This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3)

Size: px
Start display at page:

Download "This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3)"

Transcription

1 Physics 506 Winte 2008 Homewok Assignment #10 Solutions Textbook poblems: Ch. 12: 12.10, 12.13, 12.16, A chaged paticle finds itself instantaneously in the equatoial plane of the eath s magnetic field assumed to be a dipole field) at a distance R fom the cente of the eath. Its velocity vecto at that instant makes an angle α with the equatoial plane v /v = tan α). Assuming that the paticle spials along the lines of foce with a gyation adius a R, and that the flux linked by the obit is a constant of the motion, find an equation fo the maximum magnetic latitude λ eached by the paticle as a function of the angle α. Plot a gaph not a sketch) of λ vesus α. ak paametically along the cuve the values of α fo which a paticle at adius R in the equatoial plane will hit the eath adius R 0 ) fo R/R 0 = 1.2, 1.5, 2.0, 2.5, 3, 4, 5. Since the paticle spials along the lines of foce ie magnetic field lines), we fist set out to calculate what these lines ae. Fo a dipole field with a magnetic dipole moment m = ẑ, the magnetic field is B = 3ˆˆ m) m 3 = ẑ 3 cos θˆ) 3 whee θ is the standad pola angle in spheical coodinates. This expession may be tansfomed entiely into spheical coodinates by witing ẑ = ˆ cos θ ˆθ sin θ. The esult is B = 3 2 cos θˆ + sin θˆθ) 1) Because of azimuthal symmety, we can think of this as a vecto field in the and θ diections. What we want to do now is to come up with a paametic equation = λ), θ = θλ) descibing the field lines. Hee λ is a paamete along the cuve. The key to elating this paametic equation to the magnetic field is to ealize that the tangent to the cuve should be identified with the magnetic field vecto B. Since the tangent to the cuve is given by λ = d dθ ˆ + dλ dλ ˆθ 2) we may take atios of ˆ and ˆθ components of 1) and 2) to obtain 2 cos θ sin θ = d/dλ dθ/dλ = 1 d dθ This gives ise to the sepaable equation d/ = 2 cot θ dθ which may be integated to yield θ) = R sin 2 θ 3)

2 Note that we have chosen the initial condition that π/2) = R, since θ = π/2 coesponds to the equatoial plane. In addition to the equation fo a magnetic field line, we also need the magnitude of the magnetic field. This may be computed fom 1) B = cos 2 θ 3 Along the line = R sin 2 θ, this becomes Bθ) = R cos2 θ sin 6 θ 4) Since the flux linked by the obit is a constant of motion an adiabatic invaiant), we end up with the velocity elation v θ) 2 = v0 2 v,0 2 Bθ) = v,0 2 B + v2,0 1 Bθ) ) 0 B 0 whee we have used v 2 0 = v 2,0 + v2,0. The paticle stats at an angle θ 0 = π/2. Fom 4), the initial magnetic field is B 0 = /R 3. hence v θ) 2 = v 2,0 + v2,0 1 ) cos2 θ sin 6 θ The minimum value of θ is eached at the tuning point when v θ) = 0. This coesponds to ) v,0 2 + cos2 θ v2,0 1 sin 6 = 0 θ cos2 θ sin 6 θ = 1 + v2,0 v 2,0 Setting θ = π/2 λ whee λ is the magnetic latitude, and using v,0 /v,0 = tan α then gives sin 1 + tan 2 2 λ α = cos 6 λ o We may plot λ vesus α as ) 1/2 α = tan sin 2 λ cos 6 1 λ

3 λ R /R Since the magnetic field line is given by 3), the paticle will hit the eath when R 0 = R sin 2 θ = R cos 2 λ, o λ = cos 1 R 0 /R. These values ae indicated on the plot a) Specialize the Dawin Lagangian 12.82) to the inteaction of two chaged paticles m 1, q 1 ) and m 2, q 2 ). Intoduce educed paticle coodinates, = x 1 x 2, v = v 1 v 2 and also cente of mass coodinates. Wite out the Lagangian in the efeence fame in which the velocity of the cente of mass vanishes and evaluate the canonical momentum components, p x = L/ v x, etc. The two paticle Dawin Lagangian eads L = 1 2 m 1v m 2v c 2 m 1v 4 1+m 2 v 4 2) q 1 q q 1q c 2 v 1 v 2 + v 1 ˆ) v 2 ˆ)] 5) We take a standad non-elativistic) tansfomation to cente of mass coodinates = x 1 x 2, R = m 1 x 1 + m 2 x 2 whee = m 1 + m 2. Inveting this gives x 1 = R + m 2, x 2 = R m 1 As a esult, the individual tems in the Lagangian 5) become 1 2 m 1v m 2v2 2 = 1 2 V µv2 m 1 v1 4 + m 2 v2) 4 8c 2 = 1 8c 2 V 4 + 6µV 2 v 2 + 4µ m 2 m 1 V v)v 2 + µ m3 1 + m 3 ) 2 3 v 4 v 1 v 2 = V 2 + m 2 m 1 V v µ v2 v 1 ˆ) v 2 ˆ) = V ˆ) 2 + m 2 m 1 V ˆ) v ˆ) µ v ˆ)2 α

