Predictive Modeling of a Paradigm Mechanical Cooling Tower Model: II. Optimal Best-Estimate Results with Reduced Predicted Uncertainties

Size: px
Start display at page:

Download "Predictive Modeling of a Paradigm Mechanical Cooling Tower Model: II. Optimal Best-Estimate Results with Reduced Predicted Uncertainties"

Transcription

1 energies Article Predictive Modeling of Prdigm Mechnicl Cooling Toer Model: II. Optiml Best-Estimte Results ith Reduced Predicted Uncertinties Ruixin Fng, Dn Gbriel Ccuci * nd Mdlin Bde Center for Nucler Science nd Energy, Deprtment of Mechnicl Engineering, University of South Crolin, Columbi, SC 908, USA fngr@cec.sc.edu R.F.) Bde@cec.sc.edu M.B.) * Correspondence: ccuci@cec.sc.edu Tel.: Acdemic Editor: Erich Schneider Received: June 06 Accepted: 5 September 06 Published: 6 September 06 Abstrct: This ork uses the djoint sensitivity model of the counter-flo cooling toer derived in the ccompnying PART I to obtin the expressions nd reltive numericl rnkings of the sensitivities, to ll model prmeters, of the folloing model responses: i) outlet ir temperture ii) outlet ter temperture iii) outlet ter mss flo rte nd iv) ir outlet reltive humidity. These sensitivities re subsequently used ithin the predictive modeling for coupled multi-physics systems PM_CMPS) methodology to obtin explicit formuls for the predicted optiml nominl vlues for the model responses nd prmeters, long ith reduced predicted stndrd devitions for the predicted model prmeters nd responses. These explicit formuls embody the ssimiltion of experimentl dt nd the clibrtion of the model s prmeters. The results presented in this ork demonstrte tht the PM_CMPS methodology reduces the predicted stndrd devitions to vlues tht re smller thn either the computed or the experimentlly mesured ones, even for responses e.g., the outlet ter flo rte) for hich no mesurements re vilble. These improvements stem from the globl chrcteristics of the PM_CMPS methodology, hich combines ll of the vilble informtion simultneously in phse-spce, s opposed to combining it sequentilly, s in current dt ssimiltion procedures. Keyords: djoint sensitivity nlysis dt ssimiltion model clibrtion best-estimte predictions reduced predicted uncertinties. Introduction In the present ork, the predictive modeling of the counter-flo cooling toer presented in is further developed by pplying the predictive modeling for coupled multi-physics systems PM_CMPS) methodology recently developed in. The PM_CMPS methodology constructs prior distribution for the prmeters nd responses by using ll of the vilble computtionl nd experimentl informtion, nd by relying on the mximum entropy principle to mximize the impct of ll vilble informtion nd minimize the impct of ignornce. Subsequently, the PM_CMPS methodology constructs formlly the posterior distribution using Byes theorem, nd then evlutes symptoticlly, to first-order sensitivities, the posterior distribution using the sddle-point method to obtin explicit formuls for the predicted optiml nominl vlues for the model responses nd prmeters, long ith reduced predicted uncertinties i.e., reduced predicted stndrd devitions) for the predicted model prmeters nd responses. The PM_CMPS methodology hs been successfully pplied to the nlysis of lrge-scle experiments nd the experimentl vlidtion of rector design codes of interest to rector physics,, light ter rectors 5 nd sodium-cooled fst rectors 6. Energies 06, 9, 77 doi:0.90/en mdpi.com/journl/energies

2 Energies 06, 9, 77 of 7 The PM_CMPS methodology relies fundmentlly on the sensitivities to model prmeters of the mesured model responses, hich, in this ork, re s follos: i) the outlet ir temperture ii) the outlet ter temperture iii) the outlet ter mss flo rte nd iv) the ir outlet reltive humidity. The expressions, numericl results, nd reltive rnkings of the sensitivities of these responses re presented in Section.. These sensitivities re subsequently used in Section. for ssimilting experimentl dt in order to clibrte the model prmeters, nd for obtining best-estimte predicted results ith reduced predicted uncertinties. Section concludes this ork by discussing the significnce of the results presented herein in the context of ongoing ork imed t further pplictions nd generliztion of the djoint sensitivity nlysis nd PM_CMPS methodologies.. Results It hs been shon in the ccompnying PART I tht the totl sensitivity of model response R m, T, T, ω α) to rbitrry vritions in the model s prmeters δα δα,..., δα Nα ) nd stte functions δm, δt, δt, δω, round the nominl vlues m 0, T 0, T 0, ω 0 α 0) of the prmeters nd stte functions, is provided by the G-differentil of the model s response to these vritions. This G-differentil s denoted s DR m 0, T 0, T 0, ω 0 α 0 δm, δt, δt, δω δα ), nd s expressed in terms of the djoint sensitivity functions s follos: ) DR m 0, T 0, T 0, ω 0 α 0 N α ) R δm, δt, δt, δω δα δα i + DR indirect, ) i i here the so-clled indirect effect term, DR indirect, is given by: DR indirect µ Q + τ Q + τ Q + o Q ) nd here the vector µ, τ, τ, o + is the solution of the folloing djoint sensitivity system: A + A + A + A + B + B + B + B + C + C + C + C + D + D + D + D + Furthermore, the sources R l r ) l µ τ τ o R R R R. ),..., r I) ) l, l,,,, for the djoint sensitivity system represented by Eqution ) re the functionl derivtives of the model responses ith respect to the stte functions, i.e.: r i) R m i+) r i) R T i+) r i) R T i) r i) R i,..., I ) ω i) hile the components of the vectors Q l q ) l,..., q I) ) l, l,,,, in Eqution ) re the derivtives of the model s equtions ith respect to model prmeters, nmely: q i) l N α j ) i) N l δα j i,..., I l,,,. 5) j The explicit expressions of the vectors Q l q ) l,..., q I) ) l, l,,, re provided in Appendix A. The model responses of interest in this ork re the folloing quntities: i) the outlet ir temperture, T ) ii) the outlet ter temperture, T 50) iii) the outlet ter flo rte, m 50) nd iv) the outlet ir reltive humidity, RH ). Except for the ter outlet flo rte m 50), these responses hve been mesured experimentlly 7,8, nd the first four moments of their respective sttisticl distributions hve been quntified in.

