Recall from last week:

Size: px
Start display at page:

Download "Recall from last week:"

Transcription

1 Recall fom last week: Length of a cuve '( t) dt b Ac length s( t) a a Ac length paametization ( s) with '( s) 1 '( t) Unit tangent vecto T '(s) '( t) dt Cuvatue: s ds T t t t t t 3 t ds u du '( t) dt Pincipal unit nomal: s s t t T T N Binomal B T N Fenet fame (o TNB fame) T,N,B Tosion : db N ds db ds N d ds ( t) ( t), y(t), z( t) ' t '' t ''' t B t t

2 Recall: Decompose the acceleation vecto a ''( t) a Ta T N N d s d tangential acceleation: a = ( T ( t) ) dt dt av at v ' '' ' ds nomal acceleation: a N ( t) dt va ' '' an = a a T v ' d constant velocity: a ( T ) 0 dt a N If you tavel at constant speed a on a cicle of adius : a 0 T a N 1 a

3 13.6 Acceleation in Pola Coodinates

4 Newton s law of gavitation (1687): F GmM Invese squae law GM F = ma a '' = d dt ' M m G is the vecto fom the cente of the sun to the planet is the mass of the sun is the mass of the planet is the gavitational constant ' ' '' 11 G = N m kg (fom 1798) '' 0 since '' is paallel to by Newton's law hence ' is a constant vecto C in paticula C 0 the planet moves in a plane othogonal to C!

5 Recall pola coodinates: cos( ) y sin( ) y actan( y ) 0 0 fom Calc I, aea element: da 1 d eplace i, j by (pependicula unit vectos) u = cos( ) i sin( ) j, u sin( ) i cos( ) j cos( ) i sin( ) j cos( ) i sin( ) j u u ' ( cos( ) i sin( ) j)' 'cos( ) i 'sin( ) j 'sin( ) i 'cos( ) j ' u + ' u ' ' u ' u

6 Keple s second law of planetay motion (1609): The planet sweeps out equal aea in equal time Lets show this is tue: ecall: C ' constant i.e., the planet tavels in a plane othogonal to C we can assume planet tavels in y plane ecall u and ' ' u ' u _laws_of_planetay_motion hence C ' u ' u ' u ( ') u u but u and u ae unit vectos in the y plane, hence u u = k (o k) thus C ( ') u u ( ') k = ' k since C and k ae constant vectos, ' is constant as well ecall: da 1 d hence da 1 d ' Aea swept out at constant speed! dt dt

7 14.1 Functions of Seveal Vaiables

8 Recall: Functions of one vaiable: y f ( ) Domain D: set of all whee f ( ) is defined. Range: set of all f ( ) fo in the domain Gaph of f : the set in the plane (, f ( )) D Functions of two (o moe) vaiables: z f (, y) (o w f (, y, z) ) Domain D: egion in the plane whee f (, y) is defined. Range: f (, y) D Eample: Find and sketch the domain of the function f, y 1 y. 1 y 0 o y 1

9 Gaph of f : the set in 3-space (, y, f (, y)) (, y) D

10 Level cuves ae cuves in the y plane given by f (, y) c fo vaious constants c. When lifted to the suface, they ae sometimes called contou cuves.

11 Aveage Januay sea-level tempeatues measued in degees Celsius The level cuves ae called isothemals, they join aeas with the same tempeatue

12 The gaph of z f (, y) 4 y is fomed by lifting the level cuves: (a) Contou map (b) Hoizontal taces ae aised level cuves

13 Level cuves and gaph of y z ye Maple command: plot d y ep y y aes boed 3 ( * * ( ), 5..5, 5..5, );

14 I II III IV V VI VI I II ( a) f (, y) y (b) f (, y) y (c) f (, y) 1 1 y ( e) f (, y) y ( d) f (, y) y (f ) f (, y) sin y V IV III

15 A B C 53. z sin y B, III D E F 54. z y e y C, II 55. z 1 4y FV, I II III 56. z 3 3y A, VI IV V VI 57. z sin sin y D, IV 58. z sin 1 4 y EI,

