13. Adiabatic Invariants and Action-Angle Variables Michael Fowler

Size: px
Start display at page:

Download "13. Adiabatic Invariants and Action-Angle Variables Michael Fowler"

Transcription

1 3 Adiabatic Invaiants and Action-Angle Vaiables Michael Fowle Adiabatic Invaiants Imagine a paticle in one dimension oscillating back and foth in some potential he potential doesn t have to be hamonic, but it must be such as to tap the paticle, which is executing peiodic motion with peiod Now suppose we gadually change the potential, but keeping the paticle tapped hat is, the potential depends on some paameteλ, which we change gadually, meaning ove a time much geate than the time of oscillation: dλ / λ A cude demonstation is a simple pendulum with a sting of vaiable length, fo example (see figue) one hanging fom a fixed suppot, but the sting passing though a small loop that can be moved vetically to change the effective length If λ wee fixed, the system would have constant enegy E and peiod As λ is gadually changed fom outside, thee will be enegy exchange in geneal, we ll wite the Hamiltonian H( qpλ, ; ), the enegy of the system will be E ( λ ) (Of couse, E also depends on the initial enegy befoe the vaiation began) Remembe now that fom Hamilton s equations dh / = H / t, so duing the vaiation de H H dλ = = t λ It s clea fom the diagam that the enegy fed into the system as the ing moves slowly down vaies thoughout the cycle -- fo example, when the pendulum is close to vetically down, its enegy will be almost unaffected by moving the ing Moving slowly down means λ vaies vey little in one cycle of the system, we can aveage ove a cycle: de H dλ =, λ whee H = λ H λ Now Hamilton s equation dq / H / p time fo going ound one complete cycle is = means that we can eplace with / ) dq, so the

2 = = dq ) / (his won t integate to zeo, because on the etun leg both dq and q = / p) heefoe, eplacing in / λ ) as well, / λ ) dq de dλ H / p = dq / ) will be negative) Now, we assume λ, E ae vaying slowly enough that they ae close to constant ove one cycle, meaning that at a given point q on the cicuit, the momentum can be witten p p( qeλ ;, ) =, egading E, λ as constant and independent paametes (We can always adjust E at fixedλ by giving the pendulum a little push!) λ = E with espect to λ, keeping E constant (appopiate infinitesimal pushes equied!), we get, at point q on the cicuit, If we now patially diffeentiate H( qp,, ) H / λ H / λ + / p)( p/ λ) =, o p( q, λ, E) / λ =, H / p which is the integand in the numeato of ou expession fo de, so ( p / ) ( / ) de dλ λ dq E =, p E dq In the denominato, we ve eplaced / / ) by ( p ) Reaanging, his can be witten λ / E λ p de p dλ + dq = E λ λ E di =, whee I = p ( q, λ, E) dq π

3 3 I is an adiabatic invaiant: hat means it stays constant when the paametes of the system change gadually, even though the system s enegy changes Impotant! he patial deivative with espect to enegy I / E detemines the peiod of the motion: I p dq dq π = dq = = =, o E / I = ω E E H p q λ ( / ) (Note: hee is anothe connection with quantum mechanics If the system is connected to the outside wold, fo example if the obiting paticle is chaged, as it usually is, and can theefoe emit adiation, since in quantum mechanics successive action numbes I diffe by integes, and the quantum of action is, the enegy adiated pe quantum dop in action is ω his is of couse in the classical limit of high quantum numbes) Notice that I is the aea of phase space enclosed by the integal, dpdq I = pdq π = π Fo the SHO, it s easy to check fom the aea of the ellipse that I = E / ω : λ ake ( / )( ω ) H = m p + m q he phase space elliptical obit has semi-axes with lengths πab = πe / ω me, / E mω, so the aea enclosed is he bottom line is that as we gadually change the sping stength (o, fo that matte, the mass) of an oscillato (not necessaily hamonic), the enegy changes popotionally with the fequency Adiabatic Invaiance and Quantum Mechanics his finding, the invaiance of E / ω fo slow vaiation of the potential stength in a simple hamonic oscillato, connects diectly with quantum mechanics, as was fist pointed out be Einstein in 9 Suppose the (quantum mechanical) oscillato is in the enegy eigenstate with E = ( n+ ) ω hen the spatial wave function has n zeos If the potential is changed slowly enough (meaning little change ove one cycle of oscillation) the oscillato will not jump to anothe eigenstate (o, moe pecisely, the pobability will go to zeo with the speed of change) he wave function will gadually stetch (o compess) but the numbe of zeoes will not change heefoe the enegy will stay at ( n + ) ω, and tack with ω Of couse, the classical system is a little diffeent: the quantum system is locked in to a paticula state if the petubation has vanishingly small fequency components coesponding to the enegy diffeences ω to available states he classical system, on the othe hand, can move to states abitaily close in enegy Landau gives a nontivial analysis of the classical system, concluding that the change in the adiabatic invaiant is of ode e ωτ fo an extenal change acting ove a time τ

