10.2 Parametric Calculus


 Claude Griffin
 10 months ago
 Views:
Transcription
1 10. Paametic Calculus Let s now tun ou attention to figuing out how to do all that good calculus stuff with a paametically defined function. As a woking eample, let s conside the cuve taced out by a point on the edge of a olling tie. We call this cuve a cycloid and, as you can imagine, it cannot be descibed nicely in the fom y f (). 1
2 To descibe the cycloid, let s conside a point on a olling cicle of adius initially at the oigin and label its and position in tems of the angle olled. (t) y This gives ise to the paametic equations t sin t and y(t) 1 cos t Ou goal now will be to compute thee things: 1) The slope of a tangent,. ) The aea unde the cuve, A. t 3) The ac length of the cuve, L.
3 Tangents: (t) y(t) y f () We need to compute but we don t have. We only have and. That s okay, we can use the chain ule. fo 0 Note, we can also use this tick to compute highe ode deivatives. Fo eample, at second ode we have d y d 3
4 Eample: Find all points on the cycloid with hoizontal tangent lines. (t) t sin t 1 cos t y(t) So we find 1 cos t sin t sin t sin t 1 cos t 1 cos t 4
5 Since sin t 1 cos t the cycloid will have a hoizontal tangent when sin t 0 and 1cos t 0 t (n 1) fo n This coesponds to points (, y) ((n 1),) y
6 Aea: Now let s find the aea unde one ach of a cycloid. Nomally we would compute the aea unde a cuve by integating y 0 A 1 f () How can we eintepet this as an integal in tems of the paamete? t y f () is just the height of the function so we can eplace it with y y(t) The diffeential detemines which vaiable we integate ove. This can be eplaced using '(t) 6
7 We must also change ou limits of integation to eflect ou shift fom integating ove to integating ove t. The esult is A t t 1 y(t)'(t) Eample: Find the aea unde one ach of a cycloid. Fom the tangent poblem we have y(t)'(t) 1cos t y What ae the limits of integation though? 0 7
8 We find the new limits the same way we would fo any substitution: y If we wee integating ove, the limits would be 0 and 0 We then use (t) t sin t to wok out the value of the paamete t coesponding to these values. 0 t sin t 0 t 0 t sin t t So the aea is A 0 1 cos t 3 Eecise: Veify this esult. 8
9 Ac Length Finally, let s look at how to compute ac length given a paameteized cuve. Rathe than manipulating ou eisting epession fo ac length (which we could do), let s go back to fist pinciples. Recall, we compute ac length by diving a cuve into dl infinitesimal segments of length y dl and then integating. When the cuve is defined paametically, we ewite the diffeentials and in tems of, '(t) and y'(t) 9
10 Then, dl ' y' ' y' Use and '(t) y'(t) Facto out Theefoe, we aive at the ac length fomula L t t 1 Eecise: Compute the ac length of one ach of the cycloid (t) t sin t y(t) 1cos t defined by and. 10
11 Eample: Conside a piece of a paabola paameteized by (t) t y(t) 4t t and fo t [0,4] a) Sketch this cuve. b) Find the location whee the tangent line is hoizontal using the paametic equations fo the cuve. c) Find the aea unde the cuve using the paametic equations. 11
12 Eample: If you walk adially outwads fom the cente of meygoound spinning, you will tace out a spial path elative to a stationay obseve. Compute the distance will you cove elative to the gound afte one evolution stating at t 0 given the paameteization (t) t cos(t) and y(t) tsin(t) Achimedean spial 1
13 Eample: A binay black hole system loses enegy via gavitational waves causing the black holes to spial inwads. The path of one of the black holes is given by (t) What distance does this black hole cove between t 0 and t? e (time in units of seconds, distance in units of 1,000,000 km) t cos(t) and y(t) e t sin(t) 13
14 13. Calculus with Vecto Functions Often 3D paametically defined functions o vecto functions ae used to descibe tajectoies. In this case, we would like to be able to compute deivatives (e.g., to find velocity fom displacement) o integate (e.g., to do the evese). So how do we diffeentiate o integate something like (t) (t)î y(t)ĵ z(t)kˆ It tuns out we can simply diffeentiate o integate componentbycomponent: E.g., d dz (t) î ĵ kˆ 14
