Chapter 10 Sample Exam

Size: px
Start display at page:

Download "Chapter 10 Sample Exam"

Transcription

1 Chapte Sample Exam Poblems maked with an asteisk (*) ae paticulaly challenging and should be given caeful consideation.. Conside the paametic cuve x (t) =e t, y (t) =e t, t (a) Compute the length of the cuve fom t =to t =. (b) Compute the length of the cuve fom t =to t =. (c) Convet this paametic equation into an equation of the fom y = f (x), and compute the length of the gaph of f (x) fom x =to x =. (d) Is the answe in pat (c) the same as the answe in pat (b)? How do you explain this esult?. Conside the paametic cuve x (t) =a cos t, y (t) =b sin t, t fo a, b. (a) Sketch and identify this cuve. (b) Set up an integal to compute the length of this cuve.. The cuve below can be paametized by x (t) =t sin t, y (t) =t +cost. y _ x (a) Give a paametization fo the cuve below. (b) Give a paametization fo the cuve below. y y _ x _ x 67

2 CHAPTER PARAMETRIC EQUATIONS AND POLAR COORDINATES 4. Match each ectangula gaph of = f (θ) in the left column below with the coesponding pola gaph in the ight column. Explain you easoning. (a) (i) _ O _ (b) (ii) _ O _ (c) (iii) _ _ O (d) (iv) _ O _ 68

3 CHAPTER SAMPLE EXAM 5. Conside the pola cuve = cos θ sin θ, θ< 4. (a) What happens to as θ appoaches 4? (b) Convet the above equation to an equation y = f (x) in ectangula coodinates. (c) What value of θ will give the point (, )? (c) What is the domain of this pola cuve when viewed as a function f (x)? 6. Conside the pola cuve = f (θ) shown below. Note that f (θ) 5 fo all θ and that f () = f (). 4 =f( ) _4 _ O 4 4 (a) Show that the aea enclosed by the gaph of f (θ) must be geate than. (b) Must the aea enclosed by this cuve fom θ be finite? Why o why not? (c) Find a function g (θ) satisfying the same conditions as f (θ) above, such that the aea enclosed by g (θ) is Conside the cuve x = e t 5 cos t, y = e t 5 sin t, t. (a) Find the values of t whee the line tangent to the cuve is vetical. (b) Find the values of t whee the slope of the line tangent to the cuve is. 8. Find the aea unde the paametic cuve x =sint, y =costsin t, t. e 9. Conside the pola equation = +ecos θ. (a) What is the diectix fo this pola cuve? (b) Classify the pola cuve if (i) e =. (ii) e = (iii) e =.9 (iv) e =. (c) Classify the pola cuve =, and compute the eccenticity. 4+cosθ. Conside the paametic cuve x =t 5 +, y =t, t R. (a) Find the values of t whee the slope of the line tangent to the cuve is. (b) What value of t gives the point (, ) on this cuve? (c) Is dy/dx defined at (, )? Descibe the shape of the cuve at this point. 69

4 . Conside the family of conics x k + y k =, k>, k. (a) Descibe the conic if k>, and compute the foci. (b) Descibe the conic if <k<, and compute the foci. (c) Find the value of k andanequationfotheconicinthisfamilyifthey-intecepts ae 5 ±.. Conside the paametic cuve x = t cos t, y = t sin t, t >. (a) Wite an integal which descibes the length of this cuve fom t =to t =. (b) What substitutions could be used to evaluate the integal in pat (a)? Do not evaluate the integal. (c) Set up, but do not evaluate, an integal which descibes the suface aea obtained by otating this cuve about the x-axis. Chapte Sample Exam Solutions. (a) L = x (t) + y (t) dt = (b) L = e t +4e t dt = 5 ( e e ) (c) y =x, a staight line with slope. L = e t +4e t dt = 5 et dt = 5(e ) ( ) +(4 ) = 5 (d) They ae diffeent, since in pat (b), we ae computing the distance fom (e, e) to ( e, e ) and in pat (c) fom (, ) to (, 4).. (a) This is the uppe half of the ellipse x a + y b =. (b) L = x (t) + y (t) dt = a sin t + b cos tdt. (a) x (t) = x (t) = (t sin t), y (t) =y (t) =t +cost (b) x (t) = x (t) = t sin t, y (t) = y (t) = (t +cost) 4. The matches ae (a) (iii), (b) (ii), (c) (iv), and (d) (i). 5. (a) lim = lim θ (/4) θ (/4) cos θ sin θ = (b) We have cos θ sin θ =.Thisgivesx y =o y = x. (c) θ =gives the point (, ). (d) The domain is x. 6. (a) The aea enclosed by f (θ) is geate than the aea of a cicle of adius. Thisaeais4.6 >. (b) The aea enclosed by f (θ) is less than the aea of a cicle of adius 5. This aea is < 8. Sotheaeaisalwaysfinite. (c) We want f (θ) dθ =4. Iff (θ) is a constant C, weneed C =4 C =4 C = 4. So choose f (θ) = 4 fo all θ. 6

