Linear Regression & Least Squares!

Size: px
Start display at page:

Download "Linear Regression & Least Squares!"

Transcription

1 Lner Regresson & Lest Squres Al Borj UWM CS 790 Slde credt: Aykut Erdem

2 Ths&week Lner&regresson&prolem&& ' con0nuous&outputs& ' smple&model Introduce&key&concepts:&& ' loss&func0ons& ' generlz0on& ' op0mz0on& ' model&complety& &regulrz0on Sldes'dpted'from'Rchrd'Zemel,'Ern'Hlpern,'Zv:Br'Joseph,'Ar>'Sngh,'Brns'Poczos,'J.P.'Lews,' Erk'Sudderth 2

3 Clssfc0on Input:&X& ' Rel&vlued,&vectors&over&rel.& ' Dscrete&vlues&(0,,2, )& ' Other&structures&(e.g.,&strngs,&grphs,&etc.) Output:&Y& ' Dscrete&(0,,2,...) Sports% Scence% News% Anemc%cell% Helthy%cell% X''Document' Y''Topc' X''Cell'Imge' Y''Dgnoss' 3

4 Regresson Input:&X& ' Rel&vlued,&vectors&over&rel.& ' Dscrete&vlues&(0,,2, )& ' Other&structures&(e.g.,&strngs,&grphs,&etc.) Output:&Y& ' Rel&vlued,&vectors&over&rel. Stock%Mrket%% Predcon% Y''?' X''Fe0'' 4

5 Choosng&&resturnt In&everydy&lfe&we&need&to&mke&decsons& y&tkng&nto&ccount&lots&of&fctors& The&ques0on&s&wht&weght&we&put&on& ech&of&these&fctors&(how&mportnt&re& they&wth&respect&to&the&others).& Assume&we&would&lke&to&uld&& recommender&system&sed&on&n& ndvduls &preferences& If&we&hve&mny& oserv0ons&we& my&e&le&to& recover&the&weghts Revews (out of 5 strs) Dstnce Cusne (out of 0) ? 5

6 Some%other%emples Weght%+%heght% cholesterol%level% Age%+%gender%6me%% 6me%spent%n%front%of%the%TV% Pst%choces%of%%user% 'NeHl%score'% Profle%of%%jo% (user,%mchne,%6me) Memory%usge%of% %sumked%process. 6

7 Emple:%Polynoml%Curve%FQng The%green%curve%s%the%true%func6on% (whch%s%not%%polynoml)% %not%known% The%dt%ponts%re%unform%n%%ut%hve% nose%n%t.% t() f() + Am:%ft%%curve%to%these%ponts% Key%ques6ons:% own from Bshop %How%do%we%prmetrze%the%model%(the%curve)?% %%%% %%Wht%loss%(ojec6ve)%func6on%should%we%use%to%judge%ft?%% %%%% %%How%do%we%op6mze%ft%to%unseen%test%dt%(generlz6on)?%% 7

8 \D%regresson 8

9 One\dmensonl%regresson Fnd%%lne%tht%represent%the% est %lner%rel6onshp: 9

10 One\dmensonl%regresson Prolem:%the%dt%does%not% go%through%%lne% e 0

11 One\dmensonl%regresson Prolem:%the%dt%does%not% go%through%%lne% e Fnd%the%lne%tht%mnmzes% the%sum:% ( 2 )

12 Prolem:%the%dt%does%not% go%through%%lne% Fnd%the%lne%tht%mnmzes% the%sum:% We%re%lookng%for%%%%%%tht% mnmzes% One\dmensonl%regresson 2 ˆ e 2 ) ( ) ( e 2 ) (

13 Mtr%not6on Usng%the%followng%not6ons & : % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%nd n # " & : % n # " 3

14 Usng%the%followng%not6ons %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%nd We%cn%rewrte%the%error%func6on%usng%lner% lger%s: Mtr%not6on 4 " # % & n : " # % & n : 2 2 ) ( ) ( ) ( ) ( ) ( e e T

15 Emple:%Boston%House%Przes Es6mte%medn%house% prce%n%%neghorhood% sed%on%neghorhood% st6s6cs%% Look%t%frst%(of%3)% Krutes:%per%cpt% crme%rte%% Use%ths%to%predct%house% prces%n%other% neghorhoods hkps://rchve.cs.uc.edu/ml/dtsets/housng 5

16 Represent%the%dt Dt%descred%s%prs%D%%(( (),t () ),%( (2),t (2) ),...,%( (N),t (N) ))%% \ %s%the%nput%feture%(per%cpt%crme%rte)% \ t%s%the%trget%output%(medn%house%prce)% Here%t%s%con6nuous,%so%ths%s%%regresson%prolem%% Could%tke%frst%300%emples%s%trnng%set,%remnng%206% s%test%set% \ Use%the%trnng%emples%to%construct%hypothess,%or% func6on%ppromtor,%tht%mps%%to%predcted%y% \ Evlute%hypothess%on%test%set 6

17 Nose A%smple%model%typclly%does%not%ectly%ft%the%dt% % lck%of%ft%cn%e%consdered%nose Sources%of%nose% %Imprecson%n%dt%Krutes%(nput%nose)% %%% %% %%Errors%n%dt%trgets%(mslelng)%% %%% %% %%Add6onl%Krutes%not%tken%nto%ccount%y%dt% Krutes,%ffect%trget%vlues%(ltent%vrles)%% %%% %% %%Model%my%e%too%smple%to%ccount%for%dt% trgets 7