4 4 Action-Angle Vaiables Fo a closed one-dimensional system undegoing finite motion (essentially a bound state), the equations of motion can be efomulated using the action vaiable I = pdq π in place of the enegy E I is a function of enegy alone in a closed one-dimensional system, and vice vesa We e visualizing hee a paticle moving back and foth in a one-dimensional well with potential zeo at the oigin, and the potential neve deceasing on going out fom the oigin to infinity Obviously, if a potential has two low points, local bound states can aise in diffeent places, and the I, E elationship is complicated, with diffeent banches, possibly coming togethe at high enegies Impotant! Notice the integal sign in the expession fo the action vaiable I is signifying an integal aound a closed path, a cicuit Don t confuse this integal with the abbeviated action integal, which q has the same integand, but is an integal pdq along a contou fom a fixed stating point, say the oigin, to the endpoint q, not going aound a closed path (Apologies fo using the same lette fo the diffeential and the endpoint, just following Landau) In the spiit of the discussion of constants of motion above, we make a canonical tansfomation to I as the new momentum, using as geneating function the abbeviated action S ( qi, ) he oiginal momentum ( ) ( ) ( ) p= S / q = S qi, / q E I he new coodinate conjugate to the momentum I will be ( ) w= S qi, / I his is called an angle vaiable, I is the action vaiable, they ae canonical o find Hamilton s equations in the tansfomed vaiables, since thee is no time-dependence in the tansfomation, and the system is closed, the enegy emains constant Also, the enegy is a function of I (meaning not of w ) Hence ( ) ( ) ( ) I = E I / w=, w = E I / I = de I / di, so the angle is a linea function of time: w = ( ) de / di t + constant One futhe point about the action vaiable and the action: since we define the action as (, ) S q I = pdq q

5 5 it follows that if we tack the change in this integal as time goes on and the system moves ound and ound the cicuit in phase space, an additional tem S = π I will be added to the action fo each time ound, so the action is multi-valued *Keple Obit Action-Angle Vaiables We have not yet coveed Keple obits, so skip this section fo now: it's hee to efe back to late It's fom Landau, p 67 Fo motion confined to a plane, we can take the cental potential analysis with θ = π /, p θ = and p = mv, the angula momentum, so the Hamiltonian is he Hamilton-Jacobi equation is theefoe p H = p + V + ( ) m S V ( ) S + + = E m m So, following the pevious analysis of sepaation of vaiables fo motion in a cental potential, hee ( ) ( ) ( ) ( ) S, = S + S = S + p he action vaiable fo the angula motion is just the angula momentum itself, π π I = pd = L And the adial action vaiable, with potential V ( ) = k /, is max k L m π E min I = m E + d = L + k (Details on doing the integal ae given in the Appendix, Mathematica can do it too) So the enegy is mk E = ( I + I ) he motion is degeneate: the two fundamental fequencies coincide, I / E = I / E his has majo consequences in quantum mechanics: the actions ae all quantized in units of Planck's constant, fo the hydogen atom, fom the fomula above, the enegy depends only on the sum of the quantum