16 14. Continuity

17 Recall: lim f ( ) L a the values f ( ) appoach L moe and moe as you get close to a. Notice: a does not have to lie in the domain of definition! ( f( a) may be undefined) We can appoach a fom two sides: both limits lim f ( ) and lim f ( ) Eamples: a) lim 0 9 b) lim 3 3 does not eists since 6 sin( ) c) lim since 3 3 a a must eists and be the same. 0 0 lim 1 but lim 1 since sin( ) (sandwich theoem) f is continous at a if lim f ( ) f ( a ) a f is continous, if it is continuous fo all D (domain of definition)

18 Definition: lim f (, y ) L y a b (, ) (, ) If the values of f(, y) appoach the numbe L as the point (, y) appoaches the point (a, b) along any path that stays within the domain of f. Eamples: a) lim ( y, ) (1,1) sin( y ) y sin() b) lim ( y, ) (0,0) sin( y ) y lim 0 sin( ) sin(z) lim 1 z0 z

19 c) lim ( y, ) (0,0) sin( y ) y If 0 then sin( y ) sin( ) lim lim 1 y (, y) (0,0) 0 If y 0 then lim sin( y ) sin( y ) lim y y (, y) (0,0) 0 1 Limit does not eist! We can let (, y) appoach (a, b) fom an infinite numbe of diections in any manne whatsoeve as long as (, y) stays within the domain of f. Fo all of these the limit must be the same.

20 Eamples: a) lim ( y, ) (0,0) y y If y then If 0 o y 0 then y lim 0 y ( y, ) (0,0) y 1 lim lim y (, y) (0,0) 0 b) lim ( y, ) (0,0) y y 4 (To be discussed Thusday) Limit does not eist

ME 210 Applied Mathematics for Mechanical Engineers

ME 210 Applied Mathematics for Mechanical Engineers Tangent and Ac Length of a Cuve The tangent to a cuve C at a point A on it is defined as the limiting position of the staight line L though A and B, as B appoaches A along the cuve as illustated in the

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion constant speed Pick a point in the objects motion... What diection is the velocity? HINT Think about what diection the object would tavel if the sting wee cut Unifom Cicula Motion

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

Physics 111 Lecture 5 Circular Motion

Physics 111 Lecture 5 Circular Motion Physics 111 Lectue 5 Cicula Motion D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Multiple Objects q A block of mass m1 on a ough, hoizontal suface is connected to a ball of mass m by a lightweight

More information

KEPLER S LAWS AND PLANETARY ORBITS

KEPLER S LAWS AND PLANETARY ORBITS KEPE S AWS AND PANETAY OBITS 1. Selected popeties of pola coodinates and ellipses Pola coodinates: I take a some what extended view of pola coodinates in that I allow fo a z diection (cylindical coodinates

More information

Math 259 Winter Handout 6: In-class Review for the Cumulative Final Exam

Math 259 Winter Handout 6: In-class Review for the Cumulative Final Exam Math 259 Winte 2009 Handout 6: In-class Review fo the Cumulative Final Exam The topics coveed by the cumulative final exam include the following: Paametic cuves. Finding fomulas fo paametic cuves. Dawing

More information

PHYSICS 220. Lecture 08. Textbook Sections Lecture 8 Purdue University, Physics 220 1

PHYSICS 220. Lecture 08. Textbook Sections Lecture 8 Purdue University, Physics 220 1 PHYSICS 0 Lectue 08 Cicula Motion Textbook Sections 5.3 5.5 Lectue 8 Pudue Univesity, Physics 0 1 Oveview Last Lectue Cicula Motion θ angula position adians ω angula velocity adians/second α angula acceleation

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009 Physics 111 Lectue 5 (Walke: 3.3-6) Vectos & Vecto Math Motion Vectos Sept. 11, 2009 Quiz Monday - Chap. 2 1 Resolving a vecto into x-component & y- component: Pola Coodinates Catesian Coodinates x y =