18 Lest\Squres%Regresson Stndrd%loss/cost/ojec6ve% func6on%mesures%the% squred%error%n%the% predc6on%of%t()%from%. N J(w) " [t (n) (w + w (n) )] 2 0 n from Bshop The%loss%for%the%red% hypothess%s%the%sum%of%the% squred%ver6cl%errors. 8

19 Op6mzng%the%Ojec6ve One%strghHorwrd%method:%n6lze%w%rndomly,% repetedly%updte%sed%on%grdent%descent%n%j% w w " #J #w Here%λ%s%the%lernng%rte% rnng rte For%%sngle%trnng%cse,%ths%gves%the%LMS%updte% rule: w w + 2(t (n) " y( (n) )) (n) Note:%s%error%pproches%zero,%so%does%updte error pproches zero, so does upd 9

20 Effect%of%step\sze%λ Lrge%λ%>%Fst%convergence%ut%lrger%resdul%error% %%%%%%%%%%%%%%%%%%%Also%possle%oscll6ons% Smll%λ%>%Slow%convergence%ut%smll%resdul%error 20

21 Op6mzng%Across%Trnng%Set Two%wys%to%generlze%ths%for%ll%emples%n%trnng%set:%. Stochs6c/onlne%updtes% updte%the%prmeters% for%ech%trnng%cse%n%turn,%ccordng%to%ts%own% grdents%% 2. Btch%updtes:%sum%or%verge%updtes%cross%every% emple%,%then%chnge%the%prmeter% vlues% w w + 2 N # n Underlyng%ssump6on:%smple%s%ndependent%nd% ssumpton: smple s ndepend den6clly%dstruted%(..d.) (t (n) " y( (n) )) (n) 2

22 Non\ter6ve%Lest\squres%Regresson An%ltern6ve%op6mz6on%pproch%s%non\ ter6ve:%tke%derv6ves,%set%to%zero,%nd%solve% for%prmeters. N dj(w) 2 "[t (n) (w + w (n) )] 0 dw 0 0 N n w (" t (n) w (n) ) / N t w 0 n w " n " n (t (n) t )( (n) ) ( (n) ) 2 22

23 Mul6\dmensonl%lner%regresson Usng%%model%wth%m%prmeters m m j j j 23

24 Mul6\dmensonl%lner%regresson Usng%%model%wth%m%prmeters m m j j j 2 24

25 Mul6\dmensonl%lner%regresson Usng%%model%wth%m%prmeters m m j j j 2 25

26 Mul6\dmensonl%lner%regresson Usng%%model%wth%m%prmeters nd%n%mesurements j j j m m , 2, ) ( ) ( A " # % & ' m j j j n m j j j e

27 Mul6\dmensonl%lner%regresson Usng%%model%wth%m%prmeters nd%n%mesurements j j j m m , 2, ) ( ) ( ) ( A " # % & ' e e m j j j n m j j j

28 :A 28 " # % & " # % & " # % & m m n n m n :... : :.. :,,,, A

29 :A 29 " # % & " # % & " # % & " # % & )... ( : )... ( :... : :.. :,,,,,,,, m m n n n m m n m n n m n A

30 :A 30 " # % & " # % & " # % & " # % & )... ( : )... ( :... : :.. :,,,,,,,, m m n n n m m n m n n m n A prmeter'

31 :A 3 " # % & " # % & " # % & " # % & )... ( : )... ( :... : :.. :,,,,,,,, m m n n n m m n m n n m n A mesurement'n prmeter'

32 Emple:%Boston%House%Przes% %revsted One%method%of%etendng%the% model%s%to%consder%other% nput%dmensons y() w + w + w In%the%Boston%housng% emple,%we%cn%look%t%the% numer%of%rooms%nput% feture% We%cn%use%grdent%descent% to%solve%for%ech%coeffcent,% or%use%lner%lger% %solve% system%of%equ6ons 2 32

33 Lner%Regresson Imgne%now%wnt%to%predct%the%medn%house%prce% from%these%mul6\dmensonl%oserv6ons%% Ech%house%s%%dt%pont%n,%wth%oserv6ons% ndeed%y%j:% (n) ( (n),..., d (n) ) Smple%predctor%s%nlogue%of%lner%clssfer,% producng%rel\vlued%y%for%nput%%wth%prmeters%w% (effec6vely%fng% 0 %%): 0 y w 0 + d j w j j w T 33

34 Mul6\dmensonl%lner%regresson e() A 2 2 ( A) T ( A) T A T A T A T T A + T. A%mnmum%occurs%when%%.%The%frst%derv6ve%s%zero,%% 2.%The%second%derv6ve%s%pos6ve.% Mul6dmensonl%cse:%% \ st %derv6ve%of%%func6on%f()%s%the%grdent,% f()%(%row%vector)% \ 2 nd %derv6ve,%the%hessn,%s%%mtr%tht%we%wll%denote%s%h f' (). e()2a T A 2A T. H e ()2A T A. 34

