arxiv:gr-qc/ v1 29 Jan 1998

Size: px
Start display at page:

Download "arxiv:gr-qc/ v1 29 Jan 1998"

Transcription

1 Gavitational Analog of the Electomagnetic Poynting Vecto L.M. de Menezes 1 axiv:g-qc/ v1 29 Jan 1998 Dept. of Physics and Astonomy, Univesity of Victoia, Victoia, B.C. Canada V8W 3P6 Abstact The gavitational analog of the electomagnetic Poynting vecto is constucted using the field equations of geneal elativity in the Hilbet gauge. It is found that when the gavitational Poynting vecto is applied to the solution of the linea mass quadupole oscillato, the coect gavitational quadupole adiation flux is obtained. Futhe to this, the Maxwell-like gavitational Poynting vecto gives ise to Einstein s quadupole adiation fomula. The gavitational enegy-momentum (pseudo) tenso obtained is symmetic and taceless. The fome popety allows the definition of angula momentum fo the fee gavitational field. PACS x 1 Intoduction Despite the athe diffeent fame woks fom which they aise, the equations of geneal elativity have many similaities with those of the electomagnetic field. These similaities ae seen in the weak field limit of geneal elativity whee the geodesic equations of motion and the field equations have essentially the same stuctue as the equations of electomagnetic theoy. In this wok, geneal elativity and electomagnetism ae bought one step close. It is shown that in the Hilbet gauge, the field equations of geneal elativity can be geneated fom a Lagangian density simila in stuctue to that of electodynamics. The stuctue of the enegy-momentum (pseudo) tenso obtained fom this Lagangian density coincides with that of the fee electomagnetic field: it is symmetic, taceless and can be constucted fom the electomagnetic enegy-momentum tenso by eplacing the Maxwell tenso F µν by a suitable antisymmetic gavito-electomagnetic (pseudo) tenso Π µν. It is emakable that the simple Maxwell-like gavitational (pseudo) tenso gives ise 1 demenezes@uvphys.phys.uvic.ca Pepint submitted to Elsevie Pepint 7 Febuay 2008

2 to Einstein s quadupole adiation fomula. To the autho s knowledge this wok epesents a novel appoach to the study of gavitational fields in the weak field limit. 2 Electomagnetism and gavity The electomagnetic action [1]: S = m ds A µ J µ dω 1 16π F µν F µν dω (1) gives ise to the fist and second pai of Maxwell s equations F µν,α + F αµ,ν + F να,µ = 0, F µν,ν = 4πJ µ, (2) whee F µν = A ν,µ A µ,ν, J µ = (ρ, ρ v). (3) In (3), A ν is a suitable vecto potential and J µ is the souce of the electomagnetic field, namely chages ρ and cuents ρv. In the Loentz gauge A µ,µ = 0, the second pai of Maxwell s equations becomes the wave equation with souces A µ = 4πJ µ, 2 2 t2. (4) The equations of motion of a chage in an electomagnetic field ae m duµ ds = ef µν U ν. (5) It tuns out that in lineaized geneal elativity, the field equations in the Hilbet gauge ψ µν,ν = 0 educe to ψ µν = 16πI µν, ψ µν h µν 1 2 η µνh, h = η µν h µν (6) and the equations of motion of the paticle (fo time-independent gavitational fields) become du µ ds = (h 0j,µ h 0µ,j )U j h 00,µ. (7) 2

3 Fom the above, the lineaized equations of geneal elativity esemble those of electomagnetism with the gavito-electomagnetic tenso defined as f µν h 0ν,µ h 0µ,ν. (8) The fist and second pai of the gavitational field equations (in the Hilbet gauge) can be defined espectively as Π µν,α + Π αµ,ν + Π να,µ = 0, Π µν (ψ 0ν,µ ψ 0µ,ν ), ψ µν = 16πI µν. (9) It appeas that it may be possible to constuct a gavitational enegy-momentum (pseudo) tenso with popeties simila to those of the electomagnetic enegymomentum tenso. Howeve, it is woth noting that the standad appoach identifies I µν with the total enegy-momentum pseudo-tenso via the gauge condition ψ µν,µ = 0. The gavitational analog of the electomagnetic Poynting vecto is concocted in the following section. 3 The gavitational Poynting vecto We stat by noting that the time-time and space-time components of the second pai of the gavitational field equations (9) ae given by Π µν,ν = 16πI 0µ. (10) The antisymmety of Π µν yields the conseved quantity (enegy) E = I 00 d 3 x. (11) The Lagangian density that geneates equations (10) is L = 1 64π Π µνπ µν ρ m U α B α, B α ψ 0α. (12) In the deivation of the field equations (10), B α is teated as a vecto field and not as the component of a two index object. The enegy-momentum (pseudo) tenso Θ µ ν fo the fee gavitational field (ρ m = 0) obtained upon symmetization of Θ µ ν = B σ x ν L ( ) δ B σ ν µ L, (13) x µ 3