3 Energies 06, 9, 77 of 7.. Sensitivity Anlysis Results nd Rnkings As hs been discussed in the ccompnying PART I, there re totl of 8079 mesured benchmrk dt sets for the cooling toer model ith the fn-on, ith drfted ir exit velocity t 0 m/s t the shroud. For this velocity nd corresponding ir flo rte), the Reynolds number is round 500, hich mens tht the flo ithin the cooling toer is in the trnsitionl flo nd het trnsfer regime. As hs lso been discussed in, 7668 benchmrk dt sets out of the totl of 8079 dt sets) re considered to correspond to the unsturted conditions hich re nlyzed in this ork. The nominl vlues for boundry nd tmospheric conditions used in this ork ere obtined, s described in, from the sttistics of these 7668 benchmrk dt sets corresponding to unsturted conditions. In turn, these unsturted boundry nd tmospheric conditions ere used to obtin the sensitivity results reported, belo, in this Subsection. Sub-subsections.. through.., belo, provide the numericl vlues nd rnkings, in descending order, of the reltive sensitivities computed using the djoint sensitivity nlysis methodology for the four model responses T ), T 50), nd RH ). Note tht the reltive sensitivity, RS α i ), of response R α i ) to prmeter α i is m 50) defined s RS α i ) dr α i ) /dα i α i /R α i ). Thus, the reltive sensitivities re unit-less nd re very useful in rnking the sensitivities to highlight their reltive importnce for the respective response. Thus, reltive sensitivity of.00 indictes tht chnge of % in the respective prmeter ill induce % chnge in response tht is liner in the respective sensitivity. The higher the reltive sensitivity, the more importnt the respective prmeter to the respective response.... Reltive Sensitivities of the Outlet Air Temperture, T ) The sensitivities of the ir outlet temperture ith respect to ll of the model s prmeters hve been computed using Equtions ) nd ). The numericl results nd rnking of the reltive sensitivities, in descending order of their mgnitudes, re provided in Tble belo, long ith their respective reltive stndrd devitions. Tble. Rnked reltive sensitivities of the outlet ir temperture T ). Rnk # Prmeter α i ) Nominl Vlue Reltive Sensitivity RS α i) Reltive Stndrd Devition %) Inlet ir temperture, T,in 99. K Air temperture dry bulb), T db 99. K Inlet ter temperture, T,in K De point temperture, T dp 9.05 K P vs T) prmeter, P vs T) prmeter, Inlet ir humidity rtio, ω in Fn shroud inner dimeter, D fn. m Wter enthlpy h f T) prmeter, f Wetted frction of fill surfce re, ts Nusselt number, Nu Fill section surfce re, A surf m Dynmic viscosity of ir t T 00 K, µ kg/m s) Nu prmeter,,nu Reynolds number, Re d Fill section flo re, A fill 67.9 m C p T) prmeter, 0,cp Inlet ter mss flo rte, m,in.0 kg/s h g T) prmeter, 0g D v T) prmeter,,dv Exit ir speed t the shroud, V exit 0.0 m/s Inlet ir mss flo rte, m kg/s Het trnsfer coefficient multiplier, f ht Therml conductivity of ir t T 00 K, k ir 0.06 W/m K) Mss trnsfer coefficient multiplier, f mt Sherood number, Sh D v T) prmeter,,dv h f T) prmeter, 0f,, D v T) prmeter, 0,dv Atmospheric pressure, P tm 00,586 P Kinemtic viscosity of ir t 00 K, ν m /s Prndlt number of ir t T 80 C, Pr Schmidt number, Sc h g T) prmeter, g

4 Energies 06, 9, 77 of 7 Tble. Cont. Rnk # Prmeter α i ) Nominl Vlue Reltive Sensitivity RS α i) Reltive Stndrd Devition %) 5 D v T) prmeter,,dv Nu prmeter,,nu Fill section equivlent dimeter, D h 0.08 m C p T) prmeter,,cp C p T) prmeter,,cp Sum of loss coefficients bove fill, k sum Fill section frictionl loss multiplier, f Nu prmeter, 0,Nu Nu prmeter,,nu Cooling toer deck idth in x-dir, W dkx 8.5 m Cooling toer deck idth in y-dir, W dky 8.5 m Cooling toer deck height bove ground, z dk 0.0 m Fn shroud height, z fn.0 m Fill section height, z fill.0 m Rin section height, z rin.6 m Bsin section height, z bs.68 m Drift elimintor thickness, z de 0.5 m Wind speed, V.80 m/s As the results in Tble indicte, the first five prmeters i.e., T,in, T db, T,in, T dp, 0 ) hve reltive sensitivities beteen c. 0% nd 50%, nd re therefore the most importnt for the ir outlet temperture response, T ). The to lrgest sensitivities hve vlues of 8%, hich mens tht % chnge in T,in or T db ould induce 0.8% chnge in T ). The next to prmeters i.e., nd ω in ) hve reltive sensitivities beteen % nd 6%, nd re therefore someht importnt. Prmeters #8 through #6 i.e., D fn, f, ts, Nu, A surf, µ,,nu, Re d, A fill ) hve reltive sensitivities of the order of 0.5%. The remining 6 prmeters re reltively unimportnt for this response, hving reltive sensitivities smller thn % of the lrgest reltive sensitivity ith respect to T,in ) for this response. Positive sensitivities imply tht positive chnge in the respective prmeter ould cuse n increse in the response, hile negtive sensitivities imply tht positive chnge in the respective prmeter ould cuse decrese in the response.... Reltive Sensitivities of the Outlet Wter Temperture, T 50) The results nd rnking of the reltive sensitivities of the outlet ter temperture ith respect to the most importnt prmeters for this response re listed in Tble. Tble. Most importnt reltive sensitivities of the outlet ter temperture, T 50). Rnk # Prmeter α i ) Nominl Vlue Reltive Sensitivity RS α i) Reltive Stndrd Devition %) De point temperture, T dp 9.05 K Inlet ir temperture, T α,in 99. K Air temperture dry bulb), T db 99. K 0..9 P vs T) prmeters, P vs T) prmeters, Inlet ter temperture, T,in K Inlet ir humidity rtio, ω in Fn shroud inner dimeter, D fn. m Wter enthlpy hft) prmeter, f D v T db ) prmeter,,dv Enthlpy h g T) prmeter, 0g,005, Sherood number, Sh The lrgest sensitivity of T 50) is to the prmeter T dp, nd hs the vlue of 0.58 this mens tht % increse in T db ould induce 0.58% increse in T 50). The sensitivities to the remining 0 model prmeters hve not been listed since they re smller thn % of the lrgest sensitivity ith respect to T dp ) for this response.... Reltive Sensitivities of the Outlet Wter Mss Flo Rte, m 50) The results nd rnking of the reltive sensitivities of the outlet ter mss flo rte ith respect to the most importnt 0 prmeters for this response re listed in Tble. This response is most