5 CHAPTER SAMPLE EXAM SOLUTIONS 7. (a) The tangent is vetical if dx dt = et 5 cos t e t 5 sin t =. Thus, cos t sin t = tan t = t = 4 o 5 4. (b) dy dx = dy/dt dx/dt = et 5 (sin t +cost) e t 5 = sin t +cost =sint cos t cos t = (cos t sin t) t = o. 8. A = y (t) x (t) dt = cos t sin t cos tdt = cos t sin tdt= cos t = ( ) + = 9. (a) x =is the diectix fo this conic. (b) (i) Hypebola, e> (ii) Paabola, e = (iii) Ellipse, <e< (iv) Ellipse, <e<, but nealy cicula. (c) = 4+cosθ = + 4 cos θ. This is an ellipse with eccenticity e = 4.. (a) Set dy dx = dy/dt dx/dt = t 5t 4 = t =. Hence, at t = ±, the slope is. (b) x (t) =, y (t) = gives t 5 ==t,ot =. (c) At t =, dy dx = is not defined. In this case, the line tangent to the cuve is vetical. t. (a) If k>, k > and the conic is an ellipse with a = k, b = k. Hencea>b,and c = a b = =. So the foci ae at (, ) and (, ). (b) If <k<, k is negative, k > and x k y k =is a hypebola. c = a + b = k + k = =. So the foci ae at (, ) and (, ). ( (c) The points, ± ) 5 y 5 ae on this ellipse. So k = 4 k =, 5 4 = k, k = 9 4, k =.The equation of the ellipse is x 9/4 + y 5/4 =.. (a) L = x (t) + y (t) dt = (cos t t sin t) + (sin t + t cos t) dt = +t dt,afte simplifying. (b) Substitute t =tanu, dt =sec uduto obtain L = tan sec udu (c) S = y (t) x (t) + y (t) dt = t sin t +t dt 6

6

MATH 155/GRACEY CH. 10 PRACTICE. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 155/GRACEY CH. 10 PRACTICE. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH /GRACEY CH. PRACTICE Name SHORT ANSWER. Wite the wod o phase that best completes each statement o answes the question. At the given point, find the line that is nomal to the cuve at the given point.

More information

Math 209 Assignment 9 Solutions

Math 209 Assignment 9 Solutions Math 9 Assignment 9 olutions 1. Evaluate 4y + 1 d whee is the fist octant pat of y x cut out by x + y + z 1. olution We need a paametic epesentation of the suface. (x, z). Now detemine the nomal vecto:

More information

Section 8.2 Polar Coordinates

Section 8.2 Polar Coordinates Section 8. Pola Coodinates 467 Section 8. Pola Coodinates The coodinate system we ae most familia with is called the Catesian coodinate system, a ectangula plane divided into fou quadants by the hoizontal

More information

REVIEW Polar Coordinates and Equations

REVIEW Polar Coordinates and Equations REVIEW 9.1-9.4 Pola Coodinates and Equations You ae familia with plotting with a ectangula coodinate system. We ae going to look at a new coodinate system called the pola coodinate system. The cente of

More information

KEPLER S LAWS AND PLANETARY ORBITS

KEPLER S LAWS AND PLANETARY ORBITS KEPE S AWS AND PANETAY OBITS 1. Selected popeties of pola coodinates and ellipses Pola coodinates: I take a some what extended view of pola coodinates in that I allow fo a z diection (cylindical coodinates

More information

Coordinate Geometry. = k2 e 2. 1 e + x. 1 e. ke ) 2. We now write = a, and shift the origin to the point (a, 0). Referred to

Coordinate Geometry. = k2 e 2. 1 e + x. 1 e. ke ) 2. We now write = a, and shift the origin to the point (a, 0). Referred to Coodinate Geomet Conic sections These ae pane cuves which can be descibed as the intesection of a cone with panes oiented in vaious diections. It can be demonstated that the ocus of a point which moves