6 6 numbes: above the gound state, enegy levels ae degeneate, which is why the enegy spectum has the deceptively simple fom so successfully explained by the Boh model he obital paametes, semi-latus ectum and eccenticity, fom E k /a ae = and L kma ( e ) =, I, e + I = = mk I I Recall the semi-majo axis is given by E = k / a, and fom the above expession b I m = = a I + I n, in the hydogen atom quantum numbe notation Appendix: Doing the Integal fo he Radial Action I he integal can be put in the fom β C I = x x π α dx x ( α)( β ), which can be integated by taking a contou encicling the cut fom α to β he integal will have a contibution fom the pole at the oigin equal to C is αβ, and anothe fom the cicle at infinity, which I ( α + β) C α β C = idz = π z z Equating coefficients (multiplying the tem inside the squae oot by ( ) ) C = m E, C α + β = mk, C αβ = L So the contibution fom the oigin gives the L, the cicle at infinity mk / m E = k m /E

7 7

Classical Mechanics Homework set 7, due Nov 8th: Solutions

Classical Mechanics Homework set 7, due Nov 8th: Solutions Classical Mechanics Homewok set 7, due Nov 8th: Solutions 1. Do deivation 8.. It has been asked what effect does a total deivative as a function of q i, t have on the Hamiltonian. Thus, lets us begin with

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Tutorial Exercises: Central Forces

Tutorial Exercises: Central Forces Tutoial Execises: Cental Foces. Tuning Points fo the Keple potential (a) Wite down the two fist integals fo cental motion in the Keple potential V () = µm/ using J fo the angula momentum and E fo the total

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!!

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!! Physics 161 Fall 011 Exta Cedit Investigating Black Holes - olutions The Following is Woth 50 Points!!! This exta cedit assignment will investigate vaious popeties of black holes that we didn t have time

More information

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2.

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2. Cental oce Poblem ind the motion of two bodies inteacting via a cental foce. Cental oce Motion 8.01 W14D1 Examples: Gavitational foce (Keple poblem): 1 1, ( ) G mm Linea estoing foce: ( ) k 1, Two Body

More information

Central Force Motion

Central Force Motion Cental Foce Motion Cental Foce Poblem Find the motion of two bodies inteacting via a cental foce. Examples: Gavitational foce (Keple poblem): m1m F 1, ( ) =! G ˆ Linea estoing foce: F 1, ( ) =! k ˆ Two

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

Physics 505 Homework No. 9 Solutions S9-1

Physics 505 Homework No. 9 Solutions S9-1 Physics 505 Homewok No 9 s S9-1 1 As pomised, hee is the tick fo summing the matix elements fo the Stak effect fo the gound state of the hydogen atom Recall, we need to calculate the coection to the gound

More information

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session.

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session. - 5 - TEST 1R This is the epeat vesion of TEST 1, which was held duing Session. This epeat test should be attempted by those students who missed Test 1, o who wish to impove thei mak in Test 1. IF YOU

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION EPER S AWS OF PANETARY MOTION 1. Intoduction We ae now in a position to apply what we have leaned about the coss poduct and vecto valued functions to deive eple s aws of planetay motion. These laws wee

More information

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law AY 7A - Fall 00 Section Woksheet - Solutions Enegy and Keple s Law. Escape Velocity (a) A planet is obiting aound a sta. What is the total obital enegy of the planet? (i.e. Total Enegy = Potential Enegy

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

Homework 7 Solutions

Homework 7 Solutions Homewok 7 olutions Phys 4 Octobe 3, 208. Let s talk about a space monkey. As the space monkey is oiginally obiting in a cicula obit and is massive, its tajectoy satisfies m mon 2 G m mon + L 2 2m mon 2

More information

Chapter 2: Introduction to Implicit Equations

Chapter 2: Introduction to Implicit Equations Habeman MTH 11 Section V: Paametic and Implicit Equations Chapte : Intoduction to Implicit Equations When we descibe cuves on the coodinate plane with algebaic equations, we can define the elationship

More information

Physics 221 Lecture 41 Nonlinear Absorption and Refraction

Physics 221 Lecture 41 Nonlinear Absorption and Refraction Physics 221 Lectue 41 Nonlinea Absoption and Refaction Refeences Meye-Aendt, pp. 97-98. Boyd, Nonlinea Optics, 1.4 Yaiv, Optical Waves in Cystals, p. 22 (Table of cystal symmeties) 1. Intoductoy Remaks.