4 is essentially that of the fee electomagnetic field Θ µ ν = 1 16π (Π σµ Π νσ δµν Π ασ Π ασ ). (14) It is shown below that the souce fee gavitational field equations Π µν,ν = 16πI 0µ and the cyclic popety (9) of Π µν,α give the continuity equation Θ µ ν,µ = 0 up to thid ode in the metic petubation: Θ µ ν,µ = 1 ( Π σµ,µ 16π Π νσ + Π σµ Π νσ,µ + 1 ) 2 Π ασ,ν Π ασ Π σµ Π νσ,µ = 1 2 Πσµ (Π νσ,µ + Π µν,σ ) Π σµ Π νσ,µ Π ασ,ν Π ασ = 1 2 Πσµ (Π νσ,µ + Π µν,σ + Π σµ,ν ) = 0 Θ µ ν,µ = 1 16π Πσµ,µ Π νσ = I 0σ Π νσ. (15) In vacuum I 0σ contains only poducts of the deivatives of the metic petubation. Theefoe, the ight-hand-side of (15) is thid ode in ψ µν and can be neglected. This yields Θ µ ν,µ = 0 to thid ode in the metic petubation. It will be shown in the following sections that the simple Maxwell-like gavitational Poynting vecto is consistent with the adiation flux calculated with the Landau-Lifshitz pseudo-tenso. The gavitational Poynting vecto of (14) gives ise to Einstein s quadupole adiation fomula. 4 Linea mass quadupole oscillato In this section we calculate the gavitational enegy flux of a linea mass quadupole oscillato using the Maxwell-like gavitational enegy-momentum (pseudo) tenso (14). The solution fo the linea mass quadupole oscillato is well known [2,3]. The non-vanishing components of the metic ae given by ψ 33 = A cosωξ, ψ 03 = cos θ ψ 33, ψ 00 = cos 2 θ ψ 33 A = 2ω2 I, ξ = t. (16) A diect calculation of the gavitational Poynting vecto above leads to Θ i 0 = 1 [ ] x 16π (Aω)2 sin 2 θ cos 2 θ sin 2 i (ωξ). (17) 4

5 The ate of change of enegy aveaged ove one peiod of the oscillation is given by de dt = σ Θ i 0 dσ i = 1 15 I2 ω 6 (18) consistent with the quadupole adiation fomula. An altenative deivation of the gavitational quadupole adiation fomula is povided below. 5 The quadupole adiation fomula In this section we deive the quadupole adiation fomula using the gavitational Poynting vecto (14). The solution of the lineaized equations of geneal elativity (6) is given as: ψ ab = 2Ïab(ξ), ψ a0 = 2Ïabn b, ψ 00 = 4m + 2Ïabn a n b n a = xa, ξ = t, I ab(ξ) = ρx a x b d 3 x (19) whee n a is the adial unit vecto and I ab is the moment of inetia tenso of the system. In (19), Ȧ denotes diffeentiation with espect to the etaded time ξ. The evaluation of the quadupole adiation fomula is commonly pefomed with the quadupole moment tenso Q ab = ρ ( 3x a x b δ ab 2) d 3 x (20) since it is symmetic and taceless. The moment of inetia tenso in (19) elates to the quadupole moment tenso as I ab = 1 3 Q ab δ ab ρ 2 d 3 x. (21) The second tem in (21) doesn t contibute to adiation and can be dopped. Theefoe, the enegy flux can be obtained eplacing ψ µν in (19) by Φ ab = 2 Q ab, Φ a0 = 2 Q ab n b, Φ 00 = 4m + 2 Q ab n a n b (22) 5

6 The spatial deivatives of the fields Φ ab involve only deivatives of Q ab since the integation is caied out on a closed suface appoaching infinity. On this suface the tem popotional to 1/ 2 is much smalle than that which is popotional to 1/. The components of the gavito-electomagnetic tenso ae given below: Π ad = 2 Q db n a n b 2 Π µν = Φ 0ν,µ Φ 0µ,ν Q ab n b n d, Π 0d = 2 Q ab n a n b n d 2 Q da n a. (23) The gavitational adiation flux is then given as 16πΘ i 0 = 4 ( 9 2n i Q db Q kl n b n k n l n d Q ) db Q dk n b n k. (24) The calculation of the adiated powe poceeds in the usual manne by aveaging n b n k n l n d and n b n k ove all spatial diections using [1] n b n k = 1 3 δ bk, n b n k n l n d = 1 15 (δ bkδ ld + δ bl δ kd + δ bd δ lk ). (25) The spatial aveaging of (24) yields 16πΘ i 0 = n i Q ab Q ab. (26) The powe adiated by the system is given by the usual gavitational quadupole adiation fomula (in S.I. units) de dt = σ Θ i 0 dσ i = G ) ( 2 Q 45c 5 ab. (27) The symmetic enegy-momentum (pseudo) tenso (14) allows us to define the angula momentum of the fee gavitational field in the familia scheme M µν = (x µ Θ νσ x ν Θ µσ ) ds σ (28) whee ds σ is the element of a thee dimensional space-like hypesuface. 6