15 Eample: An electon tavels though a magnetic field in a helical tajectoy with velocity R v(t) R sin( t),r cos( t), v 0 whee is the adius of the heli, is the angula fequency, and is the speed in the zdiection. v 0 a a) Find the acceleation of the electon at t /. b) Find the displacement between t 0 and t 3 / (i.e., afte 1.5 evolutions). 15
16 Miem Pep: Review Sessions Satuday, Feb. 0, 6 8 PM in DC 1351 (OneMatch club) Sunday, Feb. 1, 4 PM in MC 4059 (with me) Stu Tips Wok though quizzes and woksheets ty to do them again without looking at solutions fist. Wok though old miem (time youself and lean whee you weaknesses may be). Solutions ae posted. Wok though eamples fom class. Do poblems fom the tetbook. (Also, take time off to ela mental health is impotant). Office Hous duing Reading Week to be announced and by appointment (but afte Wednesday). 16
17 Miem Mateial: Integation by Pats: u dv uv vdu Tig Integals: sin m ()cos n () and tan m ()sec n () Tig Substitutions: a a Patial Factions: Integate and a A a b asin a tan asec A B a b c Impope Integals: Infinite limits, discontinuous integands, convegence/divegence, compaison test 17
18 Miem Mateial: Volumes of Revolution: Disks, washes, & cylindical shells. Ac Length: min 0 L Suface Aea by Revolution: b a b ma V 1 f '() a ma min S f () 1 (f ') S g(y) d yc h() 1 (g') 18
19 Miem Mateial: Fomulating Diffeential Equations: Given a statement, wite down a diffeential equation that models it. Diection Fields: Daw; autonomous; locate solutions Sepaable DEs: g()h(y) 1 h(y) g() Linea DEs: Rewite in fom Find integating facto Solve y() y' P()y Q() I() e 1 I() P() I()Q() C 19
ME 210 Applied Mathematics for Mechanical Engineers
Tangent and Ac Length of a Cuve The tangent to a cuve C at a point A on it is defined as the limiting position of the staight line L though A and B, as B appoaches A along the cuve as illustated in the
More informationDescribing Circular motion
Unifom Cicula Motion Descibing Cicula motion In ode to undestand cicula motion, we fist need to discuss how to subtact vectos. The easiest way to explain subtacting vectos is to descibe it as adding a
More informationSection 8.2 Polar Coordinates
Section 8. Pola Coodinates 467 Section 8. Pola Coodinates The coodinate system we ae most familia with is called the Catesian coodinate system, a ectangula plane divided into fou quadants by the hoizontal
More information, the tangent line is an approximation of the curve (and easier to deal with than the curve).
114 Tangent Planes and Linea Appoimations Back indimensions, what was the equation of the tangent line of f ( ) at point (, ) f ( )? (, ) ( )( ) = f Linea Appoimation (Tangent Line Appoimation) of f at
More information3.6 Applied Optimization
.6 Applied Optimization Section.6 Notes Page In this section we will be looking at wod poblems whee it asks us to maimize o minimize something. Fo all the poblems in this section you will be taking the
More informationPractice Integration Math 120 Calculus I Fall 2015
Pactice Integation Math 0 Calculus I Fall 05 Hee s a list of pactice eecises. Thee s a hint fo each one as well as an answe with intemediate steps... ( + d. Hint. Answe. ( 8 t + t + This fist set of indefinite
More informationPractice Integration Math 120 Calculus I D Joyce, Fall 2013
Pactice Integation Math 0 Calculus I D Joyce, Fall 0 This fist set of indefinite integals, that is, antideivatives, only depends on a few pinciples of integation, the fist being that integation is invese
More informationΔt The textbook chooses to say that the average velocity is
1D Motion Basic I Definitions: One dimensional motion (staight line) is a special case of motion whee all but one vecto component is zeo We will aange ou coodinate axis so that the xaxis lies along the
More informationObjectives: After finishing this unit you should be able to:
lectic Field 7 Objectives: Afte finishing this unit you should be able to: Define the electic field and explain what detemines its magnitude and diection. Wite and apply fomulas fo the electic field intensity
More informationUniform Circular Motion
Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding
More informationMagnetic Dipoles Challenge Problem Solutions
Magnetic Dipoles Challenge Poblem Solutions Poblem 1: Cicle the coect answe. Conside a tiangula loop of wie with sides a and b. The loop caies a cuent I in the diection shown, and is placed in a unifom
More informationCentral Force Motion
Cental Foce Motion Cental Foce Poblem Find the motion of two bodies inteacting via a cental foce. Examples: Gavitational foce (Keple poblem): m1m F 1, ( ) =! G ˆ Linea estoing foce: F 1, ( ) =! k ˆ Two
More informationGreen s Identities and Green s Functions
LECTURE 7 Geen s Identities and Geen s Functions Let us ecall The ivegence Theoem in ndimensions Theoem 7 Let F : R n R n be a vecto field ove R n that is of class C on some closed, connected, simply
More informationRecall from last week:
Recall fom last week: Length of a cuve '( t) dt b Ac length s( t) a a Ac length paametization ( s) with '( s) 1 '( t) Unit tangent vecto T '(s) '( t) dt Cuvatue: s ds T t t t t t 3 t ds u du '( t) dt Pincipal
More informationω = θ θ o = θ θ = s r v = rω
Unifom Cicula Motion Unifom cicula motion is the motion of an object taveling at a constant(unifom) speed in a cicula path. Fist we must define the angula displacement and angula velocity The angula displacement
More informationPhysics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving
Physics 11 Chapte 3: Vectos and Motion in Two Dimensions The only thing in life that is achieved without effot is failue. Souce unknown "We ae what we epeatedly do. Excellence, theefoe, is not an act,
More information 5  TEST 1R. This is the repeat version of TEST 1, which was held during Session.
 5  TEST 1R This is the epeat vesion of TEST 1, which was held duing Session. This epeat test should be attempted by those students who missed Test 1, o who wish to impove thei mak in Test 1. IF YOU
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position
More informationPhysics 181. Assignment 4
Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This
More informationChapter 2: Basic Physics and Math Supplements
Chapte 2: Basic Physics and Math Supplements Decembe 1, 215 1 Supplement 2.1: Centipetal Acceleation This supplement expands on a topic addessed on page 19 of the textbook. Ou task hee is to calculate
More informationPhys 201A. Homework 5 Solutions
Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by
More informationTHE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2
THE LAPLACE EQUATION The Laplace (o potential) equation is the equation whee is the Laplace opeato = 2 x 2 u = 0. in R = 2 x 2 + 2 y 2 in R 2 = 2 x 2 + 2 y 2 + 2 z 2 in R 3 The solutions u of the Laplace
More informationLecture 8  Gauss s Law
Lectue 8  Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.
More informationPHYS 110B  HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased
PHYS 0B  HW #7 Sping 2004, Solutions by David Pace Any efeenced euations ae fom Giffiths Poblem statements ae paaphased. Poblem 0.3 fom Giffiths A point chage,, moves in a loop of adius a. At time t 0
More informationB da = 0. Q E da = ε. E da = E dv
lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the
More information11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.
Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings
More informationb) (5) What average force magnitude was applied by the students working together?
Geneal Physics I Exam 3  Chs. 7,8,9  Momentum, Rotation, Equilibium Nov. 3, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults
More informationPHYS 1114, Lecture 21, March 6 Contents:
PHYS 1114, Lectue 21, Mach 6 Contents: 1 This class is o cially cancelled, being eplaced by the common exam Tuesday, Mach 7, 5:30 PM. A eview and Q&A session is scheduled instead duing class time. 2 Exam
More informationProblem 1: Multiple Choice Questions
Mathematics 102 Review Questions Poblem 1: Multiple Choice Questions 1: Conside the function y = f(x) = 3e 2x 5e 4x (a) The function has a local maximum at x = (1/2)ln(10/3) (b) The function has a local
More informationWritten as per the revised syllabus prescribed by the Maharashtra State Board of Secondary and Higher Secondary Education, Pune.