More information

Chap 5. Circular Motion: Gravitation

Chap 5. Circular Motion: Gravitation Chap 5. Cicula Motion: Gavitation Sec. 5.1 - Unifom Cicula Motion A body moves in unifom cicula motion, if the magnitude of the velocity vecto is constant and the diection changes at evey point and is

More information

ω = θ θ o = θ θ = s r v = rω

ω = θ θ o = θ θ = s r v = rω Unifom Cicula Motion Unifom cicula motion is the motion of an object taveling at a constant(unifom) speed in a cicula path. Fist we must define the angula displacement and angula velocity The angula displacement

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

m1 m2 M 2 = M -1 L 3 T -2

m1 m2 M 2 = M -1 L 3 T -2 GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of

More information

Ch 13 Universal Gravitation

Ch 13 Universal Gravitation Ch 13 Univesal Gavitation Ch 13 Univesal Gavitation Why do celestial objects move the way they do? Keple (1561-1630) Tycho Bahe s assistant, analyzed celestial motion mathematically Galileo (1564-1642)

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION EPER S AWS OF PANETARY MOTION 1. Intoduction We ae now in a position to apply what we have leaned about the coss poduct and vecto valued functions to deive eple s aws of planetay motion. These laws wee

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math Pecalculus Ch. 6 Review Name SHORT ANSWER. Wite the wod o phase that best completes each statement o answes the question. Solve the tiangle. ) ) 6 7 0 Two sides and an angle (SSA) of a tiangle ae

More information

Chapter 8. Accelerated Circular Motion

Chapter 8. Accelerated Circular Motion Chapte 8 Acceleated Cicula Motion 8.1 Rotational Motion and Angula Displacement A new unit, adians, is eally useful fo angles. Radian measue θ(adians) = s = θ s (ac length) (adius) (s in same units as

More information

Lecture 1a: Satellite Orbits

Lecture 1a: Satellite Orbits Lectue 1a: Satellite Obits Outline 1. Newton s Laws of Motion 2. Newton s Law of Univesal Gavitation 3. Calculating satellite obital paametes (assuming cicula motion) Scala & Vectos Scala: a physical quantity

More information

( ) ( ) Review of Force. Review of Force. r = =... Example 1. What is the dot product for F r. Solution: Example 2 ( )

( ) ( ) Review of Force. Review of Force. r = =... Example 1. What is the dot product for F r. Solution: Example 2 ( ) : PHYS 55 (Pat, Topic ) Eample Solutions p. Review of Foce Eample ( ) ( ) What is the dot poduct fo F =,,3 and G = 4,5,6? F G = F G + F G + F G = 4 +... = 3 z z Phs55 -: Foce Fields Review of Foce Eample

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

10.2 Parametric Calculus

10.2 Parametric Calculus 10. Paametic Calculus Let s now tun ou attention to figuing out how to do all that good calculus stuff with a paametically defined function. As a woking eample, let s conside the cuve taced out by a point

More information

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature)

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature) a = c v 2 Recap Centipetal acceleation: m/s 2 (towads cente of cuvatue) A centipetal foce F c is equied to keep a body in cicula motion: This foce poduces centipetal acceleation that continuously changes

More information

Δt The textbook chooses to say that the average velocity is

Δt The textbook chooses to say that the average velocity is 1-D Motion Basic I Definitions: One dimensional motion (staight line) is a special case of motion whee all but one vecto component is zeo We will aange ou coodinate axis so that the x-axis lies along the

More information

(read nabla or del) is defined by, k. (9.7.1*)

(read nabla or del) is defined by, k. (9.7.1*) 9.7 Gadient of a scala field. Diectional deivative Some of the vecto fields in applications can be obtained fom scala fields. This is vey advantageous because scala fields can be handled moe easily. The

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

Central Force Motion

Central Force Motion Cental Foce Motion Cental Foce Poblem Find the motion of two bodies inteacting via a cental foce. Examples: Gavitational foce (Keple poblem): m1m F 1, ( ) =! G ˆ Linea estoing foce: F 1, ( ) =! k ˆ Two