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Test # Review Math (Pe -calculus) Name MULTIPLE CHOICE. Choose the one altenative that best completes the statement o answes the question. Use an identit to find the value of the epession. Do not use a

More information

Math 259 Winter Handout 6: In-class Review for the Cumulative Final Exam

Math 259 Winter Handout 6: In-class Review for the Cumulative Final Exam Math 259 Winte 2009 Handout 6: In-class Review fo the Cumulative Final Exam The topics coveed by the cumulative final exam include the following: Paametic cuves. Finding fomulas fo paametic cuves. Dawing

More information

Chapter 2: Basic Physics and Math Supplements

Chapter 2: Basic Physics and Math Supplements Chapte 2: Basic Physics and Math Supplements Decembe 1, 215 1 Supplement 2.1: Centipetal Acceleation This supplement expands on a topic addessed on page 19 of the textbook. Ou task hee is to calculate

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

Chapter 12. Kinetics of Particles: Newton s Second Law

Chapter 12. Kinetics of Particles: Newton s Second Law Chapte 1. Kinetics of Paticles: Newton s Second Law Intoduction Newton s Second Law of Motion Linea Momentum of a Paticle Systems of Units Equations of Motion Dynamic Equilibium Angula Momentum of a Paticle

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT Link to: phsicspages home page. To leave a comment o epot an eo, please use the auilia blog. Refeence: d Inveno, Ra, Intoducing Einstein s Relativit

More information

9.1 POLAR COORDINATES

9.1 POLAR COORDINATES 9. Pola Coodinates Contempoay Calculus 9. POLAR COORDINATES The ectangula coodinate system is immensely useful, but it is not the only way to assign an addess to a point in the plane and sometimes it is

More information

PHYS Dynamics of Space Vehicles

PHYS Dynamics of Space Vehicles PHYS 4110 - Dynamics of Space Vehicles Chapte 3: Two Body Poblem Eath, Moon, Mas, and Beyond D. Jinjun Shan, Pofesso of Space Engineeing Depatment of Eath and Space Science and Engineeing Room 55, Petie

More information

Much that has already been said about changes of variable relates to transformations between different coordinate systems.

Much that has already been said about changes of variable relates to transformations between different coordinate systems. MULTIPLE INTEGRLS I P Calculus Cooinate Sstems Much that has alea been sai about changes of vaiable elates to tansfomations between iffeent cooinate sstems. The main cooinate sstems use in the solution

More information

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface . CONICAL PROJECTIONS In elementay texts on map pojections, the pojection sufaces ae often descibed as developable sufaces, such as the cylinde (cylindical pojections) and the cone (conical pojections),

More information

Handout: IS/LM Model

Handout: IS/LM Model Econ 32 - IS/L odel Notes Handout: IS/L odel IS Cuve Deivation Figue 4-4 in the textbook explains one deivation of the IS cuve. This deivation uses the Induced Savings Function fom Chapte 3. Hee, I descibe

More information

a k 0, then k + 1 = 2 lim 1 + 1

a k 0, then k + 1 = 2 lim 1 + 1 Math 7 - Midterm - Form A - Page From the desk of C. Davis Buenger. https://people.math.osu.edu/buenger.8/ Problem a) [3 pts] If lim a k = then a k converges. False: The divergence test states that if

More information

ME 210 Applied Mathematics for Mechanical Engineers

ME 210 Applied Mathematics for Mechanical Engineers Tangent and Ac Length of a Cuve The tangent to a cuve C at a point A on it is defined as the limiting position of the staight line L though A and B, as B appoaches A along the cuve as illustated in the

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

Problem 1: Multiple Choice Questions

Problem 1: Multiple Choice Questions Mathematics 102 Review Questions Poblem 1: Multiple Choice Questions 1: Conside the function y = f(x) = 3e 2x 5e 4x (a) The function has a local maximum at x = (1/2)ln(10/3) (b) The function has a local

More information

13. The electric field can be calculated by Eq. 21-4a, and that can be solved for the magnitude of the charge N C m 8.

13. The electric field can be calculated by Eq. 21-4a, and that can be solved for the magnitude of the charge N C m 8. CHAPTR : Gauss s Law Solutions to Assigned Poblems Use -b fo the electic flux of a unifom field Note that the suface aea vecto points adially outwad, and the electic field vecto points adially inwad Thus