4 whee µ = m 1 m 2 / is the educed mass. Fo vanishing cente of mass velocity V = 0) the Lagangian becomes L = 1 2 µv c 2 µm3 1 + m v 4 q 1q 2 The canonical momentum is p i = L/ v i, which gives µq 1q 2 2c 2 v2 + v ˆ) 2 ] 6) p = µ v + 1 2c 2 µm3 1 + m v 2 v µq 1q 2 v + v ˆ)ˆ] 7) 2c2 b) Calculate the Hamiltonian to fist ode in 1/c 2 and show that it is H = p2 2 1 m m 2 ) + q 1q 2 p4 1 8c 2 m m 3 2 ) + q 1q 2 2m 1 m 2 c 2 You may disegad the compaison with Bethe and Salpete.] p 2 + p ˆ) 2 ) The Hamiltonian is obtained fom the Lagangian 6) by the tansfomation H = p v L. Note, howeve, that we must invet the elation 7) to wite the esulting H as a function of p and. We stat with H = p v 1 2 µv2 1 8c 2 µm3 1 + m v 4 + q 1q 2 = p2 2µ 1 2µ p µ v)2 1 8c 2 µm3 1 + m v 4 + q 1q 2 + µq 1q 2 2c 2 v2 + v ˆ) 2 ] + µq 1q 2 2c 2 v2 + v ˆ) 2 ] 8) Since we only wok to fist ode in 1/c 2, we do not need to completely solve 7) fo v in tems of p. Instead, it is sufficient to note that v = 1 µ p + O 1 c 2 ) Inseting this into 8) gives to ode 1/c 2 ) H = p2 2µ 1 m m 3 2 8c 2 3 µ 3 p 4 + q 1q 2 = p ) p4 1 2 m 1 m 2 8c 2 m q 1q 2 2µc 2 p2 + p ˆ) 2 ] + 1 ) m 3 + q 1q 2 q 1 q m 1 m 2 c 2 p2 + p ˆ) 2 ] a) Stating with the Poca Lagangian density 12.91) and following the same pocedue as fo the electomagnetic fields, show that the symmetic stess-enegymomentum tenso fo the Poca fields is Θ αβ = 1 g αγ F γλ F λβ + 14 gαβ F λν F λν + µ 2 A α A β 12 gαβ A λ A λ )]

5 The Poca Lagangian density is Since we find L = 1 16π F µνf µν + 1 8π µ2 A µ A µ T µν = L µ A λ ν A λ η µν L T µν = 1 F µλ ν A λ π ηµν F 2 1 8π µ2 η µν A 2 whee we have used a shothand notation F 2 F µν F µν and A 2 A µ A µ. In ode to convet this canonical stess tenso to the symmetic stess tenso, we wite ν A λ = F ν λ + λ A ν. Then T µν = 1 F µλ F ν λ 1 4 ηµν F µ2 η µν A 2 ] 1 F µλ λ A ν = 1 F µλ F ν λ 1 4 ηµν F µ2 η µν A 2 λ F µλ )A ν ] 1 λf µλ A ν ) Using the Poca equation of motion λ F λµ + µ 2 A µ = 0 then gives whee T µν = Θ µν + λ S λµν Θ µν = 1 F µλ F ν λ 1 4 ηµν F 2 µ 2 A µ A ν 1 2 ηµν A 2 ) ] 9) is the symmetic stess tenso and S λµν = 1/)F λµ A ν is antisymmetic on the fist two indices. b) Fo these fields in inteaction with the extenal souce J β, as in 12.91), show that the diffeential consevation laws take the same fom as fo the electomagnetic fields, namely α Θ αβ = J λf λβ c Taking a 4-divegence of the symmetic stess tenso 9) gives µ Θ µν = 1 µ F µλ F ν λ + F µλ µ F ν λ 1 2 F ρλ ν F ρλ µ 2 µ A µ A ν + A µ µ A ν A λ ν A λ ) ] = 1 µ F µλ F ν λ F ρλ2 ρ F νλ ν F ρλ ) + µ 2 A λ ν A λ λ A ν ) ] = 1 µ F µλ + µ 2 A λ )F ν λ F ρλ ρ F νλ + λ F ρν + ν F λρ ) ] = 1 c J λ F ν λ = 1 c J λf λν