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

Physics: Work & Energy Beyond Earth Guided Inquiry

Physics: Work & Energy Beyond Earth Guided Inquiry Physics: Wok & Enegy Beyond Eath Guided Inquiy Elliptical Obits Keple s Fist Law states that all planets move in an elliptical path aound the Sun. This concept can be extended to celestial bodies beyond

More information

= 1. For a hyperbolic orbit with an attractive inverse square force, the polar equation with origin at the center of attraction is

= 1. For a hyperbolic orbit with an attractive inverse square force, the polar equation with origin at the center of attraction is 15. Kepleian Obits Michael Fowle Peliminay: Pola Equations fo Conic Section Cuves As we shall find, Newton s equations fo paticle motion in an invese-squae cental foce give obits that ae conic section

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lectue 5 Cental Foce Poblem (Chapte 3) What We Did Last Time Intoduced Hamilton s Pinciple Action integal is stationay fo the actual path Deived Lagange s Equations Used calculus

More information

KEPLER S LAWS AND PLANETARY ORBITS

KEPLER S LAWS AND PLANETARY ORBITS KEPE S AWS AND PANETAY OBITS 1. Selected popeties of pola coodinates and ellipses Pola coodinates: I take a some what extended view of pola coodinates in that I allow fo a z diection (cylindical coodinates

More information

Homework # 3 Solution Key

Homework # 3 Solution Key PHYSICS 631: Geneal Relativity Homewok # 3 Solution Key 1. You e on you hono not to do this one by hand. I ealize you can use a compute o simply look it up. Please don t. In a flat space, the metic in

More information

Nuclear and Particle Physics - Lecture 20 The shell model

Nuclear and Particle Physics - Lecture 20 The shell model 1 Intoduction Nuclea and Paticle Physics - Lectue 0 The shell model It is appaent that the semi-empiical mass fomula does a good job of descibing tends but not the non-smooth behaviou of the binding enegy.

More information

Potential Energy and Conservation of Energy

Potential Energy and Conservation of Energy Potential Enegy and Consevation of Enegy Consevative Foces Definition: Consevative Foce If the wok done by a foce in moving an object fom an initial point to a final point is independent of the path (A

More information

10. Universal Gravitation

10. Universal Gravitation 10. Univesal Gavitation Hee it is folks, the end of the echanics section of the couse! This is an appopiate place to complete the study of mechanics, because with his Law of Univesal Gavitation, Newton

More information

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Pof. Bois Altshule Apil 25, 2 Lectue 25 We have been dicussing the analytic popeties of the S-matix element. Remembe the adial wave function was u kl () = R kl () e ik iπl/2 S l (k)e

More information

ASTR415: Problem Set #6

ASTR415: Problem Set #6 ASTR45: Poblem Set #6 Cuan D. Muhlbege Univesity of Mayland (Dated: May 7, 27) Using existing implementations of the leapfog and Runge-Kutta methods fo solving coupled odinay diffeential equations, seveal

More information

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS L. MICU Hoia Hulubei National Institute fo Physics and Nuclea Engineeing, P.O. Box MG-6, RO-0775 Buchaest-Maguele, Romania, E-mail: lmicu@theoy.nipne.o (Received

More information

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0.

