerned in M408S. These re not crnk-out-n-nswer problems! (There re plenty of those in the

More information

Monte Carlo method in solving numerical integration and differential equation

Monte Carlo method in solving numerical integration and differential equation Monte Crlo method in solving numericl integrtion nd differentil eqution Ye Jin Chemistry Deprtment Duke University yj66@duke.edu Abstrct: Monte Crlo method is commonly used in rel physics problem. The

More information

Overview of Calculus I

Overview of Calculus I Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

Numerical integration

Numerical integration 2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

More information

Predict Global Earth Temperature using Linier Regression

Predict Global Earth Temperature using Linier Regression Predict Globl Erth Temperture using Linier Regression Edwin Swndi Sijbt (23516012) Progrm Studi Mgister Informtik Sekolh Teknik Elektro dn Informtik ITB Jl. Gnesh 10 Bndung 40132, Indonesi 23516012@std.stei.itb.c.id

More information

Discrete Least-squares Approximations

Discrete Least-squares Approximations Discrete Lest-squres Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve

More information

NUMERICAL INTEGRATION

NUMERICAL INTEGRATION NUMERICAL INTEGRATION How do we evlute I = f (x) dx By the fundmentl theorem of clculus, if F (x) is n ntiderivtive of f (x), then I = f (x) dx = F (x) b = F (b) F () However, in prctice most integrls

More information

Review of Riemann Integral

Review of Riemann Integral 1 Review of Riemnn Integrl In this chpter we review the definition of Riemnn integrl of bounded function f : [, b] R, nd point out its limittions so s to be convinced of the necessity of more generl integrl.

More information

Line Integrals. Partitioning the Curve. Estimating the Mass

Line Integrals. Partitioning the Curve. Estimating the Mass Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to

More information

LECTURE NOTE #12 PROF. ALAN YUILLE

LECTURE NOTE #12 PROF. ALAN YUILLE LECTURE NOTE #12 PROF. ALAN YUILLE 1. Clustering, K-mens, nd EM Tsk: set of unlbeled dt D = {x 1,..., x n } Decompose into clsses w 1,..., w M where M is unknown. Lern clss models p(x w)) Discovery of

More information

Problem. Statement. variable Y. Method: Step 1: Step 2: y d dy. Find F ( Step 3: Find f = Y. Solution: Assume

Problem. Statement. variable Y. Method: Step 1: Step 2: y d dy. Find F ( Step 3: Find f = Y. Solution: Assume Functions of Rndom Vrible Problem Sttement We know the pdf ( or cdf ) of rndom r vrible. Define new rndom vrible Y = g. Find the pdf of Y. Method: Step : Step : Step 3: Plot Y = g( ). Find F ( y) by mpping

More information

Tutorial 4. b a. h(f) = a b a ln 1. b a dx = ln(b a) nats = log(b a) bits. = ln λ + 1 nats. = log e λ bits. = ln 1 2 ln λ + 1. nats. = ln 2e. bits.

Tutorial 4. b a. h(f) = a b a ln 1. b a dx = ln(b a) nats = log(b a) bits. = ln λ + 1 nats. = log e λ bits. = ln 1 2 ln λ + 1. nats. = ln 2e. bits. Tutoril 4 Exercises on Differentil Entropy. Evlute the differentil entropy h(x) f ln f for the following: () The uniform distribution, f(x) b. (b) The exponentil density, f(x) λe λx, x 0. (c) The Lplce

More information

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 UNIFORM CONVERGENCE Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 Suppose f n : Ω R or f n : Ω C is sequence of rel or complex functions, nd f n f s n in some sense. Furthermore,

More information

MAA 4212 Improper Integrals

MAA 4212 Improper Integrals Notes by Dvid Groisser, Copyright c 1995; revised 2002, 2009, 2014 MAA 4212 Improper Integrls The Riemnn integrl, while perfectly well-defined, is too restrictive for mny purposes; there re functions which

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are:

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are: (x + y ) = y + (x + y ) = x + Problem Set 9 Discussion: Nov., Nov. 8, Nov. (on probbility nd binomil coefficients) The nme fter the problem is the designted writer of the solution of tht problem. (No one

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2. Mth 43 Section 6. Section 6.: Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot

More information

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O 1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information

Solution for Assignment 1 : Intro to Probability and Statistics, PAC learning

Solution for Assignment 1 : Intro to Probability and Statistics, PAC learning Solution for Assignment 1 : Intro to Probbility nd Sttistics, PAC lerning 10-701/15-781: Mchine Lerning (Fll 004) Due: Sept. 30th 004, Thursdy, Strt of clss Question 1. Bsic Probbility ( 18 pts) 1.1 (

More information

Math 135, Spring 2012: HW 7

Math 135, Spring 2012: HW 7 Mth 3, Spring : HW 7 Problem (p. 34 #). SOLUTION. Let N the number of risins per cookie. If N is Poisson rndom vrible with prmeter λ, then nd for this to be t lest.99, we need P (N ) P (N ) ep( λ) λ ln(.)