6 Note that in the second line we have used the fact that µ A µ = 0, which is automatic fo the Poca equation. To obtain the last line, we used the Bianchi identity 3 ρ F νλ] = 0 as well as the Poca equation of motion. c) Show explicitly that the time-time and space-time components of Θ αβ ae Θ 00 = 1 8π E2 + B 2 + µ 2 A 0 A 0 + A A)] Θ i0 = 1 E B) i + µ 2 A i A 0 ] Given the explicit fom of the axwell tenso, it is staightfowad to show that Thus Θµν = 1 F 2 F µν F µν = 2E 2 B 2 ), A 2 A µ A µ = A 0 ) 2 A 2 F µλ F ν λ ηµν E 2 B 2 ) µ 2 A µ A ν 1 2 ηµν A 0 ) 2 A ] 2 )) The time-time component of this is Θ 00 = 1 F 0i F 0 i E2 B 2 ) µ 2 A 0 ) A0 ) 2 A ] 2 )) = E2 + B 2 ) 1 2 µ2 A 0 ) 2 + A ] 2 ) = 1 8π E 2 + B 2 + µ 2 A 0 ) 2 + A 2 ) Similaly, the time-space components ae Θ 0i = 1 F 0 j F ij µ 2 A 0 A i] = 1 = 1 ɛijk E j B k µ 2 A 0 A i] = 1 ] E j ɛ ijk B k ) µ 2 A 0 A i] E B) i + µ 2 A 0 A i] Souce-fee electomagnetic fields exist in a localized egion of space. Conside the vaious consevation laws that ae contained in the integal of α αβγ = 0 ove all space, whee αβγ is defined by ). a) Show that when β and γ ae both space indices consevation of the total field angula momentum follows. Note that Hence αβγ = Θ αβ x γ Θ αγ x β 0ij = Θ 0i x j Θ 0j x i = cg i x j g j x i ) = cɛ ijk g x ) k = cɛ ijk x g ) k

7 whee g is the linea momentum density of the electomagnetic field. Since x g is the angula momentum density, integating 0ij ove 3-space gives the field angula momentum ij 0ij d 3 x = cɛ ijk x g ) k d 3 x = cɛ ijk L k The consevation law µ µij = 0 then coesponds to the consevation of angula momentum in the electomagnetic field. b) Show that when β = 0 the consevation law is d X dt = c2 Pem E em whee X is the coodinate of the cente of mass of the electomagnetic fields, defined by X u d 3 x = xu d 3 x whee u is the electomagnetic enegy density and E em and P em ae the total enegy and momentum of the fields. In this case, we have 0i 00i d 3 x = = Θ 00 x i Θ 0i x 0 ) d 3 x ux i cg i x 0 ) d 3 x = ux i c 2 tg i ) d 3 x aking use of the definition ux i d 3 x = EX i whee E = u d 3 x is the total field enegy, we have simply 0i = EX i c 2 tp i whee P = g d 3 x is the linea) field momentum. chage, its time deivative must vanish. This gives Since 0i is a conseved 0 = d dt E X) c 2 d dt t P ) = E d X dt c2 P whee we used the fact that enegy and momentum ae conseved, namely de/dt = 0 and d P /dt = 0). The esult d X/dt = c 2 P /E then follows.

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

S7: Classical mechanics problem set 2

S7: Classical mechanics problem set 2 J. Magoian MT 9, boowing fom J. J. Binney s 6 couse S7: Classical mechanics poblem set. Show that if the Hamiltonian is indepdent of a genealized co-odinate q, then the conjugate momentum p is a constant

More information

1 Spherical multipole moments

1 Spherical multipole moments Jackson notes 9 Spheical multipole moments Suppose we have a chage distibution ρ (x) wheeallofthechageiscontained within a spheical egion of adius R, as shown in the diagam. Then thee is no chage in the

More information

Homework # 3 Solution Key

Homework # 3 Solution Key PHYSICS 631: Geneal Relativity Homewok # 3 Solution Key 1. You e on you hono not to do this one by hand. I ealize you can use a compute o simply look it up. Please don t. In a flat space, the metic in

More information

Classical Mechanics Homework set 7, due Nov 8th: Solutions

Classical Mechanics Homework set 7, due Nov 8th: Solutions Classical Mechanics Homewok set 7, due Nov 8th: Solutions 1. Do deivation 8.. It has been asked what effect does a total deivative as a function of q i, t have on the Hamiltonian. Thus, lets us begin with

More information

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e.,

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e., Stella elaxation Time [Chandasekha 1960, Pinciples of Stella Dynamics, Chap II] [Ostike & Davidson 1968, Ap.J., 151, 679] Do stas eve collide? Ae inteactions between stas (as opposed to the geneal system