35 Mnmzng% e() mn mnmzes e( ) f

36 Mnmzng% e() mn mnmzes e( ) f e() mn

37 Mnmzng% e() e() s flt t mn mn mnmzes e( ) f e() mn

38 Mnmzng% e() e() s flt t mn e( ) 0 mn mn mnmzes e( ) f e() mn

39 Mnmzng% e() e() s flt t mn e( ) 0 mn mn mnmzes e( ) f e() does not go down round mn e() mn

40 Mnmzng% e() e() s flt t mn e( ) 0 mn mn mnmzes e( ) f e() does not go down round mn H e ( mn ) s postve e() sem - defnte mn

41 Recp:%Pos6ve%sem\defnte A s postve sem - defnte T A 0, for ll In -D In 2-D 4

42 Mnmzng% e( ) A 2 A T Aˆ A T ˆ mnmzes e( ) f 2A T A s postve sem - defnte

43 Mnmzng% e( ) A 2 A T Aˆ A T ˆ mnmzes e( ) f 2A T A s postve sem - defnte Alwys%true

44 Mnmzng% e( ) A 2 A T Aˆ A T The%norml'equton ˆ mnmzes e( ) f 2A T A s postve sem - defnte Alwys%true

45 Geometrc%nterpret6on 45

46 Geometrc%nterpret6on %s%%vector%n%r n 46

47 Geometrc%nterpret6on %s%%vector%n'r n % The%columns%of%A%defne%%vector%spce%rnge(A) 2 47

48 Geometrc%nterpret6on %s%%vector%n%r n % The%columns%of%A%defne%%vector%spce%rnge(A)% A%s%n%rtrry%vector%n%rnge(A) A 2 48

49 Geometrc%nterpret6on %s%%vector%n%r n % The%columns%of%A%defne%%vector%spce%rnge(A)% A%s%n%rtrry%vector%n%rnge(A) A A 2 49

50 Geometrc%nterpret6on %%%%%%s%the%orthogonl%projec6on%of%%onto%rnge(a) Aˆ A T ( ) T T Aˆ 0 A Aˆ A Aˆ ˆ ˆ Aˆ 2 50

51 The norml equton: A T Aˆ A T

52 The norml equton: A T Aˆ A T T T Estence:%%%%%%%%%%%%%%%%%%%%%%%%hs%lwys%%soluton A Aˆ A

53 The norml equton: A T Aˆ A T T T Estence:%%%%%%%%%%%%%%%%%%%%%%%%hs%lwys%%soluton% A Aˆ A Unqueness:%the%soluton%s%unque%f%the%columns%of% A%re%lnerly%ndependent%

54 The norml equton: A T Aˆ A T T T Estence:%%%%%%%%%%%%%%%%%%%%%%%%hs%lwys%%soluton% A Aˆ A Unqueness:%the%soluton%s%unque%f%the%columns%of% A%re%lnerly%ndependent% Aˆ 2

55 Lner%models % %%It%s%mthem6clly%esy%to%ft%lner%models%to%dt. %We%cn%lern%%lot%out%model\fQng%n%ths%rel6vely% smple%cse.%% % %%There%re%mny%wys%to%mke%lner%models%more%powerful%whle%retnng% ther%nce%mthem6cl%proper6es:% %By%usng%non\lner,%non\dp6ve%ss%func6ons,%we%cn%get%generlzed% lner%models%tht%lern%non\lner%mppngs%from%nput%to%output%ut%re% lner%n%ther%prmeters% %only%the%lner%prt%of%the%model%lerns.%% %%% %%%%%% %By%usng%kernel%methods%we%cn%hndle%epnsons%of%the%rw%dt%tht%use% %huge%numer%of%non\lner,%non\dp6ve%ss%func6ons.% % %By%usng%lrge%mrgn%kernel%methods%we%cn%vod%overfQng%even%when% we%use%huge%numers%of%ss%func6ons.% %But%lner%methods%wll%not%solve%most%AI%prolems.%% % %They%hve%fundmentl%lmt6ons.% 55

56 Some%types%of%ss%func6ons%n%\D { Sgmods Gussns Polynomls ( ) ( φ j () ep { ( µ } µj ) φ j) 2 j () σ s 2s 2 σ() +ep( ). 56

57 Two%types%of%lner%model%tht%re%equvlent%wth% y(, w) y(, w) s w w 0 0 respect%to%lernng + + w w φ + w 2 ( ) + 2 w 2 + φ... 2 w ( ) + T... w T Φ( ) The%frst%model%hs%the%sme%numer%of%dp6ve%coeffcents%s% the%dmensonlty%of%the%dt%+.%% The%second%model%hs%the%sme%numer%of%dp6ve% coeffcents%s%the%numer%of%ss%func6ons%+.%% Once%we%hve%replced%the%dt%y%the%outputs%of%the%ss% func6ons,%fqng%the%second%model%s%ectly%the%sme%prolem% s%fqng%the%frst%model%(unless%we%use%the%kernel%trck)% So%we ll%just%focus%on%the%frst%model 57

58 Generl%lner%regresson%prolem Usng%our%new%not6ons%for%the%ss%func6on%lner% regresson%cn%e%wrken%s n y w () j j j 0 where%%%%%%%%%cn%e%ether% j () j %for%mul6vrte%regresson%or% one%of%the%nonlner%ss%we%defned% er Once%gn%we%cn%use% lest%squres %to%fnd%the%op6ml% solu6on. 58