Witten as pe e evised syllabus pescibed by e Mahaashta State oad of Seconday and Highe Seconday Education, Pune. Pecise Physics I SD. XII Sci. Salient Featues Concise coveage of syllabus in Question nswe
More information6.4 Period and Frequency for Uniform Circular Motion
6.4 Peiod and Fequency fo Unifom Cicula Motion If the object is constained to move in a cicle and the total tangential foce acting on the total object is zeo, F θ = 0, then (Newton s Second Law), the tangential
More informationChapter 22 The Electric Field II: Continuous Charge Distributions
Chapte The lectic Field II: Continuous Chage Distibutions A ing of adius a has a chage distibution on it that vaies as l(q) l sin q, as shown in Figue 9. (a) What is the diection of the electic field
More informationA Tutorial on Multiple Integrals (for Natural Sciences / Computer Sciences Tripos Part IA Maths)
A Tutoial on Multiple Integals (fo Natual Sciences / Compute Sciences Tipos Pat IA Maths) Coections to D Ian Rud (http://people.ds.cam.ac.uk/ia/contact.html) please. This tutoial gives some bief eamples
More informationb) (5) What is the magnitude of the force on the 6.0kg block due to the contact with the 12.0kg block?
Geneal Physics I Exam 2  Chs. 4,5,6  Foces, Cicula Motion, Enegy Oct. 13, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with
More informationChapter 12. Kinetics of Particles: Newton s Second Law
Chapte 1. Kinetics of Paticles: Newton s Second Law Intoduction Newton s Second Law of Motion Linea Momentum of a Paticle Systems of Units Equations of Motion Dynamic Equilibium Angula Momentum of a Paticle
More informationSections and Chapter 10
Cicula and Rotational Motion Sections 5.5.5 and Chapte 10 Basic Definitions Unifom Cicula Motion Unifom cicula motion efes to the motion of a paticle in a cicula path at constant speed. The instantaneous
More informationMotion in Two Dimensions
SOLUTIONS TO PROBLEMS Motion in Two Dimensions Section 3.1 The Position, Velocity, and Acceleation Vectos P3.1 x( m) 0!3 000!1 70!4 70 m y( m)!3 600 0 1 70! 330 m (a) Net displacement x + y 4.87 km at
More informationDynamics of Rotational Motion
Dynamics of Rotational Motion Toque: the otational analogue of foce Toque = foce x moment am τ = l moment am = pependicula distance though which the foce acts a.k.a. leve am l l l l τ = l = sin φ = tan
More informationRotational Motion. Lecture 6. Chapter 4. Physics I. Course website:
Lectue 6 Chapte 4 Physics I Rotational Motion Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi Today we ae going to discuss: Chapte 4: Unifom Cicula Motion: Section 4.4 Nonunifom Cicula
More information21 MAGNETIC FORCES AND MAGNETIC FIELDS
CHAPTER 1 MAGNETIC ORCES AND MAGNETIC IELDS ANSWERS TO OCUS ON CONCEPTS QUESTIONS 1. (d) RightHand Rule No. 1 gives the diection of the magnetic foce as x fo both dawings A and. In dawing C, the velocity
More informationCircular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once.
Honos Physics Fall, 2016 Cicula Motion & Toque Test Review Name: M. Leonad Instuctions: Complete the following woksheet. SHOW ALL OF YOUR WORK ON A SEPARATE SHEET OF PAPER. 1. Detemine whethe each statement
More informationSchool of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007
School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 8 Due on Oct. 19, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes.
More informationMCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate.
MCVU Final Eam Review Answe (o Solution) Pactice Questions Conside the function f () defined b the following gaph Find a) f ( ) c) f ( ) f ( ) d) f ( ) Evaluate the following its a) ( ) c) sin d) π / π
More informationMath 124B February 02, 2012
Math 24B Febuay 02, 202 Vikto Gigoyan 8 Laplace s equation: popeties We have aleady encounteed Laplace s equation in the context of stationay heat conduction and wave phenomena. Recall that in two spatial
More informationc) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?