More information

Conformal transformations + Schwarzschild

Conformal transformations + Schwarzschild Intoduction to Geneal Relativity Solutions of homewok assignments 5 Confomal tansfomations + Schwazschild 1. To pove the identity, let s conside the fom of the Chistoffel symbols in tems of the metic tenso

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

is the instantaneous position vector of any grid point or fluid

is the instantaneous position vector of any grid point or fluid Absolute inetial, elative inetial and non-inetial coodinates fo a moving but non-defoming contol volume Tao Xing, Pablo Caica, and Fed Sten bjective Deive and coelate the govening equations of motion in

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lectue 5 Cental Foce Poblem (Chapte 3) What We Did Last Time Intoduced Hamilton s Pinciple Action integal is stationay fo the actual path Deived Lagange s Equations Used calculus

More information

3. Electromagnetic Waves II

3. Electromagnetic Waves II Lectue 3 - Electomagnetic Waves II 9 3. Electomagnetic Waves II Last time, we discussed the following. 1. The popagation of an EM wave though a macoscopic media: We discussed how the wave inteacts with

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

Magnetic field due to a current loop.

Magnetic field due to a current loop. Example using spheical hamonics Sp 18 Magnetic field due to a cuent loop. A cicula loop of adius a caies cuent I. We place the oigin at the cente of the loop, with pola axis pependicula to the plane of

More information

I. CONSTRUCTION OF THE GREEN S FUNCTION

I. CONSTRUCTION OF THE GREEN S FUNCTION I. CONSTRUCTION OF THE GREEN S FUNCTION The Helmohltz equation in 4 dimensions is 4 + k G 4 x, x = δ 4 x x. In this equation, G is the Geen s function and 4 efes to the dimensionality. In the vey end,

More information

Lecture 7: Angular Momentum, Hydrogen Atom

Lecture 7: Angular Momentum, Hydrogen Atom Lectue 7: Angula Momentum, Hydogen Atom Vecto Quantization of Angula Momentum and Nomalization of 3D Rigid Roto wavefunctions Conside l, so L 2 2 2. Thus, we have L 2. Thee ae thee possibilities fo L z

More information

Tutorial Exercises: Central Forces

Tutorial Exercises: Central Forces Tutoial Execises: Cental Foces. Tuning Points fo the Keple potential (a) Wite down the two fist integals fo cental motion in the Keple potential V () = µm/ using J fo the angula momentum and E fo the total

More information

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces.

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces. 4.8. Cental foces The most inteesting poblems in classical mechanics ae about cental foces. Definition of a cental foce: (i) the diection of the foce F() is paallel o antipaallel to ; in othe wods, fo

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

Scattering in Three Dimensions

Scattering in Three Dimensions Scatteing in Thee Dimensions Scatteing expeiments ae an impotant souce of infomation about quantum systems, anging in enegy fom vey low enegy chemical eactions to the highest possible enegies at the LHC.

More information

Math 209 Assignment 9 Solutions

Math 209 Assignment 9 Solutions Math 9 Assignment 9 olutions 1. Evaluate 4y + 1 d whee is the fist octant pat of y x cut out by x + y + z 1. olution We need a paametic epesentation of the suface. (x, z). Now detemine the nomal vecto:

More information

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b.

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b. Solutions. Plum Pudding Model (a) Find the coesponding electostatic potential inside and outside the atom. Fo R The solution can be found by integating twice, 2 V in = ρ 0 ε 0. V in = ρ 0 6ε 0 2 + a 2

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

The Poisson bracket and magnetic monopoles

The Poisson bracket and magnetic monopoles FYST420 Advanced electodynamics Olli Aleksante Koskivaaa Final poject ollikoskivaaa@gmail.com The Poisson backet and magnetic monopoles Abstact: In this wok magnetic monopoles ae studied using the Poisson

More information

The Precession of Mercury s Perihelion

The Precession of Mercury s Perihelion The Pecession of Mecuy s Peihelion Owen Biesel Januay 25, 2008 Contents 1 Intoduction 2 2 The Classical olution 2 3 Classical Calculation of the Peiod 4 4 The Relativistic olution 5 5 Remaks 9 1 1 Intoduction

More information

Homework 7 Solutions

Homework 7 Solutions Homewok 7 olutions Phys 4 Octobe 3, 208. Let s talk about a space monkey. As the space monkey is oiginally obiting in a cicula obit and is massive, its tajectoy satisfies m mon 2 G m mon + L 2 2m mon 2

More information

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!!