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math Pecalculus Ch. 6 Review Name SHORT ANSWER. Wite the wod o phase that best completes each statement o answes the question. Solve the tiangle. ) ) 6 7 0 Two sides and an angle (SSA) of a tiangle ae

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

Tutorial Exercises: Central Forces

Tutorial Exercises: Central Forces Tutoial Execises: Cental Foces. Tuning Points fo the Keple potential (a) Wite down the two fist integals fo cental motion in the Keple potential V () = µm/ using J fo the angula momentum and E fo the total

More information

Chapter 8. Accelerated Circular Motion

Chapter 8. Accelerated Circular Motion Chapte 8 Acceleated Cicula Motion 8.1 Rotational Motion and Angula Displacement A new unit, adians, is eally useful fo angles. Radian measue θ(adians) = s = θ s (ac length) (adius) (s in same units as

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website:

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website: Lectue 6 Chapte 4 Physics I Rotational Motion Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi Today we ae going to discuss: Chapte 4: Unifom Cicula Motion: Section 4.4 Nonunifom Cicula

More information

So, if we are finding the amount of work done over a non-conservative vector field F r, we do that long ur r b ur =

So, if we are finding the amount of work done over a non-conservative vector field F r, we do that long ur r b ur = 3.4 Geen s Theoem Geoge Geen: self-taught English scientist, 793-84 So, if we ae finding the amount of wok done ove a non-consevative vecto field F, we do that long u b u 3. method Wok = F d F( () t )

More information

CHEM1101 Worksheet 3: The Energy Levels Of Electrons

CHEM1101 Worksheet 3: The Energy Levels Of Electrons CHEM1101 Woksheet 3: The Enegy Levels Of Electons Model 1: Two chaged Paticles Sepaated by a Distance Accoding to Coulomb, the potential enegy of two stationay paticles with chages q 1 and q 2 sepaated

More information

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion Reading Assignment: Lab #9: The Kinematics & Dynamics of Cicula Motion & Rotational Motion Chapte 6 Section 4 Chapte 11 Section 1 though Section 5 Intoduction: When discussing motion, it is impotant to

More information

Trigonometry Standard Position and Radians

Trigonometry Standard Position and Radians MHF 4UI Unit 6 Day 1 Tigonomety Standad Position and Radians A. Standad Position of an Angle teminal am initial am Angle is in standad position when the initial am is the positive x-axis and the vetex

More information

1. Show that the volume of the solid shown can be represented by the polynomial 6x x.

1. Show that the volume of the solid shown can be represented by the polynomial 6x x. 7.3 Dividing Polynomials by Monomials Focus on Afte this lesson, you will be able to divide a polynomial by a monomial Mateials algeba tiles When you ae buying a fish tank, the size of the tank depends

More information

Recall from last week:

Recall from last week: Recall fom last week: Length of a cuve '( t) dt b Ac length s( t) a a Ac length paametization ( s) with '( s) 1 '( t) Unit tangent vecto T '(s) '( t) dt Cuvatue: s ds T t t t t t 3 t ds u du '( t) dt Pincipal

More information

Mathematics Engineering Calculus III Fall 13 Test #1

Mathematics Engineering Calculus III Fall 13 Test #1 Mathematics 2153-02 Engineering Calculus III Fall 13 Test #1 Instructor: Dr. Alexandra Shlapentokh (1) Which of the following statements is always true? (a) If x = f(t), y = g(t) and f (1) = 0, then dy/dx(1)

More information

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2 THE LAPLACE EQUATION The Laplace (o potential) equation is the equation whee is the Laplace opeato = 2 x 2 u = 0. in R = 2 x 2 + 2 y 2 in R 2 = 2 x 2 + 2 y 2 + 2 z 2 in R 3 The solutions u of the Laplace

More information

10.2 Parametric Calculus

10.2 Parametric Calculus 10. Paametic Calculus Let s now tun ou attention to figuing out how to do all that good calculus stuff with a paametically defined function. As a woking eample, let s conside the cuve taced out by a point

More information

HW6 Physics 311 Mechanics

HW6 Physics 311 Mechanics HW6 Physics 311 Mechanics Fall 015 Physics depatment Univesity of Wisconsin, Madison Instucto: Pofesso Stefan Westehoff By Nasse M. Abbasi June 1, 016 Contents 0.1 Poblem 1.........................................