7 6 Conclusion It was shown that the field equations of geneal elativity in the Hilbet gauge can be deived fom a Lagangian density simila in stuctue to that of the electomagnetic field. This Lagangian geneates an enegy-momentum (pseudo) tenso possessing the same popeties as the electomagnetic enegymomentum tenso. The simple stuctue of the gavitational enegy-momentum (pseudo) tenso constucted in this manne lends itself to an elegant deivation of Einstein s quadupole adiation fomula. The symmetic gavitational (pseudo) tenso allows the definition of angula momentum fo the fee gavitational field. It should be pointed out that the fomalism pesented in this pape is esticted to the Hilbet gauge. Although in pinciple all metics can be tansfomed into a coodinate system satisfying the Hilbet gauge condition, futue eseach should be aimed at constucting a gauge invaiant gavitoelectomagnetic fomalism. Acknowledgements I would like to thank Pofesso W. Isael fo his encouagement and Sean Bohun fo his caeful eading of the manuscipt. Refeences [1] L.D. Landau and E.M. Lifshitz, The Classical Theoy of Fields (Pegamon Pess 1995) [2] J. Webe Geneal Relativity and Gavitational Waves ( Intescience Publishes, Inc., New Yok 1961) [3] F.I. Coopestock and P.H. Lim, Phys. Rev. D 36 (1987) 330 7

Introduction to General Relativity 2

Introduction to General Relativity 2 Intoduction to Geneal Relativity 2 Geneal Relativity Diffeential geomety Paallel tanspot How to compute metic? Deviation of geodesics Einstein equations Consequences Tests of Geneal Relativity Sola system

More information

arxiv:gr-qc/ v2 8 Jun 2006

arxiv:gr-qc/ v2 8 Jun 2006 On Quantization of the Electical Chage Mass Dmitiy M Palatnik 1 6400 N Sheidan Rd 2605, Chicago, IL 60626 axiv:g-qc/060502v2 8 Jun 2006 Abstact Suggested a non-linea, non-gauge invaiant model of Maxwell

More information

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3)

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3) Physics 506 Winte 2008 Homewok Assignment #10 Solutions Textbook poblems: Ch. 12: 12.10, 12.13, 12.16, 12.19 12.10 A chaged paticle finds itself instantaneously in the equatoial plane of the eath s magnetic

More information

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx.

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx. 9. LAGRANGIAN OF THE ELECTROMAGNETIC FIELD In the pevious section the Lagangian and Hamiltonian of an ensemble of point paticles was developed. This appoach is based on a qt. This discete fomulation can

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

Geometry of the homogeneous and isotropic spaces

Geometry of the homogeneous and isotropic spaces Geomety of the homogeneous and isotopic spaces H. Sonoda Septembe 2000; last evised Octobe 2009 Abstact We summaize the aspects of the geomety of the homogeneous and isotopic spaces which ae most elevant

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

Physics 411 Lecture 34. Sourced Radiation. Lecture 34. Physics 411 Classical Mechanics II

Physics 411 Lecture 34. Sourced Radiation. Lecture 34. Physics 411 Classical Mechanics II Physics 411 Lectue 34 Souced Radiation Lectue 34 Physics 411 Classical Mechanics II Novembe 21st, 2007 We ae eady to move on to the souce side of lineaized waves. The point of this whole section has been

More information

A new approach in classical electrodynamics to protect principle of causality

A new approach in classical electrodynamics to protect principle of causality A new appoach in classical electodynamics to potect pinciple of causality Biswaanjan Dikshit * Lase and Plasma Technology Division Bhabha Atomic Reseach Cente, Mumbai-400085 INDIA * Coesponding autho E-mail:

More information

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!!

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!! Physics 161 Fall 011 Exta Cedit Investigating Black Holes - olutions The Following is Woth 50 Points!!! This exta cedit assignment will investigate vaious popeties of black holes that we didn t have time

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physical insight in the sound geneation mechanism can be gained by consideing simple analytical solutions to the wave equation. One example is to conside acoustic

More information

Adiabatic evolution of the constants of motion in resonance (I)

Adiabatic evolution of the constants of motion in resonance (I) Adiabatic evolution of the constants of motion in esonance (I) BH Gavitational 重 力力波 waves Takahio Tanaka (YITP, Kyoto univesity) R. Fujita, S. Isoyama, H. Nakano, N. Sago PTEP 013 (013) 6, 063E01 e-pint:

More information

Classical Mechanics Homework set 7, due Nov 8th: Solutions

Classical Mechanics Homework set 7, due Nov 8th: Solutions Classical Mechanics Homewok set 7, due Nov 8th: Solutions 1. Do deivation 8.. It has been asked what effect does a total deivative as a function of q i, t have on the Hamiltonian. Thus, lets us begin with

More information

Problems with Mannheim s conformal gravity program

Problems with Mannheim s conformal gravity program Poblems with Mannheim s confomal gavity pogam Abstact We show that Mannheim s confomal gavity pogam, whose potential has a tem popotional to 1/ and anothe tem popotional to, does not educe to Newtonian

More information

Problems with Mannheim s conformal gravity program

Problems with Mannheim s conformal gravity program Poblems with Mannheim s confomal gavity pogam June 4, 18 Youngsub Yoon axiv:135.163v6 [g-qc] 7 Jul 13 Depatment of Physics and Astonomy Seoul National Univesity, Seoul 151-747, Koea Abstact We show that

More information

A New Approach to General Relativity

A New Approach to General Relativity Apeion, Vol. 14, No. 3, July 7 7 A New Appoach to Geneal Relativity Ali Rıza Şahin Gaziosmanpaşa, Istanbul Tukey E-mail: aizasahin@gmail.com Hee we pesent a new point of view fo geneal elativity and/o

More information

is the instantaneous position vector of any grid point or fluid

is the instantaneous position vector of any grid point or fluid Absolute inetial, elative inetial and non-inetial coodinates fo a moving but non-defoming contol volume Tao Xing, Pablo Caica, and Fed Sten bjective Deive and coelate the govening equations of motion in

More information

The Schwarzschild Solution

The Schwarzschild Solution The Schwazschild Solution Johannes Schmude 1 Depatment of Physics Swansea Univesity, Swansea, SA2 8PP, United Kingdom Decembe 6, 2007 1 pyjs@swansea.ac.uk Intoduction We use the following conventions:

More information

A Relativistic Electron in a Coulomb Potential

A Relativistic Electron in a Coulomb Potential A Relativistic Electon in a Coulomb Potential Alfed Whitehead Physics 518, Fall 009 The Poblem Solve the Diac Equation fo an electon in a Coulomb potential. Identify the conseved quantum numbes. Specify

More information

The tunneling spectrum of Einsein Born-Infeld Black Hole. W. Ren2

The tunneling spectrum of Einsein Born-Infeld Black Hole. W. Ren2 Intenational Confeence on Engineeing Management Engineeing Education and Infomation Technology (EMEEIT 015) The tunneling spectum of Einsein Bon-Infeld Black Hole J Tang1 W Ren Y Han3 1 Aba teaches college

More information

S7: Classical mechanics problem set 2

S7: Classical mechanics problem set 2 J. Magoian MT 9, boowing fom J. J. Binney s 6 couse S7: Classical mechanics poblem set. Show that if the Hamiltonian is indepdent of a genealized co-odinate q, then the conjugate momentum p is a constant

More information

1.2 Differential cross section

1.2 Differential cross section .2. DIFFERENTIAL CROSS SECTION Febuay 9, 205 Lectue VIII.2 Diffeential coss section We found that the solution to the Schodinge equation has the fom e ik x ψ 2π 3/2 fk, k + e ik x and that fk, k = 2 m

More information

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 0B - HW #7 Sping 2004, Solutions by David Pace Any efeenced euations ae fom Giffiths Poblem statements ae paaphased. Poblem 0.3 fom Giffiths A point chage,, moves in a loop of adius a. At time t 0

More information

Perturbation to Symmetries and Adiabatic Invariants of Nonholonomic Dynamical System of Relative Motion

Perturbation to Symmetries and Adiabatic Invariants of Nonholonomic Dynamical System of Relative Motion Commun. Theo. Phys. Beijing, China) 43 25) pp. 577 581 c Intenational Academic Publishes Vol. 43, No. 4, Apil 15, 25 Petubation to Symmeties and Adiabatic Invaiants of Nonholonomic Dynamical System of

More information

1/30/17 Lecture 6 outline

1/30/17 Lecture 6 outline 1/30/17 Lectue 6 outline Recall G µν R µν 1 2 Rg µν = 8πGT µν ; so R µν = 8πG(T µν 1 2 Tg µν). (1) g µν = η µν +h µν G (1) µν (h) = 1 2 2 hµν + 1 2 ρ µ hνρ + 1 2 ρ ν hµρ 1 2 η µν ρ σ hρσ = 8πT µν. Choose

More information

arxiv: v2 [gr-qc] 18 Aug 2014

arxiv: v2 [gr-qc] 18 Aug 2014 Self-Consistent, Self-Coupled Scala Gavity J. Fanklin Depatment of Physics, Reed College, Potland, Oegon 970, USA Abstact A scala theoy of gavity extending Newtonian gavity to include field enegy as its

More information

Vector d is a linear vector function of vector d when the following relationships hold:

Vector d is a linear vector function of vector d when the following relationships hold: Appendix 4 Dyadic Analysis DEFINITION ecto d is a linea vecto function of vecto d when the following elationships hold: d x = a xxd x + a xy d y + a xz d z d y = a yxd x + a yy d y + a yz d z d z = a zxd

More information

The Poisson bracket and magnetic monopoles

The Poisson bracket and magnetic monopoles FYST420 Advanced electodynamics Olli Aleksante Koskivaaa Final poject ollikoskivaaa@gmail.com The Poisson backet and magnetic monopoles Abstact: In this wok magnetic monopoles ae studied using the Poisson

More information

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr. POBLM S # SOLUIONS by obet A. DiStasio J. Q. he Bon-Oppenheime appoximation is the standad way of appoximating the gound state of a molecula system. Wite down the conditions that detemine the tonic and

More information

1 Spherical multipole moments

1 Spherical multipole moments Jackson notes 9 Spheical multipole moments Suppose we have a chage distibution ρ (x) wheeallofthechageiscontained within a spheical egion of adius R, as shown in the diagam. Then thee is no chage in the

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source Multipole Radiation Febuay 29, 26 The electomagnetic field of an isolated, oscillating souce Conside a localized, oscillating souce, located in othewise empty space. We know that the solution fo the vecto

More information

Does a black hole rotate in Chern-Simons modified gravity?

Does a black hole rotate in Chern-Simons modified gravity? PHYSICAL REVIEW D 76, 024009 (2007) Does a black hole otate in Chen-Simons modified gavity? Kohkichi Konno,, * Toyoki Matsuyama, 2 and Satoshi Tanda Depatment of Applied Physics, Hokkaido Univesity, Sappoo

More information

Pressure Calculation of a Constant Density Star in the Dynamic Theory of Gravity

Pressure Calculation of a Constant Density Star in the Dynamic Theory of Gravity Pessue Calculation of a Constant Density Sta in the Dynamic Theoy of Gavity Ioannis Iaklis Haanas Depatment of Physics and Astonomy Yok Univesity A Petie Science Building Yok Univesity Toonto Ontaio CANADA

More information

Doublet structure of Alkali spectra:

Doublet structure of Alkali spectra: Doublet stuctue of : Caeful examination of the specta of alkali metals shows that each membe of some of the seies ae closed doublets. Fo example, sodium yellow line, coesponding to 3p 3s tansition, is

More information

BLACK HOLES IN STRING THEORY

BLACK HOLES IN STRING THEORY Black holes in sting theoy N Sadikaj & A Duka Pape pesented in 1 -st Intenational Scientific Confeence on Pofessional Sciences, Alexande Moisiu Univesity, Dues Novembe 016 BLACK OLES IN STRING TEORY NDRIÇIM

More information

3. Electromagnetic Waves II

3. Electromagnetic Waves II Lectue 3 - Electomagnetic Waves II 9 3. Electomagnetic Waves II Last time, we discussed the following. 1. The popagation of an EM wave though a macoscopic media: We discussed how the wave inteacts with

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electomagnetic scatteing Gaduate Couse Electical Engineeing (Communications) 1 st Semeste, 1390-1391 Shaif Univesity of Technology Geneal infomation Infomation about the instucto: Instucto: Behzad Rejaei

More information

arxiv:hep-th/ v2 11 Nov 2004

arxiv:hep-th/ v2 11 Nov 2004 Gibbons-Maeda-de Sitte Black Holes Chang Jun Gao 1 Shuang Nan Zhang 1,2,3,4 1 Depatment of Physics and Cente fo Astophysics, Tsinghua Univesity, Beijing 100084, Chinamailaddess) 2 Physics Depatment, Univesity

More information

Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole

Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole Spheical Solutions due to the Exteio Geomety of a Chaged Weyl Black Hole Fain Payandeh 1, Mohsen Fathi Novembe 7, 018 axiv:10.415v [g-qc] 10 Oct 01 1 Depatment of Physics, Payame Noo Univesity, PO BOX

More information

Why Professor Richard Feynman was upset solving the Laplace equation for spherical waves? Anzor A. Khelashvili a)

Why Professor Richard Feynman was upset solving the Laplace equation for spherical waves? Anzor A. Khelashvili a) Why Pofesso Richad Feynman was upset solving the Laplace equation fo spheical waves? Anzo A. Khelashvili a) Institute of High Enegy Physics, Iv. Javakhishvili Tbilisi State Univesity, Univesity St. 9,

More information

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O.