5 Energies 06, 9, 77 5 of 7 sensitive to m,in % increse in this prmeter ould cuse.0% increse in the response) nd the second lrgest sensitivity is to the prmeter T,in % increse in this prmeter ould cuse 0.7% decrese in the response). The sensitivities to the remining model prmeters hve not been listed since they re smller thn % of the lrgest sensitivity ith respect to m,in ) for this response. Tble. Most importnt reltive sensitivities of the outlet ter mss flo rte, m 50). Rnk # Prmeter α i ) Nominl Vlue Reltive Sensitivity RSα i ) Reltive Stndrd Devition %) Inlet ter mss flo rte, m,in.0 kg/s Inlet ter temperture, T,in K De point temperture, T dp 9.05 K PvsT) prmeters, Air temperture dry bulb), T db 99. K Inlet ir temperture, T,in 99. K PvsT) prmeters, Inlet ir humidity rtio, ω in Fn shroud inner dimeter, D fn. m Inlet ir mss flo rte, m kg/s Reltive Sensitivities of the Outlet Air Reltive Humidity, RH ) The results nd rnking of the reltive sensitivities of the outlet ir reltive humidity ith respect to the most importnt 0 prmeters for this response re listed in Tble. The first three sensitivities of this response re quite lrge reltive sensitivities lrger thn unity re customrily considered to be very significnt). In prticulr, n increse of % in T,in or T db ould cuse decrese in the response of 6.66% or 6.55%, respectively. On the other hnd, n increse of % in T dp ould cuse n increse of 5.75% in the response. The sensitivities to the remining model prmeters hve not been listed since they re smller thn % of the lrgest sensitivity ith respect to T,in ) for this response. Tble. Most importnt reltive sensitivities of the outlet ir reltive humidity, RH ). Rnk # Prmeter α i ) Nominl Vlue Reltive Sensitivity RS α i ) Reltive Stndrd Devition %) Inlet ir temperture, T,in 99. K Air temperture dry bulb), T db 99. K De point temperture, T dp 9.05 K Inlet ter temperture, T,in K Inlet ir humidity rtio, ω in P vs T) prmeters, Wetted frction of fill surfce re, ts Fill section surfce re, A surf, m Nusselt number, Nu Dynmic viscosity of ir t T 00 K, µ kg/m s) Nu prmeters,,nu Fill section flo re, A fill 67.9 m Reynold s number, Re D v T db ) prmeter,,dv Mss trnsfer coefficient multiplier, f mt Sherood number, Sh Atmosphere pressure, P tm 00,586 P D v T db ) prmeter,,dv D v T db ) prmeter, 0,dv P vs T) prmeters, Overll, the outlet ir reltive humidity, RH ), displys the lrgest sensitivities, so this response is the most sensitive to prmeter vritions. The other responses, nmely the outlet ir temperture, the outlet ter temperture, nd the outlet ter mss flo rte disply sensitivities of comprble mgnitudes... Experimentl Dt Assimiltion, Model Clibrtion nd Best-Estimte Predicted Results ith Reduced Predicted Uncertinties This subsection presents the results of pplying the Predictive Modeling of Coupled Multi-Physics Systems PM_CMPS) methodology to the counter-flo cooling toer model. The PM_CMPS methodology encompsses into unified conceptul nd mthemticl frmeork, the concepts of both forrd nd inverse modeling, including dt ssimiltion, model clibrtion nd prediction

6 Energies 06, 9, 77 6 of 7 of best-estimte vlues for model prmeters nd responses, ith reduced predicted uncertinties. For the simplest cse of single computtionl model, such s the counter-flo cooling toer model nlyzed in this ork, the PM_CMPS methodology considers the folloing priori informtion:. A model comprising N α imprecisely knon system model) prmeters, α n, considered s the components of column) vector, α, defined s: α {α n n,..., N α } 6) The men vlues of the model prmeters α n re denoted s α 0 n α n, nd the covrinces beteen to prmeters α i nd α j re denoted s covα i,α j ). The men vlues α 0 n re considered to be knon priori, so tht the vector α 0, defined s α 0 { α 0 } n n,..., Nα is considered to be knon priori. The covrinces covα i,α j ) re lso considered to be priori knon these covrinces re considered to be the elements of the priori knon prmeter covrince mtrix, denoted s C N α N α ) αα nd defined s: C N α N α ) αα cov ) ) α i, α j α )N α N α i α 0 i α j α 0 j i, j,..., N α 7) N α N α. Also ssocited ith the model re N r experimentlly mesured responses, r i, considered to be components of the column vector: r {r i i,..., N r } 8) The men vlues, denoted s ri m, of the mesured responses, r i, nd the covrinces, denoted s r i ri m )r j r m j ), beteen to mesured responses, r i nd r j, re lso considered to be knon priori. The men mesured vlues ri m ill be considered to constitute the components of the vector r m defined s: r m {ri m i,..., N r }, ri m r i, i,..., N r, 9) nd the covrinces r i r m i )r j r m j ) of the mesured responses re considered to be components of the priori knon mesured covrince mtrix, denoted s C N r N r ) rr, nd defined s: C N r N r ) rr ) r i ri m ) r j r m j, i, j,..., N r. 0) N r N r. In the most generl cse, correltions my lso exist mong ll prmeters nd responses. Such correltions re quntified through priori knon prmeter-response mtrices, denoted s C N α N r ) αr, nd defined s follos: C N α N r ) αr α α 0) r r m ) + C N r N α ) rα + ) To keep the nottion simple, the dimensions of the vrious vectors nd mtrices ill not be shon in subsequent formuls. For single multi-physics system, s is the cse of the cooling toer model under considertion in this ork, the quntities predicted by the PM_CMPS methodology re s follos: A. Optimlly predicted best-estimte nominl vlues, α pred, for the model prmeters: here the mtrix D rr is defined s: α pred α 0 C αα S + rα C αr ) Drr r c α 0, β 0) r m, ) D rr S rα C αα S + rα S rα C αr C + αrs + rα + C rr, )

7 Energies 06, 9, 77 7 of 7 nd the components of the mtrix S N r N α ) rα re the first-order sensitivities i.e., functionl derivtives) of ll responses ith respect to ll model prmeters, defined s follos: S N r N α rα r r Nα..... r Nr r Nr Nα. ) It is importnt to note tht the first term on the right side of Eqution ) is the covrince mtrix of the computed responses, Crr comp, hen only the first-order sensitivities re tken into ccount, i.e.: Crr comp S rα C αα S rα. + 5) B. Reduced predicted uncertinties, Cαα pred, for the predicted nominl prmeter vlues, given by the expression belo: C pred αα C αα C αα S + rα C αr ) Drr C αα S + rα C αr ) + 6) C. Optimlly predicted best-estimte nominl vlues, r pred, for the model responses, given by the expression belo: r pred r m C + αrs + rα C rr ) Drr r c α 0, β 0) r m 7) D. Reduced predicted uncertinties, Crr pred, for the predicted nominl response vlues, given by the expression belo: C pred rr C rr C + αrs + rα C rr ) Drr C + αrs + rα C rr ) + 8) E. Predicted correltions, Cαr pred, beteen the predicted model prmeters nd responses, given by the expression belo: C pred αr C αr C αα S + rα C αr ) Drr C + αrs + rα C rr ) +. 9) The expressions given in Equtions 6) through 9) cn lso be obtined from the results presented originlly in 9 for the prticulr cse of time-independent single multi-physics system. Note tht if the model is perfect hich mens tht C αα 0 nd C αr 0), Equtions 6) through 9) ould yield 0, Cαα pred 0, α pred α 0 nd r pred r c α 0,β 0 ), ithout ny ccompnying uncertinties i.e., Crr pred 0). In other ords, for perfect model, the PM_CMPS methodology predicts vlues for C pred αr the responses nd the prmeters tht ould coincide ith the model s originl corresponding prmeter nd computed responses ssumed to be perfect), nd the experimentl mesurements ould hve no effect on the predictions s ould be expected, since imperfect mesurements could not possibly improve perfect model s predictions). On the other hnd, if the mesurements ere perfect, i.e., C rr 0 nd C αr 0), but the model ere imperfect, then Equtions 6) through 9) ould yield α pred α 0 C αα S rα + S rα C αα S rα + r d α 0), Cαα pred C αα C αα S rα + S rα C αα S rα + S rα C αα, r pred r m, Crr pred 0, Cαr pred 0. In other ords, in the cse of perfect mesurements, the PM_CMPS predicted vlues for the responses ould coincide ith the mesured vlues ssumed to be perfect), hile the model s uncertin prmeters ould be clibrted by tking the respective mesurements into ccount to yield improved nominl vlues nd reduced prmeters uncertinties. The priori response-prmeter covrince mtrix, C rα, hs been lredy computed in, Eqution A5), nd is reproduced belo:

8 Energies 06, 9, 77 8 of 7 Cov T mes, out, Tmes, out, RHmes, α,..., α 5 ) Crα ) here the mesured correlted prmeters re: α T db, α T dp, α T,in, nd α P tm. The priori prmeter covrince mtrix, C αα, hs lso been lredy computed in, Eqution B) see the Appendix of PART I.), nd is lso reproduced belo: C αα Vrα ) Covα, α ) Covα, α 5 ) Covα, α ) Vrα ) Covα, α 5 ) Covα 5, α ) Vrα 5 ) The priori covrince mtrix of the computed responses, Crr comp, is obtined by using Equtions 5) nd ) together ith the sensitivity results presented in Tbles the finl result is given belo: Crr comp Cov T ) T ) T 50), T 50), RH )) S rα C αα S rα +,..., T) Nα,..., T50) Nα RH ),..., RH) Nα Vrα ) Covα, α ) Covα, α 5 ) Covα, α ) Vrα ) Covα, α 5 ) Covα 5, α ) Vrα 5 ). The priori covrince mtrix, Cov T mes nmely: the outlet ir temperture, T mes T mes,out T 50),out, Tmes,out, RHmes out,out T ) mesured, nd the outlet ir reltive humidity, RH mes out computed in, Eqution A), nd is reproduced belo: Cov T mes,out, T mes,out, RHout mes ) Crr T ) T 50),..., T) Nα,..., T50) Nα RH ),..., RH) Nα + ) ) ) Crr, of the mesured responses mesured the outlet ter temperture, RH ) mesured s lso )... Model Clibrtion: Predicted Best-Estimted Prmeter Vlues ith Reduced Predicted Stndrd Devitions The best-estimte nominl prmeter vlues hve been computed using Eqution ) in conjunction ith the priori mtrices given in Equtions 0) ) nd the sensitivities presented in Tbles. The resulting best-estimte nominl vlues re listed in Tble 5, belo. The corresponding best-estimte bsolute stndrd devitions for these prmeters re lso presented in this tble. These

9 Energies 06, 9, 77 9 of 7 vlues re the squre-roots of the digonl elements of the mtrix Cαα pred, hich is computed using Eqution 6) in conjunction ith the priori mtrices given in Equtions 0) ) nd the sensitivities presented in Tbles. For comprison, the originl nominl prmeter vlues nd originl bsolute stndrd devitions re lso listed. As the results in Tble 5 indicte, the predicted best-estimte stndrd devitions re ll smller or t most equl to i.e., left unffected) the originl stndrd devitions. The prmeters re ffected proportionlly to the mgnitudes of their corresponding sensitivities: the prmeters experiencing the lrgest reductions in their predicted stndrd devitions re those hving the lrgest sensitivities. Tble 5. Best-estimted nominl prmeter vlues nd their stndrd devitions. i Independent Sclr Prmeters α i ) Mth. Nottion Originl Nominl Vlue Originl Stndrd Devition Best-Estimted Nominl Vlue Best-Estimted Stndrd Devition Air temperture dry bulb), K) T db De point temperture K) T dp Inlet ter temperture K) T,in Atmospheric pressure P) P tm 00, , Wetted frction of fill surfce re ts Sum of loss coefficients bove fill k sum Dynmic viscosity of ir t T 00 K kg/m s) µ Kinemtic viscosity of ir t T 00 K m /s) v Therml conductivity of ir t T 00 K W/m K) k ir Het trnsfer coefficient multiplier f ht Mss trnsfer coefficient multiplier f mt Fill section frictionl loss multiplier f.00 P vs T) prmeters ,cp C p T) prmeters,cp ,cp ,dv D v T) prmeters,dv ,dv ,dv h f T) prmeters 0f,,.8 5,,.7 5 f h g T) prmeters 0g,005, ,005, g ,Nu Nu prmeters,nu ,Nu ,Nu Cooling toer deck idth in x-dir m) W dkx Cooling toer deck idth in y-dir m) W dky Cooling toer deck height bove ground m) z dk Fn shroud height m) z fn Fn shroud inner dimeter m) D fn Fill section height m) z fill Rin section height m) z rin Bsin section height m) z bs Drift elimintor thickness m) z de Fill section equivlent dimeter m) D h Fill section flo re m ) A fill Fill section surfce re m ) A surf, Prndlt number of ir t T 80 C P r Wind speed m/s) V Exit ir speed t the shroud m/s) V exit i Boundry Prmeters Mth. Nottion Originl Nominl Vlue Originl Stndrd Devition Best-Estimted Nominl Vlue Best-Estimted Stndrd Devition 5 Inlet ter mss flo rte kg/s) m,in Inlet ir temperture K) T,in Inlet ir mss flo rte kg/s) m Inlet ir humidity rtio ω in i Specil Dependent Prmeters Mth. Nottion Originl Nominl Vlue Originl Stndrd Devition Best-Estimted Nominl Vlue Best-Estimted Stndrd Devition 9 Reynold s number Re d Schmidt number Sc Sherood number Sh Nusselt number Nu

10 Energies 06, 9, 77 0 of 7... Predicted Best-Estimted Response Vlues ith Reduced Predicted Stndrd Devitions Using the priori mtrices given in Equtions 0) ) together ith the sensitivities presented in Tbles in Eqution 8) yields the folloing predicted response covrince mtrix, C pred rr : C pred rr Cov T ) be, T 50) be, RH ) ) be ) The best-estimte response-prmeter correltion mtrix, C pred αr, is obtined using Eqution 9) together ith the priori mtrices given in Equtions 0) ) nd the sensitivities presented in Tbles. The non-zero elements ith the lrgest mgnitudes re s follos: rel. cor.r, α ) 0.78 rel. cor.r, α ) rel. cor.r, α 9 ) 0.09 rel. cor.r, α ) 0.08 rel. cor.r, α ) 0.09 rel. cor.r, α ) 0. rel. cor.r, α ) 0.7 rel. cor.r, α 9 ) ) The nottion used in Eqution 5) is s follos: R T ), R T 50), R RH ), α P tm, α A sur f nd α 9 Re d. The best-estimte nominl vlues of the model responses) outlet ir temperture, T ) outlet ter temperture T 50) nd outlet ir reltive humidity, RH ), hve been computed using Eqution 7) together ith the priori mtrices given in Equtions 0) ) nd the sensitivities presented in Tbles. The resulting best-estimte predicted nominl vlues re summrized in Tble 6. To fcilitte comprison, the corresponding mesured nd computed nominl vlues re lso presented in this tble. Note tht there re no direct mesurements for the outlet ter flo rte, m 50). For this response, therefore, the predicted best-estimte nominl vlue hs been obtined by forrd re-computtion using the best-estimte nominl prmeter vlues listed in Tble 5, hile the predicted best estimte stndrd devition for this response hs been obtined by using best-estimte vlues in Eqution 5), i.e.: C comp rr be Srα be C αα be S rα + be. 6) Tble 6. Computed, mesured, nd optiml best-estimte nominl vlues nd stndrd devitions for the outlet ir temperture, outlet ter temperture, outlet ir reltive humidity, nd outlet ter flo rte responses. Nominl Vlues nd Stndrd Devitions T ) K) T 50) K) RH ) %) m 50) kg/s) Mesured Nominl vlue Stndrd devition ±.6 ±.59 ±5.89 Computed Nominl vlue Stndrd devition ±.0 ±.78 ±.90 ±. Best-estimte Nominl vlue Stndrd devition ±.59 ±.5 ±.05 ±.0 The results presented in Tble 6 indicte tht the predicted stndrd devitions re smller thn either the computed or the experimentlly mesured ones. This is indeed the consequence of using the PM_CMPS methodology in conjunction ith consistent s opposed to discrepnt) computtionl nd experimentl informtion. Often, hoever, the informtion is inconsistent, usully due to the presence of unrecognized errors. Solutions for ddressing such situtions hve been proposed in 0.