Geneal Physics I Exam 2  Chs. 4,5,6  Foces, Cicula Motion, Enegy Oct. 10, 2012 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with
More informationMotion in One Dimension
Motion in One Dimension Intoduction: In this lab, you will investigate the motion of a olling cat as it tavels in a staight line. Although this setup may seem ovesimplified, you will soon see that a detailed
More informationRigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018
Rigid Body Dynamics 2 CSE169: Compute Animation nstucto: Steve Rotenbeg UCSD, Winte 2018 Coss Poduct & Hat Opeato Deivative of a Rotating Vecto Let s say that vecto is otating aound the oigin, maintaining
More informationCartesian Coordinate System and Vectors
Catesian Coodinate System and Vectos Coodinate System Coodinate system: used to descibe the position of a point in space and consists of 1. An oigin as the efeence point 2. A set of coodinate axes with
More informationRelated Rates  the Basics
Related Rates  the Basics In this section we exploe the way we can use deivatives to find the velocity at which things ae changing ove time. Up to now we have been finding the deivative to compae the
More informationRotational Motion: Statics and Dynamics
Physics 07 Lectue 17 Goals: Lectue 17 Chapte 1 Define cente of mass Analyze olling motion Intoduce and analyze toque Undestand the equilibium dynamics of an extended object in esponse to foces Employ consevation
More informationPhysics 2A Chapter 10  Moment of Inertia Fall 2018
Physics Chapte 0  oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.
More informationChapter 8. Accelerated Circular Motion
Chapte 8 Acceleated Cicula Motion 8.1 Rotational Motion and Angula Displacement A new unit, adians, is eally useful fo angles. Radian measue θ(adians) = s = θ s (ac length) (adius) (s in same units as
More informationAH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion
AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed
More informationModeling Ballistics and Planetary Motion
Discipline CousesI SemesteI Pape: CalculusI Lesson: Lesson Develope: Chaitanya Kuma College/Depatment: Depatment of Mathematics, Delhi College of Ats and Commece, Univesity of Delhi Institute of Lifelong
More informationCOORDINATE TRANSFORMATIONS  THE JACOBIAN DETERMINANT
COORDINATE TRANSFORMATIONS  THE JACOBIAN DETERMINANT Link to: phsicspages home page. To leave a comment o epot an eo, please use the auilia blog. Refeence: d Inveno, Ra, Intoducing Einstein s Relativit
More informationMath 2263 Solutions for Spring 2003 Final Exam
Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate
More informationCircular Motion. Mr. Velazquez AP/Honors Physics
Cicula Motion M. Velazquez AP/Honos Physics Objects in Cicula Motion Accoding to Newton s Laws, if no foce acts on an object, it will move with constant speed in a constant diection. Theefoe, if an object
More informationPhysics 2B Chapter 22 Notes  Magnetic Field Spring 2018
Physics B Chapte Notes  Magnetic Field Sping 018 Magnetic Field fom a Long Staight CuentCaying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field
More informationPhysics 4A Chapter 8: Dynamics II Motion in a Plane
Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.
More informationMagnetic Field. Conference 6. Physics 102 General Physics II
Physics 102 Confeence 6 Magnetic Field Confeence 6 Physics 102 Geneal Physics II Monday, Mach 3d, 2014 6.1 Quiz Poblem 6.1 Think about the magnetic field associated with an infinite, cuent caying wie.
More informationPhysics C Rotational Motion Name: ANSWER KEY_ AP Review Packet
Linea and angula analogs Linea Rotation x position x displacement v velocity a T tangential acceleation Vectos in otational motion Use the ight hand ule to detemine diection of the vecto! Don t foget centipetal
More information2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum
2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo unsymmetic known
More informationQualifying Examination Electricity and Magnetism Solutions January 12, 2006
1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and
More informationFlux. Area Vector. Flux of Electric Field. Gauss s Law
Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is
More informationChapter 10 Sample Exam
Chapte Sample Exam Poblems maked with an asteisk (*) ae paticulaly challenging and should be given caeful consideation.. Conside the paametic cuve x (t) =e t, y (t) =e t, t (a) Compute the length of the
More informationChapter Eight Notes N P U1C8S46
Chapte Eight Notes N P UC8S6 Name Peiod Section 8.: Tigonometic Identities An identit is, b definition, an equation that is alwas tue thoughout its domain. B tue thoughout its domain, that is to sa that
More informationHomework 7 Solutions
Homewok 7 olutions Phys 4 Octobe 3, 208. Let s talk about a space monkey. As the space monkey is oiginally obiting in a cicula obit and is massive, its tajectoy satisfies m mon 2 G m mon + L 2 2m mon 2
More informationF(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces.