More information

Math 209 Assignment 9 Solutions

Math 209 Assignment 9 Solutions Math 9 Assignment 9 olutions 1. Evaluate 4y + 1 d whee is the fist octant pat of y x cut out by x + y + z 1. olution We need a paametic epesentation of the suface. (x, z). Now detemine the nomal vecto:

More information

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website:

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website: Lectue 6 Chapte 4 Physics I Rotational Motion Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi Today we ae going to discuss: Chapte 4: Unifom Cicula Motion: Section 4.4 Nonunifom Cicula

More information

REVIEW Polar Coordinates and Equations

REVIEW Polar Coordinates and Equations REVIEW 9.1-9.4 Pola Coodinates and Equations You ae familia with plotting with a ectangula coodinate system. We ae going to look at a new coodinate system called the pola coodinate system. The cente of

More information

1 Dark Cloud Hanging over Twentieth Century Physics

1 Dark Cloud Hanging over Twentieth Century Physics We ae Looking fo Moden Newton by Caol He, Bo He, and Jin He http://www.galaxyanatomy.com/ Wuhan FutueSpace Scientific Copoation Limited, Wuhan, Hubei 430074, China E-mail: mathnob@yahoo.com Abstact Newton

More information

, the tangent line is an approximation of the curve (and easier to deal with than the curve).

, the tangent line is an approximation of the curve (and easier to deal with than the curve). 114 Tangent Planes and Linea Appoimations Back in-dimensions, what was the equation of the tangent line of f ( ) at point (, ) f ( )? (, ) ( )( ) = f Linea Appoimation (Tangent Line Appoimation) of f at

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

AP * PHYSICS B. Circular Motion, Gravity, & Orbits. Teacher Packet

AP * PHYSICS B. Circular Motion, Gravity, & Orbits. Teacher Packet AP * PHYSICS B Cicula Motion, Gavity, & Obits Teache Packet AP* is a tademak of the College Entance Examination Boad. The College Entance Examination Boad was not involved in the poduction of this mateial.

More information

Kepler's 1 st Law by Newton

Kepler's 1 st Law by Newton Astonom 10 Section 1 MWF 1500-1550 134 Astonom Building This Class (Lectue 7): Gavitation Net Class: Theo of Planeta Motion HW # Due Fida! Missed nd planetaium date. (onl 5 left), including tonight Stadial

More information

PHYS 1114, Lecture 21, March 6 Contents:

PHYS 1114, Lecture 21, March 6 Contents: PHYS 1114, Lectue 21, Mach 6 Contents: 1 This class is o cially cancelled, being eplaced by the common exam Tuesday, Mach 7, 5:30 PM. A eview and Q&A session is scheduled instead duing class time. 2 Exam

More information

Experiment 09: Angular momentum

Experiment 09: Angular momentum Expeiment 09: Angula momentum Goals Investigate consevation of angula momentum and kinetic enegy in otational collisions. Measue and calculate moments of inetia. Measue and calculate non-consevative wok

More information

6.4 Period and Frequency for Uniform Circular Motion

6.4 Period and Frequency for Uniform Circular Motion 6.4 Peiod and Fequency fo Unifom Cicula Motion If the object is constained to move in a cicle and the total tangential foce acting on the total object is zeo, F θ = 0, then (Newton s Second Law), the tangential

More information

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if Subject: Mathematics-I Question Bank Section A T T. Find the value of fo which the matix A = T T has ank one. T T i. Is the matix A = i is skew-hemitian matix. i. alculate the invese of the matix = 5 7

More information

Objective Notes Summary

Objective Notes Summary Objective Notes Summay An object moving in unifom cicula motion has constant speed but not constant velocity because the diection is changing. The velocity vecto in tangent to the cicle, the acceleation

More information

Physics 121: Electricity & Magnetism Lecture 1

Physics 121: Electricity & Magnetism Lecture 1 Phsics 121: Electicit & Magnetism Lectue 1 Dale E. Ga Wenda Cao NJIT Phsics Depatment Intoduction to Clices 1. What ea ae ou?. Feshman. Sophomoe C. Junio D. Senio E. Othe Intoduction to Clices 2. How man

More information

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate.