11 Energies 06, 9, 77 of 7 It is lso importnt to note tht the PM_CMPS methodology hs improved i.e., reduced, lbeit not by significnt mount) the predicted stndrd devition for the outlet ter flo rte response, for hich no mesurements ere vilble. This improvement stems from the globl chrcteristics of the PM_CMPS methodology, hich combines ll of the vilble simultneously on phse-spce, s opposed to combining it sequentilly, s is the cse ith the current stte-of-the-rt dt ssimiltion procedures,.. Discussion In the present ork, the djoint sensitivity model of the counter-flo cooling toer derived in the ccompnying PART I s used to obtin the expressions nd reltive numericl rnkings of the sensitivities, to ll model prmeters, of the folloing responses quntities of interest): i) the outlet ir temperture ii) the outlet ter temperture iii) the outlet ter mss flo rte nd iv) the ir outlet reltive humidity. These sensitivities ere subsequently used ithin the predictive modeling for coupled multi-physics systems PM_CMPS) methodology to obtin explicit formuls for the predicted optiml nominl vlues for the model responses nd prmeters, long ith reduced predicted stndrd devitions for the predicted model prmeters nd responses. These explicit formuls embody the ssimiltion of experimentl dt nd the clibrtion of the model s prmeters. The results presented in this ork indicte tht the predicted stndrd devitions re smller thn either the computed or the experimentlly mesured ones. It is lso importnt to note tht the PM_CMPS methodology hs improved i.e., reduced, lbeit not by significnt mount) the predicted stndrd devition for the outlet ter flo rte response, for hich no mesurements ere vilble. This improvement stems from the globl chrcteristics of the PM_CMPS methodology, hich combines ll of the vilble informtion simultneously in phse-spce, s opposed to combining it sequentilly, s is the cse ith the current stte-of-the-rt dt ssimiltion procedures,. This is indeed the consequence of using the PM_CMPS methodology in conjunction ith consistent s opposed to discrepnt) computtionl nd experimentl informtion. Often, hoever, the informtion is inconsistent, usully due to the presence of unrecognized errors. Solutions for ddressing such situtions hve been proposed in 0. The djoint sensitivity nlysis methodology used in PART I for computing exctly nd efficiently the st -order response sensitivities to model prmeters hs been recently extended to computing efficiently nd exctly the nd-order response sensitivities to prmeters for liner nd nonliner lrge-scle systems. As hs been shon in 5 8, the nd-order response sensitivities hve the folloing mjor impcts on the computed moments of the response distribution: ) they cuse the expected vlue of the response to differ from the computed nominl vlue of the response nd b) they contribute decisively to cusing symmetries in the response distribution. Indeed, neglecting the second-order sensitivities ould nullify the third-order response correltions, nd hence ould nullify the skeness of the response. Consequently, non-gussin fetures i.e., symmetries, long-tils) ny events occurring in response s long nd/or short tils, hich re chrcteristic of rre but decisive events e.g., mjor ccidents, ctstrophes), ould likely be missed. Ongoing ork ims t further pplictions nd generliztion of the djoint sensitivity nlysis nd the PM_CMPS methodologies, to enble the computtion of rd- nd higher-order sensitivities nd response distributions. The exct nd efficient computtion of high-order response sensitivities for lrge-scle systems is expected to dvnce significntly the res of uncertinty quntifiction, model vlidtion, reduced-order modeling, nd predictive modeling/dt ssimiltion. Acknoledgments: This ork hs been prtilly sponsored by the US Deprtment of Energy Jmes J. Peltz, Progrm mnger) ith the University of South Crolin. Author Contributions: Ruixin Fng performed ll of the numericl clcultions in this pper. Dn Ccuci conceived nd directed the reserch reported herein, nd rote the pper. Mdlin Bde contributed the progrmming of the equtions underlying the predictive modeling formlism. Conflicts of Interest: The uthors declre no conflict of interest.

12 Energies 06, 9, 77 of 7 Appendix A. Derivtives of Cooling Toer Model Equtions ith Respect To Model Prmeters For convenience, the model prmeters re reproduced in Tble A belo from Appendix B of PART I. The independent model prmeters re used for computing vrious dependent model prmeters nd therml mteril properties, s shon in Tbles A nd A, belo. Tble A. Prmeters for SRNL f-re cooling toers. Index i of α i Independent Sclr Prmeters C + + String Mth. Nottion Nominl Vlues) Absolute Stndrd Devition Reltive Stndrd Devition %) Air temperture dry bulb) K) tdb T db De point temperture K) tdp T dp Inlet ter temperture K) tin T,in Atmospheric pressure P) ptm P tm Wetted frction of fill surfce re ts ts Sum of loss coefficients bove fill ksum k sum Dynmic viscosity of ir t T 00 K kg/m s) muir µ Kinemtic viscosity of ir t T 00 K m /s) nuir v Therml conductivity of ir t T 00 K W/m K) tcir k ir Het trnsfer coefficient multiplier mlthtc f ht Mss trnsfer coefficient multiplier mltmtc f mt Fill section frictionl loss multiplier mltfil f 50 P vs T) prmeters A) 0,cp C p T) prmeters A),cp A),cp A) 0,dv D v T) prmeters A),dv A),dv A),dv h f T) prmeters 0f 0f,, f f h g T) prmeters 0g 0g,005, g g ,Nu Nu prmeters -,Nu ,Nu ,Nu Cooling toer deck idth in x-dir. m) dkx W dkx Cooling toer deck idth in y-dir. m) dky W dky Cooling toer deck height bove ground m) dkht z dk 0 0. Fn shroud height m) fsht z fn Fn shroud inner dimeter m) fsid D fn Fill section height m) flht z fill Rin section height m) rsht z rin Bsin section height m) bsht z bs Drift elimintor thickness m) detk z de Fill section equivlent dimeter m) deqv D h Fill section flo re m ) flf A fill Fill section surfce re m ) fls A surf Prndlt number of ir t T 80 C Pr P r Wind speed m/s) spd V Exit ir speed t the shroud m/s) vexit V exit Index i of α i Boundry Prmeters C + + String Absolute Mth. Nottion Nominl Vlue Stndrd Devition Reltive Stndrd Devition %) 5 Inlet ter mss flo rte kg/s) mfin m,in Inlet ir temperture K) tin T,in set to T db Inlet ir mss flo rte kg/s) min m Inlet ir humidity rtio Dependent Sclr Prmeter) hrin ω in ω rin Reynold s number Re Reh Re d Schmidt number Sc Sc Sherood number Sh Sh Nusselt number Nu Nu