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!! Physics 161 Fall 011 Exta Cedit Investigating Black Holes - olutions The Following is Woth 50 Points!!! This exta cedit assignment will investigate vaious popeties of black holes that we didn t have time

More information

arxiv:gr-qc/ v2 8 Jun 2006

arxiv:gr-qc/ v2 8 Jun 2006 On Quantization of the Electical Chage Mass Dmitiy M Palatnik 1 6400 N Sheidan Rd 2605, Chicago, IL 60626 axiv:g-qc/060502v2 8 Jun 2006 Abstact Suggested a non-linea, non-gauge invaiant model of Maxwell

More information

Adiabatic evolution of the constants of motion in resonance (I)

Adiabatic evolution of the constants of motion in resonance (I) Adiabatic evolution of the constants of motion in esonance (I) BH Gavitational 重 力力波 waves Takahio Tanaka (YITP, Kyoto univesity) R. Fujita, S. Isoyama, H. Nakano, N. Sago PTEP 013 (013) 6, 063E01 e-pint:

More information

Now we just need to shuffle indices around a bit. The second term is already of the form

Now we just need to shuffle indices around a bit. The second term is already of the form Depatment of Physics, UCSD Physics 5B, Geneal Relativity Winte 05 Homewok, solutions. (a) Fom the Killing equation, ρ K σ ` σ K ρ 0 taking one deivative, µ ρ K σ ` µ σ K ρ 0 σ µ K ρ σ ρ K µ 0 ρ µ K σ `

More information

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3. Appendix A Vecto Algeba As is natual, ou Aeospace Stuctues will be descibed in a Euclidean thee-dimensional space R 3. A.1 Vectos A vecto is used to epesent quantities that have both magnitude and diection.

More information

Geometry of the homogeneous and isotropic spaces

Geometry of the homogeneous and isotropic spaces Geomety of the homogeneous and isotopic spaces H. Sonoda Septembe 2000; last evised Octobe 2009 Abstact We summaize the aspects of the geomety of the homogeneous and isotopic spaces which ae most elevant

More information

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source Multipole Radiation Febuay 29, 26 The electomagnetic field of an isolated, oscillating souce Conside a localized, oscillating souce, located in othewise empty space. We know that the solution fo the vecto

More information

KEPLER S LAWS AND PLANETARY ORBITS

KEPLER S LAWS AND PLANETARY ORBITS KEPE S AWS AND PANETAY OBITS 1. Selected popeties of pola coodinates and ellipses Pola coodinates: I take a some what extended view of pola coodinates in that I allow fo a z diection (cylindical coodinates

More information

arxiv:gr-qc/ v1 29 Jan 1998

arxiv:gr-qc/ v1 29 Jan 1998 Gavitational Analog of the Electomagnetic Poynting Vecto L.M. de Menezes 1 axiv:g-qc/9801095v1 29 Jan 1998 Dept. of Physics and Astonomy, Univesity of Victoia, Victoia, B.C. Canada V8W 3P6 Abstact The

More information

Doublet structure of Alkali spectra:

Doublet structure of Alkali spectra: Doublet stuctue of : Caeful examination of the specta of alkali metals shows that each membe of some of the seies ae closed doublets. Fo example, sodium yellow line, coesponding to 3p 3s tansition, is

More information

Geodesic motion in Kerr spacetime

Geodesic motion in Kerr spacetime Chapte 20 Geodesic motion in Ke spacetime Let us conside a geodesic with affine paamete λ and tangent vecto u µ = dxµ dλ ẋµ. (20.1) In this section we shall use Boye-Lindquist s coodinates, and the dot

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT Link to: phsicspages home page. To leave a comment o epot an eo, please use the auilia blog. Refeence: d Inveno, Ra, Intoducing Einstein s Relativit

More information

Experiment 09: Angular momentum

Experiment 09: Angular momentum Expeiment 09: Angula momentum Goals Investigate consevation of angula momentum and kinetic enegy in otational collisions. Measue and calculate moments of inetia. Measue and calculate non-consevative wok

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION EPER S AWS OF PANETARY MOTION 1. Intoduction We ae now in a position to apply what we have leaned about the coss poduct and vecto valued functions to deive eple s aws of planetay motion. These laws wee

More information

Magnetic Field. Conference 6. Physics 102 General Physics II

Magnetic Field. Conference 6. Physics 102 General Physics II Physics 102 Confeence 6 Magnetic Field Confeence 6 Physics 102 Geneal Physics II Monday, Mach 3d, 2014 6.1 Quiz Poblem 6.1 Think about the magnetic field associated with an infinite, cuent caying wie.