59 LMS%for%the%generl%lner%regresson%prolem regresson prolem Our gol s to mnmze the followng loss functon: J(w) (y w j j ( )) Movng to vector nottons we get: j 2 y n j 0 w j j () w vector of dmenson k+ ( ) vector of dmenson k+ y scler J(w) (y w T ( )) 2 We tke the dervtve w.r.t w w (y w T ( )) 2 2 (y w T ( )) Equtng to 0 we get 2 (y w T ( )) ( ) T ( ) T 0 y ( ) T w T ( ) ( ) T 59

60 LMS%for%the%generl%lner%regresson%prolem We tke the dervtve w.r.t w w (y w T ( )) 2 2 (y w T ( )) ( ) T Equtng to 0 we get 2 (y w T ( )) ( ) T 0 Defne: y ( ) T w T ( ) 0 ( ) ( ) m ( ) 0 ( 2 ) ( 2 ) m ( 2 ) 0 ( n ) ( n ) m ( n ) ( ) T J(w) (y w T ( )) 2 Then dervng w we get: w ( T ) T y 60

61 LMS%for%the%generl%lner%regresson%prolem Dervng w we get: w ( T ) T y J(w) (y w T ( )) 2 k+ entres vector n entres vector n y k+ mtr Ths soluton s lso known s psuedo nverse 6

62 FQng%%polynoml Now%we%use%one%of%these% ss%func6ons:%n%m th %order %polynoml%func6on% own from Bshop We%cn%use%the%sme%pproches%to%op6mze%the% vlues%of%the%weghts%on%ech%coeffcent:%nly6c,% nd%ter6ve 62

63 0 th %order%polynoml 63

64 st %order%polynoml 64

65 3 rd %order%polynoml 65

66 9 th %order%polynoml 66

67 Root%Men%Squre%(RMS)%Error E(w) 2 N n {y( n, w) t n } 2 t 0 M 0 t 0 M E RMS 2E(w )/N 0 0 The%dvson%y%N%llows%us%to%compre% dfferent%szes%of%dt%sets%on%n%equl% foo6ng,%nd%the%squre%root%ensures% tht%erms%s%mesured%on%the%sme% scle%(nd%n%the%sme%unts)%s%the% trget%vrle%t% t 0 M 3 0 t 0 M

68 Root%Men%Squre%(RMS)%Error Trnng Test ERMS M 6 9 Root>Men>Squre'(RMS)'Error:' E(w) 2 NX (t n ( n ) T w) 2 t w 2 2 n Theoverf)ngprolem 68

69 Root%Men%Squre%(RMS)%Error Tle of the coeffcents w for polynomls of vrous order. Oserve how the typcl mgntude of the coeffcents ncreses drmtclly s the order of the polynoml ncreses. M 0 M M 6 M 9 w w w w w w w w w w Theoverf)ngprolem 69

70 Incresng%the%sze%of%trnng%dt N 5 N 00 t t M 9 0 For%%gven%model%complety,%the%over\fQng%prolem%ecome%less%severe% s%the%sze%of%the%dt%set%ncreses.% Another%wy%to%sy%ths%s%tht%the%lrger%the%dt%set,%the%more%comple%(n% other%words%more%flele)%the%model%tht%we%cn%fford%to%ft%to%the%dt.% 70

71 \D%regresson%llustrtes%key%concepts Dt%fts% %s%lner%model%est%(model%selec6on)?% %%% %% %%Smplest%models%do%not%cpture%ll%the%mportnt%% %%% %% %%More%comple%model%my%overft%the%trnng%dt%(ft% not%only%the%sgnl%ut%lso%the%nose%n%the%dt),% especlly%f%not%enough%dt%to%constrn%model%% One%method%of%ssessng%ft:%test%generlz6on%%model s% lty%to%predct%the%held%out%dt%% Op6mz6on%s%essen6l:%stochs6c%nd%tch%ter6ve% pproches;%nly6c%when%vlle 7

72 Regulrzed%Lest%Squres A%technque%to%control%the%overfQng%phenomenon% Add%%penlty%term%to%the%error%func6on%n%order%to% dscourge%the%coeffcents%from%rechng%lrge% vlues Rdge regresson Ẽ(w) 2 N n w whch's'mnmzed'y' {y( n, w) t n } 2 + λ 2 w 2 w 2 w T w w w w 2 M mportnce of the regulrzton term com 72

73 The%effect%of%regulrz6on ln λ 8 ln λ 0 t t M 9 73

74 The%effect%of%regulrz6on ERMS 0.5 Trnng Test ln λ ln λ 8 ln λ 0 w w w w w w w w w w ln λ The%correspondng%coeffcents%from%the%fKed%polynomls,%showng% tht%regulrz6on%hs%the%desred%effect%of%reducng%the%mgntude% of%the%coeffcents. 74

75 A%more%generl%regulrzer 2 N {t n w T φ( n )} 2 + λ 2 n M j w j q q 0.5 q q 2 q 4 75

Least squares. Václav Hlaváč. Czech Technical University in Prague

Least squares. Václav Hlaváč. Czech Technical University in Prague Lest squres Václv Hlváč Czech echncl Unversty n Prgue hlvc@fel.cvut.cz http://cmp.felk.cvut.cz/~hlvc Courtesy: Fred Pghn nd J.P. Lews, SIGGRAPH 2007 Course; Outlne 2 Lner regresson Geometry of lest-squres