13 Energies 06, 9, 77 of 7 Tble A. Dependent sclr model prmeters. Dependent Sclr Prmeters Mth. Nottion Defining Eqution or Correltion Mss diffusivity of ter vpor in ir m /s) Het trnsfer coefficient W/m K) D v T,α) hα) 0,dv T.5,dv +,dv +,dv T)T f ht N uk ir D h f mt S h D vt db,α) D h Mss trnsfer coefficient m/s) k m α) Het trnsfer term W/K) Hm,α) h α) ts A f f Mss trnsfer term m /s) Mm,α) M H Ok m α) ts A f f Density of dry ir kg/m ) ρα) P tm Air velocity in the fill section m/s) v m,α) R ir T db m ρα)a f ill Fill flling-film surfce re per verticl section m A ) A sur f ff I Rin section inlet flo re m ) A in W dkx W dky Height for nturl convection m) Z z dk + z f n z bs Height bove fill section m) z Z z f ill z rin Fill section control volume height m) z Fill section length, including drift elimintor m) L fill z f ill + z de Fn shroud inner rdius m) r fn 0.5D f n Fn shroud flo re m ) A out πr f n z f ill I Tble A. Therml properties dependent sclr model prmeters). Therml Properties Functions of Stte Vribles) Mth. Nottion Defining Eqution or Correltion h f T ) sturted liquid enthlpy J/kg) h f T,α) 0 f + f T H g T ) sturted vpor enthlpy J/kg) h g, T,α) 0g + g T H g T ) sturted vpor enthlpy J/kg) h g, T,α) 0g + g T C p T) specific het of dry ir J/kg K) C p T,α) 0,cp +,cp +,cp T)T P vs T ) sturtion pressure P) P vs T,α) P c e 0+ T, in hich P c.0 P P vs T ) sturtion pressure P) P vs T,α) P c e 0+ T, in hich P c.0 P Note: The prmeters α through α i.e., the dry bulb ir temperture, de point temperture, inlet ter temperture, nd tmospheric pressure) ere mesured t the SRNL site t hich the F-re cooling toers re locted. Among the 8079 mesured benchmrk dt sets 8, 7688 dt sets re considered to represent unsturted conditions, hich hve been used to derive the sttisticl properties mens, vrince nd covrince, skeness nd kurtosis) for these model prmeters, s shon in Figures B through B nd Tbles B through B7 in Appendix B of PART I. Recll tht the cooling toer model comprises conservtion blnces representing mthemticlly the folloing physicl phenomen: A. liquid continuity B. liquid energy blnce C. ter vpor continuity D. ir nd ter vpor energy blnce. For esy reference, these conservtion equtions re reproduced belo from Section of PART I : A. Liquid continuity equtions: i) Control Volume i : N ) m, T, T, ω α) m ) ii) Control Volumes i,..., I : N i) m, T, T, ω α) m i+) iii) Control Volume i I: N I) m, T, T, ω α) m I+) B. Liquid energy blnce equtions: m,in + Mm,α) R m i) + Mm,α) R m I) + Mm,α) R P vs ) T ) P i+) vs P I+) vs,α) T ) T i+),α) T i+) T I+),α) T I+) ω ) P tm T ) 0.6+ω ) ) ω i) P tm T i) 0.6+ω i) ) ω I) P tm T I) 0.6+ω I) ) 0 A) 0 A) 0 A)

14 Energies 06, 9, 77 of 7 i) Control Volume i : N ) m, T, T, ω α) m,in h f T,in, α) T ) T ) )Hm, α) m ) h ) f T ), α) m,in m ) )h ) g,t ), α) 0 A) ii) Control Volumes i,..., I : N i) m, T, T, ω α) m i) m i+) h i+) f T i+) h i) f T i), α) T i+) T i) )Hm, α), α) m i) m i+) )h i+) g, T i+), α) 0 A5) iii) Control Volume i I: N I) m, T, T, ω α) m I) m I+) h I+) f T I+) h I) f T I), α) T I+) T I) )Hm, α), α) m I) m I+) )h I+) g, T I+), α) 0 A6) C. Wter vpor continuity equtions: i) Control Volume i : m, T, T, ω α) ω ) ω ) + m.in m ) m N ) 0 A7) ii) Control Volumes i,..., I : N i) m, T, T, ω α) ω i+) ω i) + mi) m i+) m 0 A8) iii) Control Volume i I: N I) m, T, T, ω α) ω in ω I) + mi) m I+) m 0 A9) D. The ir/ter vpor energy blnce equtions: i) Control Volume i : N ) m, T, T, ω α) T ) T ) )C ) p + T) T ) )Hm,α) m + m,inm ) )h ) g,t ),α) T) +7.5, α) ω ) h ) m + ω ) h ) g, T ) g, T ), α) 0, α) A0) ii) Control Volumes i,..., I : N i) m, T, T, ω α) T i+) + Ti+) T i) )Hm,α) m + mi) m i+) T i) )h i+) g, )C i) p Ti) +7.5 T i+),α), α) ω i) h i) m + ω i+) h i+) g, g,t i), α) T i+), α) 0 A) iii) Control Volume i I: N I) m, T, T, ω α) T,in T I) + TI+) T I) )Hm,α) m + mi) m I+) )C p I) TI) +7.5 )h I+) g, T I+), α) ω I) h I),α) g,t I), α) m + ω in h g, T,in, α) 0. A)

15 Energies 06, 9, 77 5 of 7 The components of the vector α, hich ppers in Equtions A) A), comprise the model prmeters, i.e.: α α,..., α Nα ) A) here N α denotes the totl number of model prmeters. These model prmeters re described in Tble A. The folloing nottion ill be used for the derivtives of the bove equtions ith respect to the prmeters: i,j l Ni) l j) l,,, i,..., I j,..., N α. A. Derivtives of the Liquid Continuity Equtions ith Respect to the Prmeters A) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) T db re s follos: here: N i) ) N i) T i, db R D v T db, α) T db P i+) vs T i+),α) T i+) ω i) P tm 0.6+ω i) )T i) l i,..., I j, Mm, α) D v T db, α) Mm, α) D v T db, α) Mm,α) D v T db,α) D vt db,α) T db.5 0dvT 0.5 db D v T db, α) dv + dv T db ) dv + dv T db + dv T db A5) A6) A7) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) T dp re s follos: N i) i) N i, ) T 0 l i,..., I j. A8) dp The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) T,in re s follos: N ) ) N ), T m,in l i j, A9),in T,in here: m,in T,in T ρ T,in,in ) 5850.,ρ +,ρ T,in 7.5) +,ρ T,in 7.5) A0) nd here,ρ ,ρ.869 0,ρ N i) i) N i, ) T 0 l i,..., I j. A),in The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) P tm re s follos: N i) ) N i) + R P tm i, Mm,α) R P vs i+) T i+),α) T i+) l i,..., I j, ω i) T i) 0.6+ω i) ) ω i) P tm 0.6+ω i) )T i) Mm,α) NuRe,α) NuRe,α) m m P tm A)

16 Energies 06, 9, 77 6 of 7 here: NuRe, α) m MRe, α) NuRe, α) Mm, α) NuRe, α), 0 Re d < 00,Nu Rem, α)/m 00 Re d NuRe, α)/m Re d > 0000 A), A) m P tm V R ir T exit πd f n A5),in Note: The term on the right hnd side of Eqution A5) stems from the folloing reltion: m ρ T ) V exit πd f n P tm V R ir T exit πd f n. A6) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 5) ts re s follos: here: N i) 5) N i) ts i,5 R P i+) vs T i+),α) T i+) l i,..., I j 5, ω i) P tm 0.6+ω i) )T i) Mm,α) ts Mm, α) M HO f mt NuRe, α) νpr ) D v T db, α) A sur f ts D h I A7) A8) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 6) k sum re s follos: N i) i) N i,6 6) k 0 l i,..., I j 6. A9) sum The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 7) µ re s follos: here: N i) 7) N i) µ i,7 R Mm, α) µ P i+) vs T i+),α) T i+) l i,..., I j 7,,Nu Mm,α) Rem,α) NuRe,α) µ ω i) P tm 0.6+ω i) )T i) 0.8 Mm,α) µ Re d > 0000 Mm,α) µ A0) 0 Re d < Re d A) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 8) υ re s follos: N i) 8) N i) υ i,8 R P i+) vs T i+),α) T i+) l i,..., I j 8, ω i) P tm 0.6+ω i) )T i) Mm,α) υ A) here: Mm, α) υ Mm, α). A) υ