More information

Lecture 1a: Satellite Orbits

Lecture 1a: Satellite Orbits Lectue 1a: Satellite Obits Outline 1. Newton s Laws of Mo3on 2. Newton s Law of Univesal Gavita3on 3. Calcula3ng satellite obital paametes (assuming cicula mo3on) Scala & Vectos Scala: a physical quan3ty

More information

Chapter 2: Introduction to Implicit Equations

Chapter 2: Introduction to Implicit Equations Habeman MTH 11 Section V: Paametic and Implicit Equations Chapte : Intoduction to Implicit Equations When we descibe cuves on the coodinate plane with algebaic equations, we can define the elationship

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

Radius of the Moon is 1700 km and the mass is 7.3x 10^22 kg Stone. Moon

Radius of the Moon is 1700 km and the mass is 7.3x 10^22 kg Stone. Moon xample: A 1-kg stone is thown vetically up fom the suface of the Moon by Supeman. The maximum height fom the suface eached by the stone is the same as the adius of the moon. Assuming no ai esistance and

More information

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if Subject: Mathematics-I Question Bank Section A T T. Find the value of fo which the matix A = T T has ank one. T T i. Is the matix A = i is skew-hemitian matix. i. alculate the invese of the matix = 5 7

More information

Phys 201A. Homework 5 Solutions

Phys 201A. Homework 5 Solutions Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by

More information

Motion in One Dimension

Motion in One Dimension Motion in One Dimension Intoduction: In this lab, you will investigate the motion of a olling cat as it tavels in a staight line. Although this setup may seem ovesimplified, you will soon see that a detailed

More information

Chapter 1: Introduction to Polar Coordinates

Chapter 1: Introduction to Polar Coordinates Habeman MTH Section III: ola Coodinates and Comple Numbes Chapte : Intoduction to ola Coodinates We ae all comfotable using ectangula (i.e., Catesian coodinates to descibe points on the plane. Fo eample,

More information

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4)

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4) Chapte 9 Hydogen Atom I What is H int? That depends on the physical system and the accuacy with which it is descibed. A natual stating point is the fom H int = p + V, (9.) µ which descibes a two-paticle

More information

Continuous Charge Distributions: Electric Field and Electric Flux

Continuous Charge Distributions: Electric Field and Electric Flux 8/30/16 Quiz 2 8/25/16 A positive test chage qo is eleased fom est at a distance away fom a chage of Q and a distance 2 away fom a chage of 2Q. How will the test chage move immediately afte being eleased?

More information

Experiment 09: Angular momentum

Experiment 09: Angular momentum Expeiment 09: Angula momentum Goals Investigate consevation of angula momentum and kinetic enegy in otational collisions. Measue and calculate moments of inetia. Measue and calculate non-consevative wok

More information

4.3 Area of a Sector. Area of a Sector Section

4.3 Area of a Sector. Area of a Sector Section ea of a Secto Section 4. 9 4. ea of a Secto In geomety you leaned that the aea of a cicle of adius is π 2. We will now lean how to find the aea of a secto of a cicle. secto is the egion bounded by a cental

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

( ) F α. a. Sketch! r as a function of r for fixed θ. For the sketch, assume that θ is roughly the same ( )

( ) F α. a. Sketch! r as a function of r for fixed θ. For the sketch, assume that θ is roughly the same ( ) . An acoustic a eflecting off a wav bounda (such as the sea suface) will see onl that pat of the bounda inclined towad the a. Conside a a with inclination to the hoizontal θ (whee θ is necessail positive,

More information

Chapter 5. Uniform Circular Motion. a c =v 2 /r

Chapter 5. Uniform Circular Motion. a c =v 2 /r Chapte 5 Unifom Cicula Motion a c =v 2 / Unifom cicula motion: Motion in a cicula path with constant speed s v 1) Speed and peiod Peiod, T: time fo one evolution Speed is elated to peiod: Path fo one evolution:

More information

A Tutorial on Multiple Integrals (for Natural Sciences / Computer Sciences Tripos Part IA Maths)

A Tutorial on Multiple Integrals (for Natural Sciences / Computer Sciences Tripos Part IA Maths) A Tutoial on Multiple Integals (fo Natual Sciences / Compute Sciences Tipos Pat IA Maths) Coections to D Ian Rud (http://people.ds.cam.ac.uk/ia/contact.html) please. This tutoial gives some bief eamples

More information

Gravitation. AP/Honors Physics 1 Mr. Velazquez

Gravitation. AP/Honors Physics 1 Mr. Velazquez Gavitation AP/Honos Physics 1 M. Velazquez Newton s Law of Gavitation Newton was the fist to make the connection between objects falling on Eath and the motion of the planets To illustate this connection

More information

Radian and Degree Measure

Radian and Degree Measure CHAT Pe-Calculus Radian and Degee Measue *Tigonomety comes fom the Geek wod meaning measuement of tiangles. It pimaily dealt with angles and tiangles as it petained to navigation, astonomy, and suveying.