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

SVMs for regression Non-parametric/instance based classification method

SVMs for regression Non-parametric/instance based classification method S 75 Mchne ernng ecture Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre SVMs for regresson Non-prmetrc/nstnce sed cssfcton method S 75 Mchne ernng Soft-mrgn SVM Aos some fet on crossng the seprtng hperpne

More information

SVMs for regression Multilayer neural networks

SVMs for regression Multilayer neural networks Lecture SVMs for regresson Muter neur netors Mos Husrecht mos@cs.ptt.edu 539 Sennott Squre Support vector mchne SVM SVM mmze the mrgn round the seprtng hperpne. he decson functon s fu specfed suset of

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9 CS434/541: Pttern Recognton Prof. Olg Veksler Lecture 9 Announcements Fnl project proposl due Nov. 1 1-2 prgrph descrpton Lte Penlt: s 1 pont off for ech d lte Assgnment 3 due November 10 Dt for fnl project

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

Support vector machines for regression

Support vector machines for regression S 75 Mchne ernng ecture 5 Support vector mchnes for regresson Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre S 75 Mchne ernng he decson oundr: ˆ he decson: Support vector mchnes ˆ α SV ˆ sgn αˆ SV!!: Decson

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus: More on χ nd errors : uppose tht we re fttng for sngle -prmeter, mnmzng: If we epnd The vlue χ ( ( ( ; ( wth respect to. χ n Tlor seres n the vcnt of ts mnmum vlue χ ( mn χ χ χ χ + + + mn mnmzes χ, nd

More information

Definition of Tracking

Definition of Tracking Trckng Defnton of Trckng Trckng: Generte some conclusons bout the moton of the scene, objects, or the cmer, gven sequence of mges. Knowng ths moton, predct where thngs re gong to project n the net mge,

More information

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of Chapter 7 Generalzed and Weghted Least Squares Estmaton The usual lnear regresson model assumes that all the random error components are dentcally and ndependently dstrbuted wth constant varance. When

More information

Machine Learning Support Vector Machines SVM

Machine Learning Support Vector Machines SVM Mchne Lernng Support Vector Mchnes SVM Lesson 6 Dt Clssfcton problem rnng set:, D,,, : nput dt smple {,, K}: clss or lbel of nput rget: Construct functon f : X Y f, D Predcton of clss for n unknon nput

More information

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Dol Bgyoko (0 FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Introducton Expressons of the form P(x o + x + x + + n x n re clled polynomls The coeffcents o,, n re ndependent of x nd the exponents 0,,,

More information

Linear Regression Introduction to Machine Learning. Matt Gormley Lecture 5 September 14, Readings: Bishop, 3.1

Linear Regression Introduction to Machine Learning. Matt Gormley Lecture 5 September 14, Readings: Bishop, 3.1 School of Computer Scence 10-601 Introducton to Machne Learnng Lnear Regresson Readngs: Bshop, 3.1 Matt Gormle Lecture 5 September 14, 016 1 Homework : Remnders Extenson: due Frda (9/16) at 5:30pm Rectaton

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 More oundr-vlue Prolems nd genvlue Prolems n Os Lrr retto Menl ngneerng 5 Semnr n ngneerng nlss ovemer 9, 7 Outlne Revew oundr-vlue prolems Soot

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Multiple view geometry

Multiple view geometry EECS 442 Computer vson Multple vew geometry Perspectve Structure from Moton - Perspectve structure from moton prolem - mgutes - lgerc methods - Fctorzton methods - Bundle djustment - Self-clrton Redng:

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

Linear Inferential Modeling: Theoretical Perspectives, Extensions, and Comparative Analysis

Linear Inferential Modeling: Theoretical Perspectives, Extensions, and Comparative Analysis Intellgent Control nd Automton, 2012, 3, 376-389 http://dx.do.org/10.4236/c.2012.34042 Publshed Onlne November 2012 (http://www.scrp.org/journl/c) Lner Inferentl Modelng: heoretcl Perspectves, Extensons,

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

Course Review Introduction to Computer Methods

Course Review Introduction to Computer Methods Course Revew Wht you hopefully hve lerned:. How to nvgte nsde MIT computer system: Athen, UNIX, emcs etc. (GCR). Generl des bout progrmmng (GCR): formultng the problem, codng n Englsh trnslton nto computer

More information

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z )

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z ) C4B Machne Learnng Answers II.(a) Show that for the logstc sgmod functon dσ(z) dz = σ(z) ( σ(z)) A. Zsserman, Hlary Term 20 Start from the defnton of σ(z) Note that Then σ(z) = σ = dσ(z) dz = + e z e z

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

18.7 Artificial Neural Networks

18.7 Artificial Neural Networks 310 18.7 Artfcl Neurl Networks Neuroscence hs hypotheszed tht mentl ctvty conssts prmrly of electrochemcl ctvty n networks of brn cells clled neurons Ths led McCulloch nd Ptts to devse ther mthemtcl model

More information

Modeling Labor Supply through Duality and the Slutsky Equation

Modeling Labor Supply through Duality and the Slutsky Equation Interntonl Journl of Economc Scences nd Appled Reserch 3 : 111-1 Modelng Lor Supply through Dulty nd the Slutsky Equton Ivn Ivnov 1 nd Jul Dorev Astrct In the present pper n nlyss of the neo-clsscl optmzton

More information

Activator-Inhibitor Model of a Dynamical System: Application to an Oscillating Chemical Reaction System