17 Energies 06, 9, 77 7 of 7 The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 9) k ir re s follos: N i) i) N i,9 9) k 0 l i,..., I j 9. A) ir The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 0) f ht re s follos: N i) i) N i,0 0) f 0 l i,..., I j 0. A5) ht The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) f mt re s follos: here: N i) i) N ) f mt i, R P vs i+) T i+),α) T i+) l i,..., I j, ω i) P tm 0.6+ω i) )T i) Mm,α) f mt A6) Mm, α) M HONuRe, α) νpr ) D v T db, α) ts A sur f. A7) f mt D h I The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) f re s follos: N i) i) N ) f i, 0 l i,..., I j. A8) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) 0 re s follos: N i) i) N i, ) Mm, α) 0 R here: P i+) vs T i+) P i+) vs T i+), α) 0 T i+), α) l i,..., I j, A9) 0 P vs i+) T i+), α). A0) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) re s follos: N i) i) N ) i, Mm,α) P vs i+) T i+),α) R T i+) l i,..., I j, A) here: P i+) vs T i+), α) Pi+) vs T i+), α) T i+). A) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 5) 0,cp re s follos: N i) i) N i,5 5) 0 l i,..., I j 5. A) 0,cp

18 Energies 06, 9, 77 8 of 7 The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 6),cp re s follos: N i) i) N i,6 6) 0 l i,..., I j 6. A),cp The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 7),cp re s follos: N i) i) N i,7 7) 0 l i,..., I j 7. A5),cp The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 8) 0,dv re s follos: N i) i) N 8) 0,dv i,8 R P vs i+) T i+),α) T i+) ω i) P tm 0.6+ω i) )T i) l i,..., I j 8, here Mm,α) s defined previously in Eqution A6), nd: D v T db,α) Mm,α) D v T db,α) D vt db,α) 0,dv A6) D v T db, α) 0,dv T db.5 dv + dv T db + dv T db. A7) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 9),dv re s follos: N i) i) N 9),dv i,9 R P vs i+) T i+),α) T i+) ω i) P tm 0.6+ω i) )T i) l i,..., I j 9, here Mm,α) s defined previously in Eqution A6), nd: D v T db,α) Mm,α) D v T db,α) D vt db,α),dv A8) D v T db, α),dv.5 0dv T db ). A9) dv + dv T db + dv T db The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 0),dv re s follos: N i) i) N 0),dv i,0 R P vs i+) T i+),α) T i+) ω i) P tm 0.6+ω i) )T i) l i,..., I j 0, here Mm,α) s defined previously in Eqution A6), nd D v T db,α) Mm,α) D v T db,α) D vt db,α),dv A50) D v T db, α),dv.5 0dv T db ). A5) dv + dv T db + dv T db

19 Energies 06, 9, 77 9 of 7 The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ),dv re s follos: N i) i) N ),dv i, R P vs i+) T i+),α) T i+) ω i) P tm 0.6+ω i) )T i) l i,..., I j, here Mm,α) s defined previously in Eqution A6), nd D v T db,α) D v T db, α),dv Mm,α) D v T db,α) D vt db,α),dv A5) 0dv T db.5 dv + dv T db + dv T db ). A5) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) 0f re s follos: N i) i) N i, ) 0 l i,..., I j. A5) 0 f The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) f re s follos: N i) i) N i, ) 0 l i,..., I j. A55) f The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) 0g re s follos: N i) i) N i, ) 0 l i,..., I j. A56) 0g The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 5) g re s follos: N i) i) N i,5 5) 0 l i,..., I j 5. A57) g The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 6) 0,Nu re s follos: N i) i) N 6) 0,Nu i,6 R P vs i+) T i+),α) T i+) ω i) P tm 0.6+ω i) )T i) l i,..., I j 6, here Mm,α) s defined previously in Eqution A), nd NuRe,α) NuRe, α) 0,Nu Re d < Re d Re d > 0000 Mm,α) NuRe,α) NuRe,α) 0,Nu A58). A59)

20 Energies 06, 9, 77 0 of 7 The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 7),Nu re s follos: N i) i) N 7),Nu i,7 R P vs i+) T i+),α) T i+) ω i) P tm 0.6+ω i) )T i) l i,..., I j 7, Mm,α) NuRe,α) NuRe,α),Nu A60) here Mm,α) s defined previously in Eqution A), nd: NuRe,α) NuRe, α),nu 0 Re d < 00 Rem, α) 00 Re d Re d > A6) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 8),Nu re s follos: N i) i) N 8),Nu i,8 R P vs i+) T i+),α) T i+) ω i) P tm 0.6+ω i) )T i) l i,..., I j 8, Mm,α) NuRe,α) NuRe,α),Nu A6) here Mm,α) s defined previously in Eqution A), nd: NuRe,α) NuRe, α),nu 0 Re d < Re d Re d > 0000 A6) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 9),Nu re s follos: N i) i) N 9), Nu i,9 R P vs i+) T i+),α) T i+) ω i) P tm 0.6+ω i) )T i) l i,..., I j 9, Mm,α) NuRe,α) NuRe,α),Nu A6) here Mm,α) s defined previously in Eqution A), nd: NuRe,α) NuRe, α),nu 0 Re d < Re d 0000 Rem, α) 0.8 Pr Re d > A65) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 0) W dkx re s follos: N i) i) N i,0 0) W 0 l i,..., I j 0. A66) dkx The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) W dky re s follos: N i) i) N i, ) W 0 l i,..., I j. A67) dky

21 Energies 06, 9, 77 of 7 The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) z dk re s follos: N i) i) N i, ) z 0 l i,..., I j. A68) dk The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) z fn re s follos: N i) i) N i, ) z 0 l i,..., I j. A69) f n The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) D fn re s follos: N i) i) N ) here Mm,α) NuRe,α) nd: D f n i, R nd NuRe,α) m P vs i+) T i+),α) T i+) ω i) P tm 0.6+ω i) )T i) l i,..., I j, Mm,α) NuRe,α) m NuRe,α) m D f n A70) ere defined previously in Equtions A) nd A), respectively, m D f n m D f n. A7) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 5) z fill re s follos: N i) i) N i,5 5) z 0 l i,..., I j 5. A7) f ill The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 6) z rin re s follos: N i) 6) N i) i,6 z 0 l i,..., I j 6. A7) rin The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 7) z bs re s follos: N i) i) N i,7 7) z 0 l i,..., I j 7. A7) bs The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 8) z de re s follos: N i) i) N i,8 8) z 0 l i,..., I j 8. A75) de The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 9) D h re s follos: N i) i) N 9) D h i,9 R P vs i+) T i+),α) T i+) l i,..., I j 9, ω i) P tm 0.6+ω i) )T i) Mm,α) D h A76)