More information

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM Honou School of Mathematical and Theoetical Physics Pat C Maste of Science in Mathematical and Theoetical Physics COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM HILARY TERM 18 TUESDAY, 13TH MARCH 18, 1noon

More information

Generalized functions and statistical problems of. orbital mechanics

Generalized functions and statistical problems of. orbital mechanics Genealized functions and statistical poblems of obital mechanics Meshcheyakov TSNIIMASH OSKOSMOS 4// 8th US/ussian Space Suveillance Wokshop, Intoduction Thee is discussed a new method fo solution of statistical

More information

Introduction to General Relativity 2

Introduction to General Relativity 2 Intoduction to Geneal Relativity 2 Geneal Relativity Diffeential geomety Paallel tanspot How to compute metic? Deviation of geodesics Einstein equations Consequences Tests of Geneal Relativity Sola system

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law AY 7A - Fall 00 Section Woksheet - Solutions Enegy and Keple s Law. Escape Velocity (a) A planet is obiting aound a sta. What is the total obital enegy of the planet? (i.e. Total Enegy = Potential Enegy

More information

arxiv: v1 [physics.pop-ph] 3 Jun 2013

arxiv: v1 [physics.pop-ph] 3 Jun 2013 A note on the electostatic enegy of two point chages axiv:1306.0401v1 [physics.pop-ph] 3 Jun 013 A C Tot Instituto de Física Univesidade Fedeal do io de Janeio Caixa Postal 68.58; CEP 1941-97 io de Janeio,

More information

Problem Set 10 Solutions

Problem Set 10 Solutions Chemisty 6 D. Jean M. Standad Poblem Set 0 Solutions. Give the explicit fom of the Hamiltonian opeato (in atomic units) fo the lithium atom. You expession should not include any summations (expand them

More information

Introduction: Vectors and Integrals

Introduction: Vectors and Integrals Intoduction: Vectos and Integals Vectos a Vectos ae chaacteized by two paametes: length (magnitude) diection a These vectos ae the same Sum of the vectos: a b a a b b a b a b a Vectos Sum of the vectos:

More information

GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC

GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC GILBERT WEINSTEIN 1. Intoduction Recall that the exteio Schwazschild metic g defined on the 4-manifold M = R R 3 \B 2m ) = {t,, θ, φ): > 2m}

More information

Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole

Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole Spheical Solutions due to the Exteio Geomety of a Chaged Weyl Black Hole Fain Payandeh 1, Mohsen Fathi Novembe 7, 018 axiv:10.415v [g-qc] 10 Oct 01 1 Depatment of Physics, Payame Noo Univesity, PO BOX

More information

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges MAGNETOSTATICS Ceation of magnetic field. Effect of on a moving chage. Take the second case: F Q v mag On moving chages only F QE v Stationay and moving chages dw F dl Analysis on F mag : mag mag Qv. vdt

More information

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2.

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2. Cental oce Poblem ind the motion of two bodies inteacting via a cental foce. Cental oce Motion 8.01 W14D1 Examples: Gavitational foce (Keple poblem): 1 1, ( ) G mm Linea estoing foce: ( ) k 1, Two Body

More information

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 0B - HW #7 Sping 2004, Solutions by David Pace Any efeenced euations ae fom Giffiths Poblem statements ae paaphased. Poblem 0.3 fom Giffiths A point chage,, moves in a loop of adius a. At time t 0

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamics of Rotational Motion Toque: the otational analogue of foce Toque = foce x moment am τ = l moment am = pependicula distance though which the foce acts a.k.a. leve am l l l l τ = l = sin φ = tan

More information

Stress, Cauchy s equation and the Navier-Stokes equations

Stress, Cauchy s equation and the Navier-Stokes equations Chapte 3 Stess, Cauchy s equation and the Navie-Stokes equations 3. The concept of taction/stess Conside the volume of fluid shown in the left half of Fig. 3.. The volume of fluid is subjected to distibuted

More information

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009 Physics 111 Lectue 5 (Walke: 3.3-6) Vectos & Vecto Math Motion Vectos Sept. 11, 2009 Quiz Monday - Chap. 2 1 Resolving a vecto into x-component & y- component: Pola Coodinates Catesian Coodinates x y =

More information

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website:

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website: Lectue 6 Chapte 4 Physics I Rotational Motion Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi Today we ae going to discuss: Chapte 4: Unifom Cicula Motion: Section 4.4 Nonunifom Cicula

More information

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf " #, # $ work function.