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate. MCVU Final Eam Review Answe (o Solution) Pactice Questions Conside the function f () defined b the following gaph Find a) f ( ) c) f ( ) f ( ) d) f ( ) Evaluate the following its a) ( ) c) sin d) π / π

More information

Chapter 12. Kinetics of Particles: Newton s Second Law

Chapter 12. Kinetics of Particles: Newton s Second Law Chapte 1. Kinetics of Paticles: Newton s Second Law Intoduction Newton s Second Law of Motion Linea Momentum of a Paticle Systems of Units Equations of Motion Dynamic Equilibium Angula Momentum of a Paticle

More information

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and Exta notes fo cicula motion: Cicula motion : v keeps changing, maybe both speed and diection ae changing. At least v diection is changing. Hence a 0. Acceleation NEEDED to stay on cicula obit: a cp v /,

More information

Chapter 10 Sample Exam

Chapter 10 Sample Exam Chapte Sample Exam Poblems maked with an asteisk (*) ae paticulaly challenging and should be given caeful consideation.. Conside the paametic cuve x (t) =e t, y (t) =e t, t (a) Compute the length of the

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLIN MODUL 5 ADVANCD MCHANICS GRAVITATIONAL FILD: MOTION OF PLANTS AND SATLLITS SATLLITS: Obital motion of object of mass m about a massive object of mass M (m

More information

F 12. = G m m 1 2 F 21 = F 12. = G m 1m 2. Review. Physics 201, Lecture 22. Newton s Law Of Universal Gravitation

F 12. = G m m 1 2 F 21 = F 12. = G m 1m 2. Review. Physics 201, Lecture 22. Newton s Law Of Universal Gravitation Physics 201, Lectue 22 Review Today s Topics n Univesal Gavitation (Chapte 13.1-13.3) n Newton s Law of Univesal Gavitation n Popeties of Gavitational Foce n Planet Obits; Keple s Laws by Newton s Law

More information

A moving charged particle creates a magnetic field vector at every point in space except at its position.

A moving charged particle creates a magnetic field vector at every point in space except at its position. 1 Pat 3: Magnetic Foce 3.1: Magnetic Foce & Field A. Chaged Paticles A moving chaged paticle ceates a magnetic field vecto at evey point in space ecept at its position. Symbol fo Magnetic Field mks units

More information

When a mass moves because of a force, we can define several types of problem.

When a mass moves because of a force, we can define several types of problem. Mechanics Lectue 4 3D Foces, gadient opeato, momentum 3D Foces When a mass moves because of a foce, we can define seveal types of poblem. ) When we know the foce F as a function of time t, F=F(t). ) When

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Chapte 7-8 Review Math 1316 Name SHORT ANSWER. Wite the wod o phase that best completes each statement o answes the question. Solve the tiangle. 1) B = 34.4 C = 114.2 b = 29.0 1) Solve the poblem. 2) Two

More information

Balanced Flow. Natural Coordinates

Balanced Flow. Natural Coordinates Balanced Flow The pessue and velocity distibutions in atmospheic systems ae elated by elatively simple, appoximate foce balances. We can gain a qualitative undestanding by consideing steady-state conditions,

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 10-1 DESCRIBING FIELDS Essential Idea: Electic chages and masses each influence the space aound them and that influence can be epesented

More information

Chapter 5: Uniform Circular Motion

Chapter 5: Uniform Circular Motion Chapte 5: Unifom Cicula Motion Motion at constant speed in a cicle Centipetal acceleation Banked cuves Obital motion Weightlessness, atificial gavity Vetical cicula motion Centipetal Foce Acceleation towad

More information

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2.