Activator-Inhibitor Model of a Dynamical System: Application to an Oscillating Chemical Reaction System Actvtor-Inhtor Model of Dynmcl System: Applcton to n Osclltng Chemcl Recton System C.G. Chrrth*P P,Denn BsuP P * Deprtment of Appled Mthemtcs Unversty of Clcutt 9, A. P. C. Rod, Kolt-79 # Deprtment of

More information

Generalized Least-Squares Regressions I: Efcient Derivations

Generalized Least-Squares Regressions I: Efcient Derivations Generlzed Lest-Squres Regressons I: Efcent Dervtons NATANIEL GREENE Deprtment of Mthemtcs nd Computer Scence Kngsough Communt College, CUNY 00 Orentl Boulevrd, Brookln, NY 35 UNITED STATES ngreene.mth@gml.com

More information

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X).

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X). 11.4.1 Estmaton of Multple Regresson Coeffcents In multple lnear regresson, we essentally solve n equatons for the p unnown parameters. hus n must e equal to or greater than p and n practce n should e

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

Lecture 3: Dual problems and Kernels

Lecture 3: Dual problems and Kernels Lecture 3: Dual problems and Kernels C4B Machne Learnng Hlary 211 A. Zsserman Prmal and dual forms Lnear separablty revsted Feature mappng Kernels for SVMs Kernel trck requrements radal bass functons SVM

More information

Feb 14: Spatial analysis of data fields

Feb 14: Spatial analysis of data fields Feb 4: Spatal analyss of data felds Mappng rregularly sampled data onto a regular grd Many analyss technques for geophyscal data requre the data be located at regular ntervals n space and/or tme. hs s

More information

An Introduction to Support Vector Machines

An Introduction to Support Vector Machines An Introducton to Support Vector Mchnes Wht s good Decson Boundry? Consder two-clss, lnerly seprble clssfcton problem Clss How to fnd the lne (or hyperplne n n-dmensons, n>)? Any de? Clss Per Lug Mrtell

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING Dundgl, Hyderbd - 5 3 FRESHMAN ENGINEERING TUTORIAL QUESTION BANK Nme : MATHEMATICS II Code : A6 Clss : II B. Te II Semester Brn : FRESHMAN ENGINEERING Yer : 5 Fulty

More information

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk Chpter 5 Supplementl Text Mterl 5-. Expected Men Squres n the Two-fctor Fctorl Consder the two-fctor fxed effects model y = µ + τ + β + ( τβ) + ε k R S T =,,, =,,, k =,,, n gven s Equton (5-) n the textook.

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

COMPLEX NUMBERS INDEX

COMPLEX NUMBERS INDEX COMPLEX NUMBERS INDEX. The hstory of the complex numers;. The mgnry unt I ;. The Algerc form;. The Guss plne; 5. The trgonometrc form;. The exponentl form; 7. The pplctons of the complex numers. School

More information

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER Yn, S.-P.: Locl Frctonl Lplce Seres Expnson Method for Dffuson THERMAL SCIENCE, Yer 25, Vol. 9, Suppl., pp. S3-S35 S3 LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN

More information

18-660: Numerical Methods for Engineering Design and Optimization

18-660: Numerical Methods for Engineering Design and Optimization 8-66: Numercal Methods for Engneerng Desgn and Optmzaton n L Department of EE arnege Mellon Unversty Pttsburgh, PA 53 Slde Overve lassfcaton Support vector machne Regularzaton Slde lassfcaton Predct categorcal

More information

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document Fttng Polynol to Het Cpcty s Functon of Teperture for Ag. thetcl Bckground Docuent by Theres Jul Zelnsk Deprtent of Chestry, edcl Technology, nd Physcs onouth Unversty West ong Brnch, J 7764-898 tzelns@onouth.edu

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s geometrcl concept rsng from prllel forces. Tus, onl prllel forces possess centrod. Centrod s tougt of s te pont were te wole wegt of pscl od or sstem of prtcles s lumped.

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data Deprtment of Mechncl Engneerng, Unversty of Bth Mthemtcs ME10305 Prolem sheet 11 Lest Squres Fttng of dt NOTE: If you re gettng just lttle t concerned y the length of these questons, then do hve look t

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Chapter 15 - Multiple Regression

Chapter 15 - Multiple Regression Chapter - Multple Regresson Chapter - Multple Regresson Multple Regresson Model The equaton that descrbes how the dependent varable y s related to the ndependent varables x, x,... x p and an error term

More information

Model Fitting and Robust Regression Methods

Model Fitting and Robust Regression Methods Dertment o Comuter Engneerng Unverst o Clorn t Snt Cruz Model Fttng nd Robust Regresson Methods CMPE 64: Imge Anlss nd Comuter Vson H o Fttng lnes nd ellses to mge dt Dertment o Comuter Engneerng Unverst

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

INTRODUCTORY NUMERICAL ANALYSIS

INTRODUCTORY NUMERICAL ANALYSIS ITRODUCTORY UMERICL LYSIS Lecture otes y Mrce ndrecut Unversl Pulshers/UPUBLISHCOM Prlnd FL US Introductory umercl nlyss: Lecture otes Copyrght Mrce ndrecut ll rghts reserved ISB: 877 Unversl Pulshers/uPUBLISHcom

More information

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 32, N o 1, 2003, pp 11 20 THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR TEODORA CĂTINAŞ Abstrct We extend the Sheprd opertor by