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf  #, # $ work function. PHYSICS 4E FINAL EXAM SPRING QUARTER 1 Fomulas and constants: hc =1,4 ev A ; k B =1/11,6 ev/k ; ke =14.4eVA ; m e c =.511"1 6 ev ; m p /m e =1836 Relativistic enegy - momentum elation E = m c 4 + p c ;

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4)

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4) Chapte 9 Hydogen Atom I What is H int? That depends on the physical system and the accuacy with which it is descibed. A natual stating point is the fom H int = p + V, (9.) µ which descibes a two-paticle

More information

The Schwartzchild Geometry

The Schwartzchild Geometry UNIVERSITY OF ROCHESTER The Schwatzchild Geomety Byon Osteweil Decembe 21, 2018 1 INTRODUCTION In ou study of geneal elativity, we ae inteested in the geomety of cuved spacetime in cetain special cases

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

B da = 0. Q E da = ε. E da = E dv

B da = 0. Q E da = ε. E da = E dv lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the

More information

An Exact Solution of Navier Stokes Equation

An Exact Solution of Navier Stokes Equation An Exact Solution of Navie Stokes Equation A. Salih Depatment of Aeospace Engineeing Indian Institute of Space Science and Technology, Thiuvananthapuam, Keala, India. July 20 The pincipal difficulty in

More information

m 1 r = r 1 - r 2 m 2 r 2 m1 r1

m 1 r = r 1 - r 2 m 2 r 2 m1 r1 Topic 4: Two-Body Cental Foce Motion Reading Assignment: Hand & Finch Chap. 4 This will be the last topic coveed on the midtem exam. I will pass out homewok this week but not next week.. Eliminating the

More information

Chapter 10 Sample Exam

Chapter 10 Sample Exam Chapte Sample Exam Poblems maked with an asteisk (*) ae paticulaly challenging and should be given caeful consideation.. Conside the paametic cuve x (t) =e t, y (t) =e t, t (a) Compute the length of the

More information

Phys 201A. Homework 5 Solutions

Phys 201A. Homework 5 Solutions Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

Antennas & Propagation

Antennas & Propagation Antennas & Popagation 1 Oveview of Lectue II -Wave Equation -Example -Antenna Radiation -Retaded potential THE KEY TO ANY OPERATING ANTENNA ot H = J +... Suppose: 1. Thee does exist an electic medium,

More information

Central Force Motion

Central Force Motion Cental Foce Motion Cental Foce Poblem Find the motion of two bodies inteacting via a cental foce. Examples: Gavitational foce (Keple poblem): m1m F 1, ( ) =! G ˆ Linea estoing foce: F 1, ( ) =! k ˆ Two

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems Apil 5, 997 A Quick Intoduction to Vectos, Vecto Calculus, and Coodinate Systems David A. Randall Depatment of Atmospheic Science Coloado State Univesity Fot Collins, Coloado 80523. Scalas and vectos Any

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

3D-Central Force Problems I

3D-Central Force Problems I 5.73 Lectue #1 1-1 Roadmap 1. define adial momentum 3D-Cental Foce Poblems I Read: C-TDL, pages 643-660 fo next lectue. All -Body, 3-D poblems can be educed to * a -D angula pat that is exactly and univesally

More information

10.2 Parametric Calculus

10.2 Parametric Calculus 10. Paametic Calculus Let s now tun ou attention to figuing out how to do all that good calculus stuff with a paametically defined function. As a woking eample, let s conside the cuve taced out by a point

More information

The Schwarzschild Solution

The Schwarzschild Solution The Schwazschild Solution Johannes Schmude 1 Depatment of Physics Swansea Univesity, Swansea, SA2 8PP, United Kingdom Decembe 6, 2007 1 pyjs@swansea.ac.uk Intoduction We use the following conventions:

More information

Electromagnetic Theory 1

Electromagnetic Theory 1 / lectomagnetic Theoy uestion : lectostatic Potential negy A sphee of adius caies a positive chage density ρ constant Obviously the spheical coodinates system is appopiate hee Take - C m - and cm τ a)

More information

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx.

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx. 9. LAGRANGIAN OF THE ELECTROMAGNETIC FIELD In the pevious section the Lagangian and Hamiltonian of an ensemble of point paticles was developed. This appoach is based on a qt. This discete fomulation can

More information

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi ENGI 44 Non-Catesian Coodinates Page 7-7. Conesions between Coodinate Systems In geneal, the conesion of a ecto F F xi Fy j Fzk fom Catesian coodinates x, y, z to anothe othonomal coodinate system u,,

More information

PY208 Matter & Interactions Final Exam S2005

PY208 Matter & Interactions Final Exam S2005 PY Matte & Inteactions Final Exam S2005 Name (pint) Please cicle you lectue section below: 003 (Ramakishnan 11:20 AM) 004 (Clake 1:30 PM) 005 (Chabay 2:35 PM) When you tun in the test, including the fomula

More information

The evolution of the phase space density of particle beams in external fields

The evolution of the phase space density of particle beams in external fields The evolution of the phase space density of paticle beams in extenal fields E.G.Bessonov Lebedev Phys. Inst. RAS, Moscow, Russia, COOL 09 Wokshop on Beam Cooling and Related Topics August 31 Septembe 4,