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0. Poblem {a} Fo t : Ψ(, t ψ(e iet/ h ( whee E mc α (α /7 ψ( e /a πa Hee we have used the gound state wavefunction fo Z. Fo t, Ψ(, t can be witten as a supeposition of Z hydogenic wavefunctions ψ n (: Ψ(,

More information

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLIN MODUL 5 ADVANCD MCHANICS GRAVITATIONAL FILD: MOTION OF PLANTS AND SATLLITS SATLLITS: Obital motion of object of mass m about a massive object of mass M (m

More information

The Substring Search Problem

The Substring Search Problem The Substing Seach Poblem One algoithm which is used in a vaiety of applications is the family of substing seach algoithms. These algoithms allow a use to detemine if, given two chaacte stings, one is

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

On the integration of the equations of hydrodynamics

On the integration of the equations of hydrodynamics Uebe die Integation de hydodynamischen Gleichungen J f eine u angew Math 56 (859) -0 On the integation of the equations of hydodynamics (By A Clebsch at Calsuhe) Tanslated by D H Delphenich In a pevious

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

you of a spring. The potential energy for a spring is given by the parabola U( x)

you of a spring. The potential energy for a spring is given by the parabola U( x) Small oscillations The theoy of small oscillations is an extemely impotant topic in mechanics. Conside a system that has a potential enegy diagam as below: U B C A x Thee ae thee points of stable equilibium,

More information

20th Century Atomic Theory - Hydrogen Atom

20th Century Atomic Theory - Hydrogen Atom 0th Centuy Atomic Theoy - Hydogen Atom Ruthefod s scatteing expeiments (Section.5, pp. 53-55) in 1910 led to a nuclea model of the atom whee all the positive chage and most of the mass wee concentated

More information

Preliminary Exam: Quantum Physics 1/14/2011, 9:00-3:00

Preliminary Exam: Quantum Physics 1/14/2011, 9:00-3:00 Peliminay Exam: Quantum Physics /4/ 9:-: Answe a total of SIX questions of which at least TWO ae fom section A and at least THREE ae fom section B Fo you answes you can use eithe the blue books o individual

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

Graphs of Sine and Cosine Functions

Graphs of Sine and Cosine Functions Gaphs of Sine and Cosine Functions In pevious sections, we defined the tigonometic o cicula functions in tems of the movement of a point aound the cicumfeence of a unit cicle, o the angle fomed by the

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

Mechanics and Special Relativity (MAPH10030) Assignment 3

Mechanics and Special Relativity (MAPH10030) Assignment 3 (MAPH0030) Assignment 3 Issue Date: 03 Mach 00 Due Date: 4 Mach 00 In question 4 a numeical answe is equied with pecision to thee significant figues Maks will be deducted fo moe o less pecision You may

More information

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx.

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx. 9. LAGRANGIAN OF THE ELECTROMAGNETIC FIELD In the pevious section the Lagangian and Hamiltonian of an ensemble of point paticles was developed. This appoach is based on a qt. This discete fomulation can

More information

Orbital Angular Momentum Eigenfunctions

Orbital Angular Momentum Eigenfunctions Obital Angula Moentu Eigenfunctions Michael Fowle 1/11/08 Intoduction In the last lectue we established that the opeatos J Jz have a coon set of eigenkets j J j = j( j+ 1 ) j Jz j = j whee j ae integes

More information

Energy Levels Of Hydrogen Atom Using Ladder Operators. Ava Khamseh Supervisor: Dr. Brian Pendleton The University of Edinburgh August 2011

Energy Levels Of Hydrogen Atom Using Ladder Operators. Ava Khamseh Supervisor: Dr. Brian Pendleton The University of Edinburgh August 2011 Enegy Levels Of Hydogen Atom Using Ladde Opeatos Ava Khamseh Supeviso: D. Bian Pendleton The Univesity of Edinbugh August 11 1 Abstact The aim of this pape is to fist use the Schödinge wavefunction methods

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G-type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this investigation

More information

GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC

GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC GILBERT WEINSTEIN 1. Intoduction Recall that the exteio Schwazschild metic g defined on the 4-manifold M = R R 3 \B 2m ) = {t,, θ, φ): > 2m}

More information

Single Particle State AB AB

Single Particle State AB AB LECTURE 3 Maxwell Boltzmann, Femi, and Bose Statistics Suppose we have a gas of N identical point paticles in a box of volume V. When we say gas, we mean that the paticles ae not inteacting with one anothe.