More information

Related Rates - the Basics

Related Rates - the Basics Related Rates - the Basics In this section we exploe the way we can use deivatives to find the velocity at which things ae changing ove time. Up to now we have been finding the deivative to compae the

More information

Math 259 Winter Solutions to Homework # We will substitute for x and y in the linear equation and then solve for r. x + y = 9.

Math 259 Winter Solutions to Homework # We will substitute for x and y in the linear equation and then solve for r. x + y = 9. Math 59 Winter 9 Solutions to Homework Problems from Pages 5-5 (Section 9.) 18. We will substitute for x and y in the linear equation and then solve for r. x + y = 9 r cos(θ) + r sin(θ) = 9 r (cos(θ) +

More information

Centripetal Force. Lecture 11. Chapter 8. Course website:

Centripetal Force. Lecture 11. Chapter 8. Course website: Lectue 11 Chapte 8 Centipetal Foce Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi PHYS.1410 Lectue 11 Danylov Depatment of Physics and Applied Physics Today we ae going to discuss:

More information

FOLDS (I) A Flexure (deformation-induced curvature) in rock (esp. layered) B All kinds of rocks can be folded, even granites

FOLDS (I) A Flexure (deformation-induced curvature) in rock (esp. layered) B All kinds of rocks can be folded, even granites GG303 Lectue 26 8/19/05 1 FOLDS (I) I II Main Topics A What is a fold? B Fold geomety C Fold teminology and classification What is a fold? A Flexue (defomation-induced cuvatue) in ock (esp. layeed) B All

More information

PHYS 2135 Exam I February 13, 2018

PHYS 2135 Exam I February 13, 2018 Exam Total /200 PHYS 2135 Exam I Febuay 13, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each Choose the best o most nealy coect answe Fo questions 6-9, solutions must begin

More information

Mechanics and Special Relativity (MAPH10030) Assignment 3

Mechanics and Special Relativity (MAPH10030) Assignment 3 (MAPH0030) Assignment 3 Issue Date: 03 Mach 00 Due Date: 4 Mach 00 In question 4 a numeical answe is equied with pecision to thee significant figues Maks will be deducted fo moe o less pecision You may

More information

An o5en- confusing point:

An o5en- confusing point: An o5en- confusing point: Recall this example fom last lectue: E due to a unifom spheical suface chage, density = σ. Let s calculate the pessue on the suface. Due to the epulsive foces, thee is an outwad

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES We have seen how to represent curves by parametric equations. Now, we apply the methods of calculus to these parametric

More information

Name Date. Trigonometric Functions of Any Angle For use with Exploration 5.3

Name Date. Trigonometric Functions of Any Angle For use with Exploration 5.3 5.3 Tigonometic Functions of An Angle Fo use with Eploation 5.3 Essential Question How can ou use the unit cicle to define the tigonometic functions of an angle? Let be an angle in standad position with,

More information

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3)

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3) Physics 506 Winte 2008 Homewok Assignment #10 Solutions Textbook poblems: Ch. 12: 12.10, 12.13, 12.16, 12.19 12.10 A chaged paticle finds itself instantaneously in the equatoial plane of the eath s magnetic

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

Page 1 of 6 Physics II Exam 1 155 points Name Discussion day/time Pat I. Questions 110. 8 points each. Multiple choice: Fo full cedit, cicle only the coect answe. Fo half cedit, cicle the coect answe and

More information

Physics: Work & Energy Beyond Earth Guided Inquiry

Physics: Work & Energy Beyond Earth Guided Inquiry Physics: Wok & Enegy Beyond Eath Guided Inquiy Elliptical Obits Keple s Fist Law states that all planets move in an elliptical path aound the Sun. This concept can be extended to celestial bodies beyond

More information

PS113 Chapter 5 Dynamics of Uniform Circular Motion

PS113 Chapter 5 Dynamics of Uniform Circular Motion PS113 Chapte 5 Dynamics of Unifom Cicula Motion 1 Unifom cicula motion Unifom cicula motion is the motion of an object taveling at a constant (unifom) speed on a cicula path. The peiod T is the time equied

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

Exam 3 Solutions. Multiple Choice Questions

Exam 3 Solutions. Multiple Choice Questions MA 4 Exam 3 Solutions Fall 26 Exam 3 Solutions Multiple Choice Questions. The average value of the function f (x) = x + sin(x) on the interval [, 2π] is: A. 2π 2 2π B. π 2π 2 + 2π 4π 2 2π 4π 2 + 2π 2.