4.8. Cental foces The most inteesting poblems in classical mechanics ae about cental foces. Definition of a cental foce: (i) the diection of the foce F() is paallel o antipaallel to ; in othe wods, fo
More informationAST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1
Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long handout and one which uses in places mathematics that you may not be
More informationQUESTION 1 [25 points]
(Fist) QUESTION 1 [5 points] An object moves in 1 dimension It stats at est and unifomly acceleates at 5m/s fo s It then moves with constant velocity fo 4s It then unifomly acceleates at m/s until it comes
More informationPhysics 207 Lecture 5. Lecture 5
Lectue 5 Goals: Addess sstems with multiple acceleations in 2 dimensions (including linea, pojectile and cicula motion) Discen diffeent efeence fames and undestand how the elate to paticle motion in stationa
More informationMomentum is conserved if no external force
Goals: Lectue 13 Chapte 9 v Employ consevation of momentum in 1 D & 2D v Examine foces ove time (aka Impulse) Chapte 10 v Undestand the elationship between motion and enegy Assignments: l HW5, due tomoow
More information$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer
Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =
More informationLecture 13 EXAM 2. Today s Topics: Rotational motion Moment of inertia. Tuesday March 8, :15 PM 9:45 PM
Lectue 13 Rotational motion Moment of inetia EXAM uesday Mach 8, 16 8:15 PM 9:45 PM oday s opics: Rotational Motion and Angula Displacement Angula Velocity and Acceleation Rotational Kinematics Angula
More informationComputational Methods of Solid Mechanics. Project report
Computational Methods of Solid Mechanics Poject epot Due on Dec. 6, 25 Pof. Allan F. Bowe Weilin Deng Simulation of adhesive contact with molecula potential Poject desciption In the poject, we will investigate
More informationCentripetal Force. Lecture 11. Chapter 8. Course website:
Lectue 11 Chapte 8 Centipetal Foce Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi PHYS.1410 Lectue 11 Danylov Depatment of Physics and Applied Physics Today we ae going to discuss:
More informationObjective Notes Summary
Objective Notes Summay An object moving in unifom cicula motion has constant speed but not constant velocity because the diection is changing. The velocity vecto in tangent to the cicle, the acceleation
More informationCircular motion. Objectives. Physics terms. Assessment. Equations 5/22/14. Describe the accelerated motion of objects moving in circles.
Cicula motion Objectives Descibe the acceleated motion of objects moving in cicles. Use equations to analyze the acceleated motion of objects moving in cicles.. Descibe in you own wods what this equation
More informationPHYS 1444 Section 501 Lecture #7
PHYS 1444 Section 51 Lectue #7 Wednesday, Feb. 8, 26 Equipotential Lines and Sufaces Electic Potential Due to Electic Dipole E detemined fom V Electostatic Potential Enegy of a System of Chages Capacitos
More informationB. Spherical Wave Propagation
11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We
More informationKinematics in 2D (II)
Kinematics in 2D (II) Unifom cicula motion Tangential and adial components of Relative velocity and acceleation a Seway and Jewett 4.4 to 4.6 Pactice Poblems: Chapte 4, Objective Questions 5, 11 Chapte
More informationHomework # 3 Solution Key
PHYSICS 631: Geneal Relativity Homewok # 3 Solution Key 1. You e on you hono not to do this one by hand. I ealize you can use a compute o simply look it up. Please don t. In a flat space, the metic in
More informationPY208 Matter & Interactions Final Exam S2005
PY Matte & Inteactions Final Exam S2005 Name (pint) Please cicle you lectue section below: 003 (Ramakishnan 11:20 AM) 004 (Clake 1:30 PM) 005 (Chabay 2:35 PM) When you tun in the test, including the fomula
More informationyou of a spring. The potential energy for a spring is given by the parabola U( x)
Small oscillations The theoy of small oscillations is an extemely impotant topic in mechanics. Conside a system that has a potential enegy diagam as below: U B C A x Thee ae thee points of stable equilibium,
More informationObjects usually are charged up through the transfer of electrons from one object to the other.