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O. PHYS-2402 Chapte 2 Lectue 2 Special Relativity 1. Basic Ideas Sep. 1, 2016 Galilean Tansfomation vs E&M y K O z z y K In 1873, Maxwell fomulated Equations of Electomagnetism. v Maxwell s equations descibe

More information

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electomagnetic I Chapte 4 Electostatic fields Islamic Univesity of Gaza Electical Engineeing Depatment D. Talal Skaik 212 1 Electic Potential The Gavitational Analogy Moving an object upwad against

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

Conformal transformations + Schwarzschild

Conformal transformations + Schwarzschild Intoduction to Geneal Relativity Solutions of homewok assignments 5 Confomal tansfomations + Schwazschild 1. To pove the identity, let s conside the fom of the Chistoffel symbols in tems of the metic tenso

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

Topic 7: Electrodynamics of spinning particles Revised Draft

Topic 7: Electrodynamics of spinning particles Revised Draft Lectue Seies: The Spin of the Matte, Physics 4250, Fall 2010 1 Topic 7: Electodynamics of spinning paticles Revised Daft D. Bill Pezzaglia CSUEB Physics Updated Nov 28, 2010 Index: Rough Daft 2 A. Classical

More information

Is there a magnification paradox in gravitational lensing?

Is there a magnification paradox in gravitational lensing? Is thee a magnification paadox in gavitational ing? Olaf Wucknitz wucknitz@asto.uni-bonn.de Astophysics semina/colloquium, Potsdam, 6 Novembe 7 Is thee a magnification paadox in gavitational ing? gavitational

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

Scattering in Three Dimensions

Scattering in Three Dimensions Scatteing in Thee Dimensions Scatteing expeiments ae an impotant souce of infomation about quantum systems, anging in enegy fom vey low enegy chemical eactions to the highest possible enegies at the LHC.

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

Hawking radiation from Kerr Newman Kasuya black hole via quantum anomalies

Hawking radiation from Kerr Newman Kasuya black hole via quantum anomalies Vol 17 No 6, June 008 c 008 Chin. Phys. Soc. 1674-1056/008/1706/31-05 Chinese Physics B and IOP Publishing Ltd Hawking adiation fom Ke Newman Kasuya black hole via quantum anomalies He Tang-Mei a, Fan

More information

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS L. MICU Hoia Hulubei National Institute fo Physics and Nuclea Engineeing, P.O. Box MG-6, RO-0775 Buchaest-Maguele, Romania, E-mail: lmicu@theoy.nipne.o (Received

More information

Earth and Moon orbital anomalies

Earth and Moon orbital anomalies Eath and Moon obital anomalies Si non è veo, è ben tovato Ll. Bel axiv:1402.0788v2 [g-qc] 18 Feb 2014 Febuay 19, 2014 Abstact A time-dependent gavitational constant o mass would coectly descibe the suspected

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Dymore User s Manual Two- and three dimensional dynamic inflow models

Dymore User s Manual Two- and three dimensional dynamic inflow models Dymoe Use s Manual Two- and thee dimensional dynamic inflow models Contents 1 Two-dimensional finite-state genealized dynamic wake theoy 1 Thee-dimensional finite-state genealized dynamic wake theoy 1

More information

The evolution of the phase space density of particle beams in external fields

The evolution of the phase space density of particle beams in external fields The evolution of the phase space density of paticle beams in extenal fields E.G.Bessonov Lebedev Phys. Inst. RAS, Moscow, Russia, COOL 09 Wokshop on Beam Cooling and Related Topics August 31 Septembe 4,

More information

Rainich-type Conditions for Null Electrovacuum Spacetimes I

Rainich-type Conditions for Null Electrovacuum Spacetimes I Rainich-type Conditions fo Null Electovacuum Spacetimes I Synopsis In this woksheet I descibe local Rainich-type conditions on a spacetime geomety which ae necessay and sufficient fo the existence of a

More information

Hawking Radiation as Tunneling

Hawking Radiation as Tunneling Hawking Radiation as Tunneling Chis H. Fleming May 5, 5 Abstact This is a pesentation of a pape by Paikh and Wilczek[] wheein they deive Hawking adiation fom paticles tunneling though the event hoizon

More information

Mathematical Model of Magnetometric Resistivity. Sounding for a Conductive Host. with a Bulge Overburden

Mathematical Model of Magnetometric Resistivity. Sounding for a Conductive Host. with a Bulge Overburden Applied Mathematical Sciences, Vol. 7, 13, no. 7, 335-348 Mathematical Model of Magnetometic Resistivity Sounding fo a Conductive Host with a Bulge Ovebuden Teeasak Chaladgan Depatment of Mathematics Faculty

More information

GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC

GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC GILBERT WEINSTEIN 1. Intoduction Recall that the exteio Schwazschild metic g defined on the 4-manifold M = R R 3 \B 2m ) = {t,, θ, φ): > 2m}

More information

Homework 7 Solutions

Homework 7 Solutions Homewok 7 olutions Phys 4 Octobe 3, 208. Let s talk about a space monkey. As the space monkey is oiginally obiting in a cicula obit and is massive, its tajectoy satisfies m mon 2 G m mon + L 2 2m mon 2