More information

Neural Network (Basic Ideas) Hung-yi Lee

Neural Network (Basic Ideas) Hung-yi Lee Neur Network (Bsc Ides) Hung-y Lee Lernng Lookng for Functon Speech Recognton f Hndwrtten Recognton f Wether forecst f Py vdeo gmes f wether tody Postons nd numer of enemes 你好 sunny tomorrow fre Frmework

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Logistic Regression Maximum Likelihood Estimation

Logistic Regression Maximum Likelihood Estimation Harvard-MIT Dvson of Health Scences and Technology HST.951J: Medcal Decson Support, Fall 2005 Instructors: Professor Lucla Ohno-Machado and Professor Staal Vnterbo 6.873/HST.951 Medcal Decson Support Fall

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 20 hemcl Recton Engneerng (RE) s the feld tht studes the rtes nd mechnsms of chemcl rectons nd the desgn of the rectors n whch they tke plce. Lst Lecture Energy Blnce Fundmentls F 0 E 0 F E Q W

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract Stochstc domnnce on optml portfolo wth one rsk less nd two rsky ssets Jen Fernnd Nguem LAMETA UFR Scences Economques Montpeller Abstrct The pper provdes restrctons on the nvestor's utlty functon whch re

More information

Review: Fit a line to N data points

Review: Fit a line to N data points Revew: Ft a lne to data ponts Correlated parameters: L y = a x + b Orthogonal parameters: J y = a (x ˆ x + b For ntercept b, set a=0 and fnd b by optmal average: ˆ b = y, Var[ b ˆ ] = For slope a, set

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Revsed: v3 Ordnar Least Squares (OLS): Smple Lnear Regresson (SLR) Analtcs The SLR Setup Sample Statstcs Ordnar Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals)

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Ordnary Least Squares (OLS): Smple Lnear Regresson (SLR) Analytcs The SLR Setup Sample Statstcs Ordnary Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals) wth OLS

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

Generative classification models

Generative classification models CS 675 Intro to Machne Learnng Lecture Generatve classfcaton models Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Data: D { d, d,.., dn} d, Classfcaton represents a dscrete class value Goal: learn

More information

Lecture 3 Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab

Lecture 3 Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab Lecture Cer Models Cer Clbrton rofessor Slvo Svrese Coputtonl Vson nd Geoetry Lb Slvo Svrese Lecture - Jn 7 th, 8 Lecture Cer Models Cer Clbrton Recp of cer odels Cer clbrton proble Cer clbrton wth rdl

More information

Association for the Chi-square Test

Association for the Chi-square Test Assocaton for the Ch-square Test Davd J Olve Southern Illnos Unversty February 8, 2012 Abstract A problem wth measures of assocaton for the ch-square test s that the measures depend on the number of observatons

More information

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018 INF 5860 Machne learnng for mage classfcaton Lecture 3 : Image classfcaton and regresson part II Anne Solberg January 3, 08 Today s topcs Multclass logstc regresson and softma Regularzaton Image classfcaton

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique Outlne and Readng Dynamc Programmng The General Technque ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Matrx Chan-Product ( 5.3.1) Dynamc Programmng verson 1.4 1 Dynamc Programmng verson 1.4 2 Dynamc Programmng

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 13 GENE H GOLUB 1 Iteratve Methods Very large problems (naturally sparse, from applcatons): teratve methods Structured matrces (even sometmes dense,

More information

Exploiting Structure in Probability Distributions Irit Gat-Viks

Exploiting Structure in Probability Distributions Irit Gat-Viks Explotng Structure n rolty Dstrutons Irt Gt-Vks Bsed on presentton nd lecture notes of Nr Fredmn, Herew Unversty Generl References: D. Koller nd N. Fredmn, prolstc grphcl models erl, rolstc Resonng n Intellgent

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhscsAndMathsTutor.com phscsandmathstutor.com June 005 5. The random varable X has probablt functon k, = 1,, 3, P( X = ) = k ( + 1), = 4, 5, where k s a constant. (a) Fnd the value of k. (b) Fnd the eact

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

Pattern Classification

Pattern Classification Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton (nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher

More information

Decision Analysis (part 2 of 2) Review Linear Regression

Decision Analysis (part 2 of 2) Review Linear Regression Harvard-MIT Dvson of Health Scences and Technology HST.951J: Medcal Decson Support, Fall 2005 Instructors: Professor Lucla Ohno-Machado and Professor Staal Vnterbo 6.873/HST.951 Medcal Decson Support Fall

More information

Quadrilateral et Hexahedral Pseudo-conform Finite Elements

Quadrilateral et Hexahedral Pseudo-conform Finite Elements Qurlterl et Heerl seuo-conform Fnte Elements E. DUBACH R. LUCE J.M. THOMAS Lbortore e Mtémtques Applquées UMR 5 u Frnce GDR MoMs Métoes Numérques pour les Flues. rs écembre 6 Wt s te problem? Loss of conergence

More information

Statistics 423 Midterm Examination Winter 2009

Statistics 423 Midterm Examination Winter 2009 Sttstcs 43 Mdterm Exmnton Wnter 009 Nme: e-ml: 1. Plese prnt your nme nd e-ml ddress n the bove spces.. Do not turn ths pge untl nstructed to do so. 3. Ths s closed book exmnton. You my hve your hnd clcultor