1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant
More information15 Solving the Laplace equation by Fourier method
5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the
More informationLab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion
Reading Assignment: Lab #9: The Kinematics & Dynamics of Cicula Motion & Rotational Motion Chapte 6 Section 4 Chapte 11 Section 1 though Section 5 Intoduction: When discussing motion, it is impotant to
More informationCalculus I Section 4.7. Optimization Equation. Math 151 November 29, 2008
Calculus I Section 4.7 Optimization Solutions Math 151 Novembe 9, 008 The following poblems ae maimum/minimum optimization poblems. They illustate one of the most impotant applications of the fist deivative.
More informationMAGNETIC FIELD INTRODUCTION
MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a nothsouth diection (the compass needle). The noth end is called the Noth Pole (Npole),
More informationContinuous Charge Distributions: Electric Field and Electric Flux
8/30/16 Quiz 2 8/25/16 A positive test chage qo is eleased fom est at a distance away fom a chage of Q and a distance 2 away fom a chage of 2Q. How will the test chage move immediately afte being eleased?
More informationF Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges
MAGNETOSTATICS Ceation of magnetic field. Effect of on a moving chage. Take the second case: F Q v mag On moving chages only F QE v Stationay and moving chages dw F dl Analysis on F mag : mag mag Qv. vdt
More informationKEPLER S LAWS AND PLANETARY ORBITS
KEPE S AWS AND PANETAY OBITS 1. Selected popeties of pola coodinates and ellipses Pola coodinates: I take a some what extended view of pola coodinates in that I allow fo a z diection (cylindical coodinates
More information16.1 Permanent magnets
Unit 16 Magnetism 161 Pemanent magnets 16 The magnetic foce on moving chage 163 The motion of chaged paticles in a magnetic field 164 The magnetic foce exeted on a cuentcaying wie 165 Cuent loops and
More informationHoizontal Cicula Motion 1. A paticle of mass m is tied to a light sting and otated with a speed v along a cicula path of adius. If T is tension in the sting and mg is gavitational foce on the paticle then,
More informationWheel : MC, IC, rc. Pendulum : MB, IB, LB
In the figue, two cables of stiffness connect a wheel of mass M c to gound. The wheel with adius, has mass moment of inetia is I The pendulum, attached to the wheel cente, has mass M and mass moment of
More informationHW 7 Help. 60 s t. (4.0 rev/s)(1 min) 240 rev 1 min Solving for the distance traveled, we ll need to convert to radians:
HW 7 Help 30. ORGANIZE AND PLAN We ae given the angula velocity and the time, and we ae asked to ind the distance that is coveed. We can ist solve o the angula displacement using Equation 8.3: t. The distance
More informationESCI 342 Atmospheric Dynamics I Lesson 3 Fundamental Forces II
Reading: Matin, Section. ROTATING REFERENCE FRAMES ESCI 34 Atmospheic Dnamics I Lesson 3 Fundamental Foces II A efeence fame in which an object with zeo net foce on it does not acceleate is known as an
More informationGalilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O.
PHYS2402 Chapte 2 Lectue 2 Special Relativity 1. Basic Ideas Sep. 1, 2016 Galilean Tansfomation vs E&M y K O z z y K In 1873, Maxwell fomulated Equations of Electomagnetism. v Maxwell s equations descibe
More informationChapter 13 Gravitation
Chapte 13 Gavitation In this chapte we will exploe the following topics: Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects
More informationPS113 Chapter 5 Dynamics of Uniform Circular Motion
PS113 Chapte 5 Dynamics of Unifom Cicula Motion 1 Unifom cicula motion Unifom cicula motion is the motion of an object taveling at a constant (unifom) speed on a cicula path. The peiod T is the time equied
More information