More information

Module 9: Electromagnetic Waves-I Lecture 9: Electromagnetic Waves-I

Module 9: Electromagnetic Waves-I Lecture 9: Electromagnetic Waves-I Module 9: Electomagnetic Waves-I Lectue 9: Electomagnetic Waves-I What is light, paticle o wave? Much of ou daily expeience with light, paticulaly the fact that light ays move in staight lines tells us

More information

Deflection of light due to rotating mass a comparison among the results of different approaches

Deflection of light due to rotating mass a comparison among the results of different approaches Jounal of Physics: Confeence Seies OPEN ACCESS Deflection of light due to otating mass a compaison among the esults of diffeent appoaches Recent citations - Gavitational Theoies nea the Galactic Cente

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1 PROBLEM SET #3A AST242 Figue 1. Two concentic co-axial cylindes each otating at a diffeent angula otation ate. A viscous fluid lies between the two cylindes. 1. Couette Flow A viscous fluid lies in the

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

The main paradox of KAM-theory for restricted three-body problem (R3BP, celestial mechanics)

The main paradox of KAM-theory for restricted three-body problem (R3BP, celestial mechanics) The main paadox of KAM-theoy fo esticted thee-body poblem (R3BP celestial mechanics) Segey V. Eshkov Institute fo Time Natue Exploations M.V. Lomonosov's Moscow State Univesity Leninskie goy 1-1 Moscow

More information

I. CONSTRUCTION OF THE GREEN S FUNCTION

I. CONSTRUCTION OF THE GREEN S FUNCTION I. CONSTRUCTION OF THE GREEN S FUNCTION The Helmohltz equation in 4 dimensions is 4 + k G 4 x, x = δ 4 x x. In this equation, G is the Geen s function and 4 efes to the dimensionality. In the vey end,

More information

TheWaveandHelmholtzEquations

TheWaveandHelmholtzEquations TheWaveandHelmholtzEquations Ramani Duaiswami The Univesity of Mayland, College Pak Febuay 3, 2006 Abstact CMSC828D notes (adapted fom mateial witten with Nail Gumeov). Wok in pogess 1 Acoustic Waves 1.1

More information

Three dimensional flow analysis in Axial Flow Compressors

Three dimensional flow analysis in Axial Flow Compressors 1 Thee dimensional flow analysis in Axial Flow Compessos 2 The ealie assumption on blade flow theoies that the flow inside the axial flow compesso annulus is two dimensional means that adial movement of

More information

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rigid Body Dynamics 2 CSE169: Compute Animation nstucto: Steve Rotenbeg UCSD, Winte 2018 Coss Poduct & Hat Opeato Deivative of a Rotating Vecto Let s say that vecto is otating aound the oigin, maintaining

More information

3. Magnetostatic fields

3. Magnetostatic fields 3. Magnetostatic fields D. Rakhesh Singh Kshetimayum 1 Electomagnetic Field Theoy by R. S. Kshetimayum 3.1 Intoduction to electic cuents Electic cuents Ohm s law Kichoff s law Joule s law Bounday conditions

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

Conditions for the naked singularity formation in generalized Vaidya spacetime

Conditions for the naked singularity formation in generalized Vaidya spacetime Jounal of Physics: Confeence Seies PAPER OPEN ACCESS Conditions fo the naked singulaity fomation in genealized Vaidya spacetime To cite this aticle: V D Vetogadov 2016 J. Phys.: Conf. Se. 769 012013 View

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lectue 5 Cental Foce Poblem (Chapte 3) What We Did Last Time Intoduced Hamilton s Pinciple Action integal is stationay fo the actual path Deived Lagange s Equations Used calculus

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems Apil 5, 997 A Quick Intoduction to Vectos, Vecto Calculus, and Coodinate Systems David A. Randall Depatment of Atmospheic Science Coloado State Univesity Fot Collins, Coloado 80523. Scalas and vectos Any

More information

From Gravitational Collapse to Black Holes

From Gravitational Collapse to Black Holes Fom Gavitational Collapse to Black Holes T. Nguyen PHY 391 Independent Study Tem Pape Pof. S.G. Rajeev Univesity of Rocheste Decembe 0, 018 1 Intoduction The pupose of this independent study is to familiaize

More information

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3. Appendix A Vecto Algeba As is natual, ou Aeospace Stuctues will be descibed in a Euclidean thee-dimensional space R 3. A.1 Vectos A vecto is used to epesent quantities that have both magnitude and diection.