More information

11.2. Area of a Circle. Lesson Objective. Derive the formula for the area of a circle.

11.2. Area of a Circle. Lesson Objective. Derive the formula for the area of a circle. 11.2 Aea of a Cicle Lesson Objective Use fomulas to calculate the aeas of cicles, semicicles, and quadants. Lean Deive the fomula fo the aea of a cicle. A diamete divides a cicle of adius into 2 semicicles.

More information

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009 Physics 111 Lectue 5 (Walke: 3.3-6) Vectos & Vecto Math Motion Vectos Sept. 11, 2009 Quiz Monday - Chap. 2 1 Resolving a vecto into x-component & y- component: Pola Coodinates Catesian Coodinates x y =

More information

4. Two and Three Dimensional Motion

4. Two and Three Dimensional Motion 4. Two and Thee Dimensional Motion 1 Descibe motion using position, displacement, elocity, and acceleation ectos Position ecto: ecto fom oigin to location of the object. = x i ˆ + y ˆ j + z k ˆ Displacement:

More information

= 1. For a hyperbolic orbit with an attractive inverse square force, the polar equation with origin at the center of attraction is

= 1. For a hyperbolic orbit with an attractive inverse square force, the polar equation with origin at the center of attraction is 15. Kepleian Obits Michael Fowle Peliminay: Pola Equations fo Conic Section Cuves As we shall find, Newton s equations fo paticle motion in an invese-squae cental foce give obits that ae conic section

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION EPER S AWS OF PANETARY MOTION 1. Intoduction We ae now in a position to apply what we have leaned about the coss poduct and vecto valued functions to deive eple s aws of planetay motion. These laws wee

More information

Trigonometric Functions of Any Angle 9.3 (, 3. Essential Question How can you use the unit circle to define the trigonometric functions of any angle?

Trigonometric Functions of Any Angle 9.3 (, 3. Essential Question How can you use the unit circle to define the trigonometric functions of any angle? 9. Tigonometic Functions of An Angle Essential Question How can ou use the unit cicle to define the tigonometic functions of an angle? Let be an angle in standad position with, ) a point on the teminal

More information

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval.

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval. MATH 8 Test -Version A-SOLUTIONS Fall 4. Consider the curve defined by y = ln( sec x), x. a. (8 pts) Find the exact length of the curve on the given interval. sec x tan x = = tan x sec x L = + tan x =

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2.

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2. Paabola Volume 5, Issue (017) Solutions 151 1540 Q151 Take any fou consecutive whole numbes, multiply them togethe and add 1. Make a conjectue and pove it! The esulting numbe can, fo instance, be expessed

More information

Rectilinea Motion. A foce P is applied to the initially stationay cat. Detemine the velocity and displacement at time t=5 s fo each of the foce histoi

Rectilinea Motion. A foce P is applied to the initially stationay cat. Detemine the velocity and displacement at time t=5 s fo each of the foce histoi Rectilinea Motion 1. Small objects ae deliveed to the m inclined chute by a conveyo belt A which moves at a speed v 1 =0.4 m/s. If the conveyo belt B has a speed v =0.9 m/s and the objects ae deliveed

More information

Graphs of Sine and Cosine Functions

Graphs of Sine and Cosine Functions Gaphs of Sine and Cosine Functions In pevious sections, we defined the tigonometic o cicula functions in tems of the movement of a point aound the cicumfeence of a unit cicle, o the angle fomed by the

More information

P-2: The screw eye is subjected to two forces, ԦF 1 and ԦF 2. Determine the magnitude and direction of the resultant force.

P-2: The screw eye is subjected to two forces, ԦF 1 and ԦF 2. Determine the magnitude and direction of the resultant force. P-1: ԦA=Ԧi +Ԧj -5k and B =Ԧi - 7Ԧj -6k. Detemine;?????? - A B B A A B B A B A B A 7 P-: The scew ee is subjected to two foces, Ԧ 1 and Ԧ. Detemine the magnitude and diection of the esultant foce. P-: The

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Magnetic Field. Conference 6. Physics 102 General Physics II

Magnetic Field. Conference 6. Physics 102 General Physics II Physics 102 Confeence 6 Magnetic Field Confeence 6 Physics 102 Geneal Physics II Monday, Mach 3d, 2014 6.1 Quiz Poblem 6.1 Think about the magnetic field associated with an infinite, cuent caying wie.