More information

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors Multple Lnear and Polynomal Regresson wth Statstcal Analyss Gven a set of data of measured (or observed) values of a dependent varable: y versus n ndependent varables x 1, x, x n, multple lnear regresson

More information

PHYS 2421 Fields and Waves

PHYS 2421 Fields and Waves PHYS 242 Felds nd Wves Instucto: Joge A. López Offce: PSCI 29 A, Phone: 747-7528 Textook: Unvesty Physcs e, Young nd Feedmn 23. Electc potentl enegy 23.2 Electc potentl 23.3 Clcultng electc potentl 23.4

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

CALIBRATION OF SMALL AREA ESTIMATES IN BUSINESS SURVEYS

CALIBRATION OF SMALL AREA ESTIMATES IN BUSINESS SURVEYS CALIBRATION OF SMALL AREA ESTIMATES IN BUSINESS SURVES Rodolphe Prm, Ntle Shlomo Southmpton Sttstcl Scences Reserch Insttute Unverst of Southmpton Unted Kngdom SAE, August 20 The BLUE-ETS Project s fnnced

More information

Reactor Control Division BARC Mumbai India

Reactor Control Division BARC Mumbai India A Study of Frctonl Schrödnger Equton-composed v Jumre frctonl dervtve Joydp Bnerjee 1, Uttm Ghosh, Susmt Srkr b nd Shntnu Ds 3 Uttr Bunch Kjl Hr Prmry school, Ful, Nd, West Bengl, Ind eml- joydp1955bnerjee@gml.com

More information

Intro to Visual Recognition

Intro to Visual Recognition CS 2770: Computer Vson Intro to Vsual Recognton Prof. Adrana Kovashka Unversty of Pttsburgh February 13, 2018 Plan for today What s recognton? a.k.a. classfcaton, categorzaton Support vector machnes Separable

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechancs for Scentsts and Engneers Davd Mller Types of lnear operators Types of lnear operators Blnear expanson of operators Blnear expanson of lnear operators We know that we can expand functons

More information

Stratified Extreme Ranked Set Sample With Application To Ratio Estimators

Stratified Extreme Ranked Set Sample With Application To Ratio Estimators Journl of Modern Appled Sttstcl Metods Volume 3 Issue Artcle 5--004 Strtfed Extreme Rned Set Smple Wt Applcton To Rto Estmtors Hn M. Smw Sultn Qboos Unversty, smw@squ.edu.om t J. Sed Sultn Qboos Unversty

More information

Kristin P. Bennett. Rensselaer Polytechnic Institute

Kristin P. Bennett. Rensselaer Polytechnic Institute Support Vector Machnes and Other Kernel Methods Krstn P. Bennett Mathematcal Scences Department Rensselaer Polytechnc Insttute Support Vector Machnes (SVM) A methodology for nference based on Statstcal

More information

Chapter 2 Transformations and Expectations. , and define f

Chapter 2 Transformations and Expectations. , and define f Revew for the prevous lecture Defnton: support set of a ranom varable, the monotone functon; Theorem: How to obtan a cf, pf (or pmf) of functons of a ranom varable; Eamples: several eamples Chapter Transformatons

More information

USING IMAGE STATISTICS FOR AUTOMATED QUALITY ASSESSMENT OF URBAN GEOSPATIAL DATA

USING IMAGE STATISTICS FOR AUTOMATED QUALITY ASSESSMENT OF URBAN GEOSPATIAL DATA USIG IMAGE SAISICS FOR AUOMAED QUALIY ASSESSME OF URBA GEOSPAIAL DAA WGoemn, LMrtnez-Fonte, RBellens, SGutm Dept elecommuncton nd Informton Processng, Ghent Unversty StPetersneuwstrt, B-9000 Gent, Belgum

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

β0 + β1xi and want to estimate the unknown

β0 + β1xi and want to estimate the unknown SLR Models Estmaton Those OLS Estmates Estmators (e ante) v. estmates (e post) The Smple Lnear Regresson (SLR) Condtons -4 An Asde: The Populaton Regresson Functon B and B are Lnear Estmators (condtonal

More information

Transform Coding. C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University

Transform Coding. C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University Trnsform Codng C.M. Lu Perceptul Sgnl Processng Lb College of Computer Scence Ntonl Cho-Tung Unversty http://www.cse.nctu.edu.tw/~cmlu/courses/compresson/ Offce: EC538 (03)573877 cmlu@cs.nctu.edu.tw Motvtng

More information

Binomial Distribution: Tossing a coin m times. p = probability of having head from a trial. y = # of having heads from n trials (y = 0, 1,..., m).

Binomial Distribution: Tossing a coin m times. p = probability of having head from a trial. y = # of having heads from n trials (y = 0, 1,..., m). [7] Count Data Models () Some Dscrete Probablty Densty Functons Bnomal Dstrbuton: ossng a con m tmes p probablty of havng head from a tral y # of havng heads from n trals (y 0,,, m) m m! fb( y n) p ( p)

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

15-381: Artificial Intelligence. Regression and cross validation

15-381: Artificial Intelligence. Regression and cross validation 15-381: Artfcal Intellgence Regresson and cross valdaton Where e are Inputs Densty Estmator Probablty Inputs Classfer Predct category Inputs Regressor Predct real no. Today Lnear regresson Gven an nput

More information