More information

ELECTRODYNAMICS: PHYS 30441

ELECTRODYNAMICS: PHYS 30441 ELETRODYNAMIS: PHYS 44. Electomagnetic Field Equations. Maxwell s Equations Analysis in space (vacuum). oulomb Bon June 4, 76 Angoulême, Fance Died August 2, 86 Pais, Fance In 785 oulomb pesented his thee

More information

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925)

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925) 1 Lectue 1: The beginnings of quantum physics 1. The Sten-Gelach expeiment. Atomic clocks 3. Planck 1900, blackbody adiation, and E ω 4. Photoelectic effect 5. Electon diffaction though cystals, de Boglie

More information

Force between two parallel current wires and Newton s. third law

Force between two parallel current wires and Newton s. third law Foce between two paallel cuent wies and Newton s thid law Yannan Yang (Shanghai Jinjuan Infomation Science and Technology Co., Ltd.) Abstact: In this pape, the essence of the inteaction between two paallel

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

Quantum theory of angular momentum

Quantum theory of angular momentum Quantum theoy of angula momentum Igo Mazets igo.mazets+e141@tuwien.ac.at (Atominstitut TU Wien, Stadionallee 2, 1020 Wien Time: Fiday, 13:00 14:30 Place: Feihaus, Sem.R. DA gün 06B (exception date 18 Nov.:

More information

The Strain Compatibility Equations in Polar Coordinates RAWB, Last Update 27/12/07

The Strain Compatibility Equations in Polar Coordinates RAWB, Last Update 27/12/07 The Stain Compatibility Equations in Pola Coodinates RAWB Last Update 7//7 In D thee is just one compatibility equation. In D polas it is (Equ.) whee denotes the enineein shea (twice the tensoial shea)

More information

Radiating Systems. (Dated: November 22, 2013) I. FUNDAMENTALS

Radiating Systems. (Dated: November 22, 2013) I. FUNDAMENTALS Classical Electodynamics Class Notes Radiating Systems (Dated: Novembe 22, 213) Instucto: Zoltán Tooczkai Physics Depatment, Univesity of Note Dame I. FUNDAMENTALS So fa we studied the popagation of electomagnetic

More information

Physics 121 Hour Exam #5 Solution

Physics 121 Hour Exam #5 Solution Physics 2 Hou xam # Solution This exam consists of a five poblems on five pages. Point values ae given with each poblem. They add up to 99 points; you will get fee point to make a total of. In any given

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

Projection Gravitation, a Projection Force from 5-dimensional Space-time into 4-dimensional Space-time

Projection Gravitation, a Projection Force from 5-dimensional Space-time into 4-dimensional Space-time Intenational Jounal of Physics, 17, Vol. 5, No. 5, 181-196 Available online at http://pubs.sciepub.com/ijp/5/5/6 Science and ducation Publishing DOI:1.1691/ijp-5-5-6 Pojection Gavitation, a Pojection Foce

More information

13. Adiabatic Invariants and Action-Angle Variables Michael Fowler

13. Adiabatic Invariants and Action-Angle Variables Michael Fowler 3 Adiabatic Invaiants and Action-Angle Vaiables Michael Fowle Adiabatic Invaiants Imagine a paticle in one dimension oscillating back and foth in some potential he potential doesn t have to be hamonic,

More information

Antennas & Propagation

Antennas & Propagation Antennas & Popagation 1 Oveview of Lectue II -Wave Equation -Example -Antenna Radiation -Retaded potential THE KEY TO ANY OPERATING ANTENNA ot H = J +... Suppose: 1. Thee does exist an electic medium,

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamics of Rotational Motion Toque: the otational analogue of foce Toque = foce x moment am τ = l moment am = pependicula distance though which the foce acts a.k.a. leve am l l l l τ = l = sin φ = tan

More information

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b.

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b. Solutions. Plum Pudding Model (a) Find the coesponding electostatic potential inside and outside the atom. Fo R The solution can be found by integating twice, 2 V in = ρ 0 ε 0. V in = ρ 0 6ε 0 2 + a 2

More information

Analytic Evaluation of two-electron Atomic Integrals involving Extended Hylleraas-CI functions with STO basis

Analytic Evaluation of two-electron Atomic Integrals involving Extended Hylleraas-CI functions with STO basis Analytic Evaluation of two-electon Atomic Integals involving Extended Hylleaas-CI functions with STO basis B PADHY (Retd.) Faculty Membe Depatment of Physics, Khalikote (Autonomous) College, Behampu-760001,

More information

4. Electrodynamic fields

4. Electrodynamic fields 4. Electodynamic fields D. Rakhesh Singh Kshetimayum 1 4.1 Intoduction Electodynamics Faaday s law Maxwell s equations Wave equations Lenz s law Integal fom Diffeential fom Phaso fom Bounday conditions

More information

Computation of the Locations of the Libration Points in the Relativistic Restricted Three-Body Problem

Computation of the Locations of the Libration Points in the Relativistic Restricted Three-Body Problem Ameican Jounal of Applied Sciences 9 (5): 659-665, 0 ISSN 546-99 0 Science Publications Computation of the Locations of the Libation Points in the Relativistic Resticted Thee-Body Poblem, Abd El-Ba, S.E.

More information