More information

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr. POBLM S # SOLUIONS by obet A. DiStasio J. Q. he Bon-Oppenheime appoximation is the standad way of appoximating the gound state of a molecula system. Wite down the conditions that detemine the tonic and

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

Describing Circular motion

Describing Circular motion Unifom Cicula Motion Descibing Cicula motion In ode to undestand cicula motion, we fist need to discuss how to subtact vectos. The easiest way to explain subtacting vectos is to descibe it as adding a

More information

5.61 Physical Chemistry Lecture #23 page 1 MANY ELECTRON ATOMS

5.61 Physical Chemistry Lecture #23 page 1 MANY ELECTRON ATOMS 5.6 Physical Chemisty Lectue #3 page MAY ELECTRO ATOMS At this point, we see that quantum mechanics allows us to undestand the helium atom, at least qualitatively. What about atoms with moe than two electons,

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

PHYS 705: Classical Mechanics. Small Oscillations

PHYS 705: Classical Mechanics. Small Oscillations PHYS 705: Classical Mechanics Small Oscillations Fomulation of the Poblem Assumptions: V q - A consevative system with depending on position only - The tansfomation equation defining does not dep on time

More information

Hopefully Helpful Hints for Gauss s Law

Hopefully Helpful Hints for Gauss s Law Hopefully Helpful Hints fo Gauss s Law As befoe, thee ae things you need to know about Gauss s Law. In no paticula ode, they ae: a.) In the context of Gauss s Law, at a diffeential level, the electic flux

More information

m1 m2 M 2 = M -1 L 3 T -2

m1 m2 M 2 = M -1 L 3 T -2 GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of

More information

The Schwartzchild Geometry

The Schwartzchild Geometry UNIVERSITY OF ROCHESTER The Schwatzchild Geomety Byon Osteweil Decembe 21, 2018 1 INTRODUCTION In ou study of geneal elativity, we ae inteested in the geomety of cuved spacetime in cetain special cases

More information

Phys 201A. Homework 5 Solutions

Phys 201A. Homework 5 Solutions Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by

More information

Math Section 4.2 Radians, Arc Length, and Area of a Sector

Math Section 4.2 Radians, Arc Length, and Area of a Sector Math 1330 - Section 4. Radians, Ac Length, and Aea of a Secto The wod tigonomety comes fom two Geek oots, tigonon, meaning having thee sides, and mete, meaning measue. We have aleady defined the six basic

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

The Schrödinger Equation in Three Dimensions

The Schrödinger Equation in Three Dimensions The Schödinge Equation in Thee Dimensions Paticle in a Rigid Thee-Dimensional Box (Catesian Coodinates) To illustate the solution of the time-independent Schödinge equation (TISE) in thee dimensions, we

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Auchmuty High School Mathematics Department Advanced Higher Notes Teacher Version

Auchmuty High School Mathematics Department Advanced Higher Notes Teacher Version The Binomial Theoem Factoials Auchmuty High School Mathematics Depatment The calculations,, 6 etc. often appea in mathematics. They ae called factoials and have been given the notation n!. e.g. 6! 6!!!!!

More information

Lecture 7: Angular Momentum, Hydrogen Atom

Lecture 7: Angular Momentum, Hydrogen Atom Lectue 7: Angula Momentum, Hydogen Atom Vecto Quantization of Angula Momentum and Nomalization of 3D Rigid Roto wavefunctions Conside l, so L 2 2 2. Thus, we have L 2. Thee ae thee possibilities fo L z

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued Many Electon Atoms The many body poblem cannot be solved analytically. We content ouselves with developing appoximate methods that can yield quite accuate esults (but usually equie a compute). The electons

More information

221B Lecture Notes Scattering Theory I

221B Lecture Notes Scattering Theory I Why Scatteing? B Lectue Notes Scatteing Theoy I Scatteing of paticles off taget has been one of the most impotant applications of quantum mechanics. It is pobably the most effective way to study the stuctue