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2. Cental oce Poblem ind the motion of two bodies inteacting via a cental foce. Cental oce Motion 8.01 W14D1 Examples: Gavitational foce (Keple poblem): 1 1, ( ) G mm Linea estoing foce: ( ) k 1, Two Body

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

Gravitation. AP/Honors Physics 1 Mr. Velazquez

Gravitation. AP/Honors Physics 1 Mr. Velazquez Gavitation AP/Honos Physics 1 M. Velazquez Newton s Law of Gavitation Newton was the fist to make the connection between objects falling on Eath and the motion of the planets To illustate this connection

More information

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2 THE LAPLACE EQUATION The Laplace (o potential) equation is the equation whee is the Laplace opeato = 2 x 2 u = 0. in R = 2 x 2 + 2 y 2 in R 2 = 2 x 2 + 2 y 2 + 2 z 2 in R 3 The solutions u of the Laplace

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Section 8.2 Polar Coordinates

Section 8.2 Polar Coordinates Section 8. Pola Coodinates 467 Section 8. Pola Coodinates The coodinate system we ae most familia with is called the Catesian coodinate system, a ectangula plane divided into fou quadants by the hoizontal

More information

Revision Guide for Chapter 11

Revision Guide for Chapter 11 Revision Guide fo Chapte 11 Contents Revision Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Wok... 5 Gavitational field... 5 Potential enegy... 7 Kinetic enegy... 8 Pojectile... 9

More information

AMM PBL Members: Chin Guan Wei p Huang Pengfei p Lim Wilson p Yap Jun Da p Class: ME/MS803M/AM05

AMM PBL Members: Chin Guan Wei p Huang Pengfei p Lim Wilson p Yap Jun Da p Class: ME/MS803M/AM05 AMM PBL Membes: Chin Guan Wei p3674 Huang Pengfei p36783 Lim Wilson p36808 Yap Jun Da p36697 Class: MEMS803MAM05 The common values that we use ae: G=6.674 x 0 - m 3 kg - s - Radius of Eath ()= 637km [Fom

More information

Paths of planet Mars in sky

Paths of planet Mars in sky Section 4 Gavity and the Sola System The oldest common-sense view is that the eath is stationay (and flat?) and the stas, sun and planets evolve aound it. This GEOCENTRIC MODEL was poposed explicitly by

More information

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible)

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible) Name: Class: Date: ID: A Quiz 6--Wok, Gavitation, Cicula Motion, Toque. (60 pts available, 50 points possible) Multiple Choice, 2 point each Identify the choice that best completes the statement o answes

More information

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws. AP-C WEP 1. Wok a. Calculate the wok done by a specified constant foce on an object that undegoes a specified displacement. b. Relate the wok done by a foce to the aea unde a gaph of foce as a function

More information

Chapter. s r. check whether your calculator is in all other parts of the body. When a rigid body rotates through a given angle, all

Chapter. s r. check whether your calculator is in all other parts of the body. When a rigid body rotates through a given angle, all conveted to adians. Also, be sue to vanced to a new position (Fig. 7.2b). In this inteval, the line OP has moved check whethe you calculato is in all othe pats of the body. When a igid body otates though

More information

CBN 98-1 Developable constant perimeter surfaces: Application to the end design of a tape-wound quadrupole saddle coil

CBN 98-1 Developable constant perimeter surfaces: Application to the end design of a tape-wound quadrupole saddle coil CBN 98-1 Developale constant peimete sufaces: Application to the end design of a tape-wound quadupole saddle coil G. Dugan Laoatoy of Nuclea Studies Conell Univesity Ithaca, NY 14853 1. Intoduction Constant

More information

Kinematics in 2-D (II)

Kinematics in 2-D (II) Kinematics in 2-D (II) Unifom cicula motion Tangential and adial components of Relative velocity and acceleation a Seway and Jewett 4.4 to 4.6 Pactice Poblems: Chapte 4, Objective Questions 5, 11 Chapte