More information

7 - Continuous random variables

7 - Continuous random variables 7-1 Continuous rndom vribles S. Lll, Stnford 2011.01.25.01 7 - Continuous rndom vribles Continuous rndom vribles The cumultive distribution function The uniform rndom vrible Gussin rndom vribles The Gussin

More information

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature CMDA 4604: Intermedite Topics in Mthemticl Modeling Lecture 19: Interpoltion nd Qudrture In this lecture we mke brief diversion into the res of interpoltion nd qudrture. Given function f C[, b], we sy

More information

Midpoint Approximation

Midpoint Approximation Midpoint Approximtion Sometimes, we need to pproximte n integrl of the form R b f (x)dx nd we cnnot find n ntiderivtive in order to evlute the integrl. Also we my need to evlute R b f (x)dx where we do

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

Orthogonal Polynomials

Orthogonal Polynomials Mth 4401 Gussin Qudrture Pge 1 Orthogonl Polynomils Orthogonl polynomils rise from series solutions to differentil equtions, lthough they cn be rrived t in vriety of different mnners. Orthogonl polynomils

More information

Math 32B Discussion Session Session 7 Notes August 28, 2018

Math 32B Discussion Session Session 7 Notes August 28, 2018 Mth 32B iscussion ession ession 7 Notes August 28, 28 In tody s discussion we ll tlk bout surfce integrls both of sclr functions nd of vector fields nd we ll try to relte these to the mny other integrls

More information

Orthogonal Polynomials and Least-Squares Approximations to Functions

Orthogonal Polynomials and Least-Squares Approximations to Functions Chpter Orthogonl Polynomils nd Lest-Squres Approximtions to Functions **4/5/3 ET. Discrete Lest-Squres Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny

More information

The steps of the hypothesis test

The steps of the hypothesis test ttisticl Methods I (EXT 7005) Pge 78 Mosquito species Time of dy A B C Mid morning 0.0088 5.4900 5.5000 Mid Afternoon.3400 0.0300 0.8700 Dusk 0.600 5.400 3.000 The Chi squre test sttistic is the sum of

More information

Section 6: Area, Volume, and Average Value

Section 6: Area, Volume, and Average Value Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find

More information

Non-Linear & Logistic Regression

Non-Linear & Logistic Regression Non-Liner & Logistic Regression If the sttistics re boring, then you've got the wrong numbers. Edwrd R. Tufte (Sttistics Professor, Yle University) Regression Anlyses When do we use these? PART 1: find

More information

Linear Inequalities: Each of the following carries five marks each: 1. Solve the system of equations graphically.

Linear Inequalities: Each of the following carries five marks each: 1. Solve the system of equations graphically. Liner Inequlities: Ech of the following crries five mrks ech:. Solve the system of equtions grphiclly. x + 2y 8, 2x + y 8, x 0, y 0 Solution: Considerx + 2y 8.. () Drw the grph for x + 2y = 8 by line.it

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

HW3, Math 307. CSUF. Spring 2007.

HW3, Math 307. CSUF. Spring 2007. HW, Mth 7. CSUF. Spring 7. Nsser M. Abbsi Spring 7 Compiled on November 5, 8 t 8:8m public Contents Section.6, problem Section.6, problem Section.6, problem 5 Section.6, problem 7 6 5 Section.6, problem

More information

Pi evaluation. Monte Carlo integration

Pi evaluation. Monte Carlo integration Pi evlution y 1 1 x Computtionl Physics 2018-19 (Phys Dep IST, Lisbon) Fernndo Bro (311) Monte Crlo integrtion we wnt to evlute the following integrl: F = f (x) dx remember tht the expecttion vlue of the

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

along the vector 5 a) Find the plane s coordinate after 1 hour. b) Find the plane s coordinate after 2 hours. c) Find the plane s coordinate

along the vector 5 a) Find the plane s coordinate after 1 hour. b) Find the plane s coordinate after 2 hours. c) Find the plane s coordinate L8 VECTOR EQUATIONS OF LINES HL Mth - Sntowski Vector eqution of line 1 A plne strts journey t the point (4,1) moves ech hour long the vector. ) Find the plne s coordinte fter 1 hour. b) Find the plne

More information

1B40 Practical Skills

1B40 Practical Skills B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

SYDE 112, LECTURES 3 & 4: The Fundamental Theorem of Calculus

SYDE 112, LECTURES 3 & 4: The Fundamental Theorem of Calculus SYDE 112, LECTURES & 4: The Fundmentl Theorem of Clculus So fr we hve introduced two new concepts in this course: ntidifferentition nd Riemnn sums. It turns out tht these quntities re relted, but it is

More information

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve. Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F

More information

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero

More information

Method: Step 1: Step 2: Find f. Step 3: = Y dy. Solution: 0, ( ) 0, y. Assume

Method: Step 1: Step 2: Find f. Step 3: = Y dy. Solution: 0, ( ) 0, y. Assume Functions of Rndom Vrible Problem Sttement We know the pdf ( or cdf ) of rndom vrible. Define new rndom vrible Y g( ) ). Find the pdf of Y. Method: Step : Step : Step 3: Plot Y g( ). Find F ( ) b mpping

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

Review of Probability Distributions. CS1538: Introduction to Simulations

Review of Probability Distributions. CS1538: Introduction to Simulations Review of Proility Distriutions CS1538: Introduction to Simultions Some Well-Known Proility Distriutions Bernoulli Binomil Geometric Negtive Binomil Poisson Uniform Exponentil Gmm Erlng Gussin/Norml Relevnce

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but...

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but... Chpter 7 Numericl Methods 7. Introduction In mny cses the integrl f(x)dx cn be found by finding function F (x) such tht F 0 (x) =f(x), nd using f(x)dx = F (b) F () which is known s the nlyticl (exct) solution.

More information

Riemann is the Mann! (But Lebesgue may besgue to differ.)

Riemann is the Mann! (But Lebesgue may besgue to differ.) Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

Properties of the Riemann Integral

Properties of the Riemann Integral Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University Februry 15, 2018 Outline 1 Some Infimum nd Supremum Properties 2

More information

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

More information

Chapter 6 Notes, Larson/Hostetler 3e

Chapter 6 Notes, Larson/Hostetler 3e Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn

More information