More information

COUPLED MODELS OF ROLLING, SLIDING AND WHIRLING FRICTION

COUPLED MODELS OF ROLLING, SLIDING AND WHIRLING FRICTION ENOC 008 Saint Petesbug Russia June 30-July 4 008 COUPLED MODELS OF ROLLING SLIDING AND WHIRLING FRICTION Alexey Kieenkov Ins ti tu te fo P ob le ms in Me ch an ic s Ru ss ia n Ac ad em y of Sc ie nc es

More information

DO NOT WRITE YOUR NAME OR STUDENT NUMBER ON ANY SHEET!

DO NOT WRITE YOUR NAME OR STUDENT NUMBER ON ANY SHEET! Electodynamics Subject Exam Pep Quiz Fiday Apil 29 2017 DO NOT WRITE YOUR NAME OR STUDENT NUMBER ON ANY SHEET! E&MStudyGuide Ch 1 Special Relativity Pime 1.1 Gamma Factos and Such tlab γt0 Llab L0 γ 1.2

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Fluid flow in curved geometries: Mathematical Modeling and Applications

Fluid flow in curved geometries: Mathematical Modeling and Applications Fluid flow in cuved geometies: Mathematical Modeling and Applications D. Muhammad Sajid Theoetical Plasma Physics Division PINSTECH, P.O. Niloe, PAEC, Islamabad Mach 01-06, 010 Islamabad, Paistan Pesentation

More information

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS L. MICU Hoia Hulubei National Institute fo Physics and Nuclea Engineeing, P.O. Box MG-6, RO-0775 Buchaest-Maguele, Romania, E-mail: lmicu@theoy.nipne.o (Received

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems ! Revised Apil 11, 2017 1:48 PM! 1 Vectos, Vecto Calculus, and Coodinate Systems David Randall Physical laws and coodinate systems Fo the pesent discussion, we define a coodinate system as a tool fo descibing

More information

Chapter 12: Kinematics of a Particle 12.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS. u of the polar coordinate system are also shown in

Chapter 12: Kinematics of a Particle 12.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS. u of the polar coordinate system are also shown in ME 01 DYNAMICS Chapte 1: Kinematics of a Paticle Chapte 1 Kinematics of a Paticle A. Bazone 1.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS Pola Coodinates Pola coodinates ae paticlaly sitable fo solving

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

Mechanics and Special Relativity (MAPH10030) Assignment 3

Mechanics and Special Relativity (MAPH10030) Assignment 3 (MAPH0030) Assignment 3 Issue Date: 03 Mach 00 Due Date: 4 Mach 00 In question 4 a numeical answe is equied with pecision to thee significant figues Maks will be deducted fo moe o less pecision You may

More information

HW Solutions # MIT - Prof. Please study example 12.5 "from the earth to the moon". 2GmA v esc

HW Solutions # MIT - Prof. Please study example 12.5 from the earth to the moon. 2GmA v esc HW Solutions # 11-8.01 MIT - Pof. Kowalski Univesal Gavity. 1) 12.23 Escaping Fom Asteoid Please study example 12.5 "fom the eath to the moon". a) The escape velocity deived in the example (fom enegy consevation)

More information

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions EN10: Continuum Mechanics Homewok 7: Fluid Mechanics Solutions School of Engineeing Bown Univesity 1. An ideal fluid with mass density ρ flows with velocity v 0 though a cylindical tube with cosssectional

More information

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925)

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925) 1 Lectue 1: The beginnings of quantum physics 1. The Sten-Gelach expeiment. Atomic clocks 3. Planck 1900, blackbody adiation, and E ω 4. Photoelectic effect 5. Electon diffaction though cystals, de Boglie

More information

Curvature singularity

Curvature singularity Cuvatue singulaity We wish to show that thee is a cuvatue singulaity at 0 of the Schwazschild solution. We cannot use eithe of the invaiantsr o R ab R ab since both the Ricci tenso and the Ricci scala

More information

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant.

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant. ANTNNAS Vecto and Scala Potentials Maxwell's quations jωb J + jωd D ρ B (M) (M) (M3) (M4) D ε B Fo a linea, homogeneous, isotopic medium and ε ae contant. Since B, thee exists a vecto A such that B A and

More information

PHYS 705: Classical Mechanics. Small Oscillations

PHYS 705: Classical Mechanics. Small Oscillations PHYS 705: Classical Mechanics Small Oscillations Fomulation of the Poblem Assumptions: V q - A consevative system with depending on position only - The tansfomation equation defining does not dep on time

More information