More information

constant t [rad.s -1 ] v / r r [m.s -2 ] (direction: towards centre of circle / perpendicular to circle)

constant t [rad.s -1 ] v / r r [m.s -2 ] (direction: towards centre of circle / perpendicular to circle) VISUAL PHYSICS ONLINE MODULE 5 ADVANCED MECHANICS NON-UNIFORM CIRCULAR MOTION Equation of a cicle x y Angula displacement [ad] Angula speed d constant t [ad.s -1 ] dt Tangential velocity v v [m.s -1 ]

More information

Modeling Ballistics and Planetary Motion

Modeling Ballistics and Planetary Motion Discipline Couses-I Semeste-I Pape: Calculus-I Lesson: Lesson Develope: Chaitanya Kuma College/Depatment: Depatment of Mathematics, Delhi College of Ats and Commece, Univesity of Delhi Institute of Lifelong

More information

Radius of the Moon is 1700 km and the mass is 7.3x 10^22 kg Stone. Moon

Radius of the Moon is 1700 km and the mass is 7.3x 10^22 kg Stone. Moon xample: A 1-kg stone is thown vetically up fom the suface of the Moon by Supeman. The maximum height fom the suface eached by the stone is the same as the adius of the moon. Assuming no ai esistance and

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC ORCES AND MAGNETIC IELDS ANSWERS TO OCUS ON CONCEPTS QUESTIONS 1. (d) Right-Hand Rule No. 1 gives the diection of the magnetic foce as x fo both dawings A and. In dawing C, the velocity

More information

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 9 Solutions

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 9 Solutions Math 451: Euclidean and Non-Euclidean Geomety MWF 3pm, Gasson 04 Homewok 9 Solutions Execises fom Chapte 3: 3.3, 3.8, 3.15, 3.19, 3.0, 5.11, 5.1, 5.13 Execise 3.3. Suppose that C and C ae two cicles with

More information

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G =

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G = ics Announcements day, embe 9, 004 Ch 1: Gavity Univesal Law Potential Enegy Keple s Laws Ch 15: Fluids density hydostatic equilibium Pascal s Pinciple This week s lab will be anothe physics wokshop -

More information

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212 PHYS 1 Look ove Chapte sections 1-8 xamples, 4, 5, PHYS 111 Look ove Chapte 16 sections 7-9 examples 6, 7, 8, 9 Things To Know 1) What is an lectic field. ) How to calculate the electic field fo a point

More information

Problem 1: Multiple Choice Questions

Problem 1: Multiple Choice Questions Mathematics 102 Review Questions Poblem 1: Multiple Choice Questions 1: Conside the function y = f(x) = 3e 2x 5e 4x (a) The function has a local maximum at x = (1/2)ln(10/3) (b) The function has a local

More information

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in Supplementay Figue 1. Cicula paallel lamellae gain size as a function of annealing time at 50 C. Eo bas epesent the σ uncetainty in the measued adii based on image pixilation and analysis uncetainty contibutions

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Chapte 12 Gavitation PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Modified by P. Lam 5_31_2012 Goals fo Chapte 12 To study Newton s Law

More information

Is there a magnification paradox in gravitational lensing?

Is there a magnification paradox in gravitational lensing? Is thee a magnification paadox in gavitational ing? Olaf Wucknitz wucknitz@asto.uni-bonn.de Astophysics semina/colloquium, Potsdam, 6 Novembe 7 Is thee a magnification paadox in gavitational ing? gavitational

More information

Static equilibrium requires a balance of forces and a balance of moments.

Static equilibrium requires a balance of forces and a balance of moments. Static Equilibium Static equilibium equies a balance of foces and a balance of moments. ΣF 0 ΣF 0 ΣF 0 ΣM 0 ΣM 0 ΣM 0 Eample 1: painte stands on a ladde that leans against the wall of a house at an angle

More information

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces.