More information

Sections and Chapter 10

Sections and Chapter 10 Cicula and Rotational Motion Sections 5.-5.5 and Chapte 10 Basic Definitions Unifom Cicula Motion Unifom cicula motion efes to the motion of a paticle in a cicula path at constant speed. The instantaneous

More information

Centripetal Force OBJECTIVE INTRODUCTION APPARATUS THEORY

Centripetal Force OBJECTIVE INTRODUCTION APPARATUS THEORY Centipetal Foce OBJECTIVE To veify that a mass moving in cicula motion expeiences a foce diected towad the cente of its cicula path. To detemine how the mass, velocity, and adius affect a paticle's centipetal

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

Motions and Coordinates

Motions and Coordinates Chapte Kinematics of Paticles Motions and Coodinates Motion Constained motion Unconstained motion Coodinates Used to descibe the motion of paticles 1 ectilinea motion (1-D) Motion Plane cuvilinea motion

More information

Solving Problems of Advance of Mercury s Perihelion and Deflection of. Photon Around the Sun with New Newton s Formula of Gravity

Solving Problems of Advance of Mercury s Perihelion and Deflection of. Photon Around the Sun with New Newton s Formula of Gravity Solving Poblems of Advance of Mecuy s Peihelion and Deflection of Photon Aound the Sun with New Newton s Fomula of Gavity Fu Yuhua (CNOOC Reseach Institute, E-mail:fuyh945@sina.com) Abstact: Accoding to

More information

AMM PBL Members: Chin Guan Wei p Huang Pengfei p Lim Wilson p Yap Jun Da p Class: ME/MS803M/AM05

AMM PBL Members: Chin Guan Wei p Huang Pengfei p Lim Wilson p Yap Jun Da p Class: ME/MS803M/AM05 AMM PBL Membes: Chin Guan Wei p3674 Huang Pengfei p36783 Lim Wilson p36808 Yap Jun Da p36697 Class: MEMS803MAM05 The common values that we use ae: G=6.674 x 0 - m 3 kg - s - Radius of Eath ()= 637km [Fom

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Chapte 7-8 Review Math 1316 Name SHORT ANSWER. Wite the wod o phase that best completes each statement o answes the question. Solve the tiangle. 1) B = 34.4 C = 114.2 b = 29.0 1) Solve the poblem. 2) Two

More information

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0 Ch : 4, 9,, 9,,, 4, 9,, 4, 8 4 (a) Fom the diagam in the textbook, we see that the flux outwad though the hemispheical suface is the same as the flux inwad though the cicula suface base of the hemisphee

More information

Topic/Objective: Essential Question: How do solve problems involving radian and/or degree measure?

Topic/Objective: Essential Question: How do solve problems involving radian and/or degree measure? Topic/Objective: 4- RADIAN AND DEGREE MEASURE Name: Class/Peiod: Date: Essential Question: How do solve poblems involving adian and/o degee measue? Questions: TRIGONOMETRY. Tigonomety, as deived fom the

More information

Δt The textbook chooses to say that the average velocity is

Δt The textbook chooses to say that the average velocity is 1-D Motion Basic I Definitions: One dimensional motion (staight line) is a special case of motion whee all but one vecto component is zeo We will aange ou coodinate axis so that the x-axis lies along the

More information

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2! Ch 30 - Souces of Magnetic Field 1.) Example 1 Detemine the magnitude and diection of the magnetic field at the point O in the diagam. (Cuent flows fom top to bottom, adius of cuvatue.) Fo staight segments,

More information

Lecture 1a: Satellite Orbits

Lecture 1a: Satellite Orbits Lectue 1a: Satellite Obits Outline 1. Newton s Laws of Motion 2. Newton s Law of Univesal Gavitation 3. Calculating satellite obital paametes (assuming cicula motion) Scala & Vectos Scala: a physical quantity

More information

Radian Measure CHAPTER 5 MODELLING PERIODIC FUNCTIONS

Radian Measure CHAPTER 5 MODELLING PERIODIC FUNCTIONS 5.4 Radian Measue So fa, ou hae measued angles in degees, with 60 being one eolution aound a cicle. Thee is anothe wa to measue angles called adian measue. With adian measue, the ac length of a cicle is

More information