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

A Relativistic Electron in a Coulomb Potential

A Relativistic Electron in a Coulomb Potential A Relativistic Electon in a Coulomb Potential Alfed Whitehead Physics 518, Fall 009 The Poblem Solve the Diac Equation fo an electon in a Coulomb potential. Identify the conseved quantum numbes. Specify

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t)

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t) Cicula Motion Fom ancient times cicula tajectoies hae occupied a special place in ou model of the Uniese. Although these obits hae been eplaced by the moe geneal elliptical geomety, cicula motion is still

More information

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925)

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925) 1 Lectue 1: The beginnings of quantum physics 1. The Sten-Gelach expeiment. Atomic clocks 3. Planck 1900, blackbody adiation, and E ω 4. Photoelectic effect 5. Electon diffaction though cystals, de Boglie

More information

Math 124B February 02, 2012

Math 124B February 02, 2012 Math 24B Febuay 02, 202 Vikto Gigoyan 8 Laplace s equation: popeties We have aleady encounteed Laplace s equation in the context of stationay heat conduction and wave phenomena. Recall that in two spatial

More information

An Exact Solution of Navier Stokes Equation

An Exact Solution of Navier Stokes Equation An Exact Solution of Navie Stokes Equation A. Salih Depatment of Aeospace Engineeing Indian Institute of Space Science and Technology, Thiuvananthapuam, Keala, India. July 20 The pincipal difficulty in

More information

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4)

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4) Chapte 9 Hydogen Atom I What is H int? That depends on the physical system and the accuacy with which it is descibed. A natual stating point is the fom H int = p + V, (9.) µ which descibes a two-paticle

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

History of Astronomy - Part II. Tycho Brahe - An Observer. Johannes Kepler - A Theorist

History of Astronomy - Part II. Tycho Brahe - An Observer. Johannes Kepler - A Theorist Histoy of Astonomy - Pat II Afte the Copenican Revolution, astonomes stived fo moe obsevations to help bette explain the univese aound them Duing this time (600-750) many majo advances in science and astonomy

More information

Section 8.2 Polar Coordinates

Section 8.2 Polar Coordinates Section 8. Pola Coodinates 467 Section 8. Pola Coodinates The coodinate system we ae most familia with is called the Catesian coodinate system, a ectangula plane divided into fou quadants by the hoizontal

More information

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rigid Body Dynamics 2 CSE169: Compute Animation nstucto: Steve Rotenbeg UCSD, Winte 2018 Coss Poduct & Hat Opeato Deivative of a Rotating Vecto Let s say that vecto is otating aound the oigin, maintaining

More information

PHYS 301 HOMEWORK #10 (Optional HW)

PHYS 301 HOMEWORK #10 (Optional HW) PHYS 301 HOMEWORK #10 (Optional HW) 1. Conside the Legende diffeential equation : 1 - x 2 y'' - 2xy' + m m + 1 y = 0 Make the substitution x = cos q and show the Legende equation tansfoms into d 2 y 2

More information

Adiabatic evolution of the constants of motion in resonance (I)

Adiabatic evolution of the constants of motion in resonance (I) Adiabatic evolution of the constants of motion in esonance (I) BH Gavitational 重 力力波 waves Takahio Tanaka (YITP, Kyoto univesity) R. Fujita, S. Isoyama, H. Nakano, N. Sago PTEP 013 (013) 6, 063E01 e-pint:

More information

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1 Anyone who can contemplate quantum mechanics without getting dizzy hasn t undestood it. --Niels Boh Lectue 17, p 1 Special (Optional) Lectue Quantum Infomation One of the most moden applications of QM

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

Basic Bridge Circuits

Basic Bridge Circuits AN7 Datafoth Copoation Page of 6 DID YOU KNOW? Samuel Hunte Chistie (784-865) was bon in London the son of James Chistie, who founded Chistie's Fine At Auctionees. Samuel studied mathematics at Tinity

More information

Chapter 12. Kinetics of Particles: Newton s Second Law

Chapter 12. Kinetics of Particles: Newton s Second Law Chapte 1. Kinetics of Paticles: Newton s Second Law Intoduction Newton s Second Law of Motion Linea Momentum of a Paticle Systems of Units Equations of Motion Dynamic Equilibium Angula Momentum of a Paticle