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces. 4.8. Cental foces The most inteesting poblems in classical mechanics ae about cental foces. Definition of a cental foce: (i) the diection of the foce F() is paallel o antipaallel to ; in othe wods, fo

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Motion in Two Dimensions

Motion in Two Dimensions SOLUTIONS TO PROBLEMS Motion in Two Dimensions Section 3.1 The Position, Velocity, and Acceleation Vectos P3.1 x( m) 0!3 000!1 70!4 70 m y( m)!3 600 0 1 70! 330 m (a) Net displacement x + y 4.87 km at

More information

Circular Motion. Mr. Velazquez AP/Honors Physics

Circular Motion. Mr. Velazquez AP/Honors Physics Cicula Motion M. Velazquez AP/Honos Physics Objects in Cicula Motion Accoding to Newton s Laws, if no foce acts on an object, it will move with constant speed in a constant diection. Theefoe, if an object

More information

Chap13. Universal Gravitation

Chap13. Universal Gravitation Chap13. Uniesal Gaitation Leel : AP Physics Instucto : Kim 13.1 Newton s Law of Uniesal Gaitation - Fomula fo Newton s Law of Gaitation F g = G m 1m 2 2 F21 m1 F12 12 m2 - m 1, m 2 is the mass of the object,

More information

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet Linea and angula analogs Linea Rotation x position x displacement v velocity a T tangential acceleation Vectos in otational motion Use the ight hand ule to detemine diection of the vecto! Don t foget centipetal

More information

From Newton to Einstein. Mid-Term Test, 12a.m. Thur. 13 th Nov Duration: 50 minutes. There are 20 marks in Section A and 30 in Section B.

From Newton to Einstein. Mid-Term Test, 12a.m. Thur. 13 th Nov Duration: 50 minutes. There are 20 marks in Section A and 30 in Section B. Fom Newton to Einstein Mid-Tem Test, a.m. Thu. 3 th Nov. 008 Duation: 50 minutes. Thee ae 0 maks in Section A and 30 in Section B. Use g = 0 ms in numeical calculations. You ma use the following epessions

More information

Kinematics of rigid bodies

Kinematics of rigid bodies Kinematics of igid bodies elations between time and the positions, elocities, and acceleations of the paticles foming a igid body. (1) Rectilinea tanslation paallel staight paths Cuilinea tanslation (3)

More information

Chapter 13: Gravitation

Chapter 13: Gravitation v m m F G Chapte 13: Gavitation The foce that makes an apple fall is the same foce that holds moon in obit. Newton s law of gavitation: Evey paticle attacts any othe paticle with a gavitation foce given

More information

Describing Circular motion

Describing Circular motion Unifom Cicula Motion Descibing Cicula motion In ode to undestand cicula motion, we fist need to discuss how to subtact vectos. The easiest way to explain subtacting vectos is to descibe it as adding a

More information

Practice Problems Test 3

Practice Problems Test 3 Pactice Poblems Test ********************************************************** ***NOTICE - Fo poblems involving ʺSolve the Tiangleʺ the angles in this eview ae given by Geek lettes: A = α B = β C = γ

More information

Physics 101 Lecture 6 Circular Motion

Physics 101 Lecture 6 Circular Motion Physics 101 Lectue 6 Cicula Motion Assist. Pof. D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Equilibium, Example 1 q What is the smallest value of the foce F such that the.0-kg block will not slide

More information

Physics 11 Chapter 20: Electric Fields and Forces

Physics 11 Chapter 20: Electric Fields and Forces Physics Chapte 0: Electic Fields and Foces Yesteday is not ous to ecove, but tomoow is ous to win o lose. Lyndon B. Johnson When I am anxious it is because I am living in the futue. When I am depessed

More information

1) Consider a particle moving with constant speed that experiences no net force. What path must this particle be taking?

1) Consider a particle moving with constant speed that experiences no net force. What path must this particle be taking? Chapte 5 Test Cicula Motion and Gavitation 1) Conside a paticle moving with constant speed that expeiences no net foce. What path must this paticle be taking? A) It is moving in a paabola. B) It is moving

More information

Circular Orbits. and g =

Circular Orbits. and g = using analyse planetay and satellite motion modelled as unifom cicula motion in a univesal gavitation field, a = v = 4π and g = T GM1 GM and F = 1M SATELLITES IN OBIT A satellite is any object that is

More information