More information

Circular Orbits. and g =

Circular Orbits. and g = using analyse planetay and satellite motion modelled as unifom cicula motion in a univesal gavitation field, a = v = 4π and g = T GM1 GM and F = 1M SATELLITES IN OBIT A satellite is any object that is

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physical insight in the sound geneation mechanism can be gained by consideing simple analytical solutions to the wave equation. One example is to conside acoustic

More information

Scattering in Three Dimensions

Scattering in Three Dimensions Scatteing in Thee Dimensions Scatteing expeiments ae an impotant souce of infomation about quantum systems, anging in enegy fom vey low enegy chemical eactions to the highest possible enegies at the LHC.

More information

arxiv: v1 [physics.gen-ph] 18 Aug 2018

arxiv: v1 [physics.gen-ph] 18 Aug 2018 Path integal and Sommefeld quantization axiv:1809.04416v1 [physics.gen-ph] 18 Aug 018 Mikoto Matsuda 1, and Takehisa Fujita, 1 Japan Health and Medical technological college, Tokyo, Japan College of Science

More information

A Hartree-Fock Example Using Helium

A Hartree-Fock Example Using Helium Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty June 6 A Hatee-Fock Example Using Helium Cal W. David Univesity of Connecticut, Cal.David@uconn.edu Follow

More information

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf " #, # $ work function.

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf  #, # $ work function. PHYSICS 4E FINAL EXAM SPRING QUARTER 1 Fomulas and constants: hc =1,4 ev A ; k B =1/11,6 ev/k ; ke =14.4eVA ; m e c =.511"1 6 ev ; m p /m e =1836 Relativistic enegy - momentum elation E = m c 4 + p c ;

More information

Boundary Layers and Singular Perturbation Lectures 16 and 17 Boundary Layers and Singular Perturbation. x% 0 Ω0æ + Kx% 1 Ω0æ + ` : 0. (9.

Boundary Layers and Singular Perturbation Lectures 16 and 17 Boundary Layers and Singular Perturbation. x% 0 Ω0æ + Kx% 1 Ω0æ + ` : 0. (9. Lectues 16 and 17 Bounday Layes and Singula Petubation A Regula Petubation In some physical poblems, the solution is dependent on a paamete K. When the paamete K is vey small, it is natual to expect that

More information

3.6 Applied Optimization

3.6 Applied Optimization .6 Applied Optimization Section.6 Notes Page In this section we will be looking at wod poblems whee it asks us to maimize o minimize something. Fo all the poblems in this section you will be taking the

More information

Doublet structure of Alkali spectra:

Doublet structure of Alkali spectra: Doublet stuctue of : Caeful examination of the specta of alkali metals shows that each membe of some of the seies ae closed doublets. Fo example, sodium yellow line, coesponding to 3p 3s tansition, is

More information

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website:

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website: Lectue 6 Chapte 4 Physics I Rotational Motion Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi Today we ae going to discuss: Chapte 4: Unifom Cicula Motion: Section 4.4 Nonunifom Cicula

More information

Solving Problems of Advance of Mercury s Perihelion and Deflection of. Photon Around the Sun with New Newton s Formula of Gravity

Solving Problems of Advance of Mercury s Perihelion and Deflection of. Photon Around the Sun with New Newton s Formula of Gravity Solving Poblems of Advance of Mecuy s Peihelion and Deflection of Photon Aound the Sun with New Newton s Fomula of Gavity Fu Yuhua (CNOOC Reseach Institute, E-mail:fuyh945@sina.com) Abstact: Accoding to

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

30 The Electric Field Due to a Continuous Distribution of Charge on a Line

30 The Electric Field Due to a Continuous Distribution of Charge on a Line hapte 0 The Electic Field Due to a ontinuous Distibution of hage on a Line 0 The Electic Field Due to a ontinuous Distibution of hage on a Line Evey integal ust include a diffeential (such as d, dt, dq,

More information