22 Energies 06, 9, 77 of 7 here: Mm, α) D h Mm, α)/d h Re d < 00,Nu Mm,α) NuRe,α)D h 00 Re d Mm, α)/d h Re d > A77) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 0) A fill re s follos: here: N i) i) N 0) A f ill i,0 Mm, α) A f ill R P vs i+) T i+),α) T i+) l i,..., I j 0, ω i) P tm 0.6+ω i) )T i) Mm,α) A f ill 0 Re d < 00,Nu Mm,α)Rem,α) NuRe,α)A f ill 00 Re d Mm, α)/a f ill Re d > 0000 A78). A79) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) A surf re s follos: here: N i) i) N ) A sur f i, R P vs i+) T i+),α) T i+) l i,..., I j, Mm, α) A sur f Mm, α) A sur f ω i) P tm 0.6+ω i) )T i) Mm,α) A sur f A80) A8) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) Pr re s follos: N i) i) N ) Pr i, R P vs i+) T i+),α) T i+) l i,..., I j, ω i) P tm 0.6+ω i) )T i) Mm,α) Pr A8) here: Mm, α) Pr Mm, α)/ Pr) Re d Re d > A8) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) V re s follos: N i) i) N i, ) V 0 l i,..., I j. A8) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α ) V exit re s follos: N i) i) N ) V exit i, R P vs i+) T i+),α) T i+) ω i) P tm 0.6+ω i) )T i) l i,..., I j, Mm,α) NuRe,α) m NuRe,α) m V exit A85)

23 Energies 06, 9, 77 of 7 here Mm,α) NuRe,α) nd nd NuRe,α) m ere defined previously in Equtions A) nd A), respectively, m V exit P tm πd f n R ir T,in A86) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 5) m,in re s follos: N ) ) N,5 5) m l i j 5, A87),in N i) i) N i,5 5) m 0 l i,..., I j 5. A88),in The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 6) T,in re s follos: N i) i) N i,6 6) T 0 l i,..., I j 6. A89),in The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 7) m re s follos: N i) i) N 7) m i,7 here Mm,α) NuRe,α) nd NuRe,α) m R P vs i+) T i+),α) T i+) ω i) P tm 0.6+ω i) )T i) l i,..., I j 7, Mm,α) NuRe,α) NuRe,α) m A90) ere defined previously in Equtions A) nd A), respectively. The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 8) ω in re s follos: N i) i) N i,8 8) ω 0 l i,..., I j 8. A9) in The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 9) Re d re s follos: N i) i) N 9) Re d i,9 R P vs i+) T i+),α) T i+) ω i) P tm 0.6+ω i) )T i) l i,..., I j 9, Mm,α) NuRe d,α) NuRe d,α) Re d A9) here Mm,α) s defined in Eqution A), nd: NuRe,α) NuRe d, α) Re d 0 Re d < 00,Nu 00 Re d ,Nu Re 0. d Pr / Re d > 0000 A9) The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 50) Sc re s follos: N i) i) N 50) Sc i,50 R P vs i+) T i+),α) T i+) l i,..., I j 50, ω i) P tm 0.6+ω i) )T i) Mm,α) Sc A9)

24 Energies 06, 9, 77 of 7 here: Mm, α) Sc Mm, α). A95) Sc The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 5) Sh re s follos: here: N i) i) N 5) Sh i,5 R P vs i+) T i+),α) T i+) l i,..., I j 5, Mm, α) Sh ω i) P tm 0.6+ω i) )T i) Mm,α) Sh A96) Mm, α). A97) Sh The derivtives of the liquid continuity equtions cf. Equtions A) A) ith respect to the prmeter α 5) Nu re s follos: N i) i) N 5) Nu i,5 R here Mm,α) s defined in Eqution A). NuRe,α) P vs i+) T i+),α) T i+) l i,..., I j 5, ω i) P tm 0.6+ω i) )T i) Mm,α) Nu A. Derivtives of the Liquid Energy Blnce Equtions ith Respect to the Prmeters A98) The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) T db re s follos: N i) i) N i, ) T 0 l i,..., I j. A99) db The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) T dp re s follos: N i) i) N i, ) T 0 l i,..., I j. A00) dp The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) T,in re s follos: N ) ) N) T,,in m,in h ) f T,in,α) T + h ),in f l i j, T,in, α) m,in T,in h ) g,t ), α) m,in T,in A0) here m,in T,in s defined in Eqution A0), nd: N i) i) h ) f T,in, α) T,in f, A0) N i, ) T 0 l i,... I j. A0),in

25 Energies 06, 9, 77 5 of 7 The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) P tm re s follos: N i) ) Ni) P tm i, T i+) l i,..., I j, T i) ) Hm,α) NuRe,α) NuRe,α) m m P tm A0) here NuRe,α) m nd m P tm ere defined in Equtions A) nd A5), respectively, nd: Hm, α) NuRe, α) Hm, α) NuRe, α). A05) The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 5) ts re s follos: here: N i) N 5) i) ts i,5 T i+) Hm, α) ts T i) ) Hm, α) l i,..., I j 5, A06) ts f htnure, α)k ir A sur f D h I. A07) The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 6) k sum re s follos: N i) i) N i,6 6) k 0 l i,..., I j 6. A08) sum The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 7) µ re s follos: here: N i) N 7) i) µ i,7 Hm, α) µ T i+) T i) ) Hm, α) l i,..., I j 7, A09) µ 0 Re d < 00,Nu Hm,α) Rem,α) 00 Re NuRe,α) µ d Hm,α) µ Re d > 0000 A0) The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 8) υ re s follos: N i) i) N 8) υ i,8 0 l i,..., I j 8. A) The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 9) k ir re s follos: N i) N 9) i) k ir i,9 T i+) T i) ) Hm, α) l i,..., I j 9, A) k ir here: Hm, α) Hm, α) f htnure, α) ts A sur f. A) k ir k ir D h I

26 Energies 06, 9, 77 6 of 7 The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 0) f ht re s follos: here: N i) i) N i,0 0) f ht T i+) T i) ) Hm, α) l i,..., I j 0, A) f ht Hm, α) Hm, α) k irnure, α) ts A sur f. A5) f ht f ht D h I The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) f mt re s follos: N i) i) N i, ) f 0 l i,..., I j. A6) mt The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) f re s follos: N i) i) N ) f i, 0 l i,..., I j. A7) The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) 0 re s follos: N i) i) N i, ) 0 l i,..., I j. A8) 0 The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) re s follos: N i) i) N i, ) 0 l i,..., I j. A9) The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 5) 0,cp re s follos: N i) i) N i,5 5) 0 l i,..., I j 5. A0) 0,cp The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 6),cp re s follos: N i) i) N i,6 6) 0 l i,..., I j 6. A),cp The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 7),cp re s follos: N i) i) N i,7 7) 0 l i,..., I j 7. A),cp

27 Energies 06, 9, 77 7 of 7 The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 8) 0,dv re s follos: N i) i) N i,8 8) 0 l i,..., I j 8. A) 0,dv The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 9),dv re s follos: N i) i) N i,9 9) 0 l i,..., I j 9. A),dv The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 0),dv re s follos: N i) i) N i,0 0) 0 l i,..., I j 0. A5),dv The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ),dv re s follos: N i) i) N i, ) 0 l i,..., I j. A6),dv The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) 0f re s follos: N i) Ni) ) h i) f T i),α) 0 f h i+) f i, 0 f m i) m i+) l i,..., I j. T i+),α) 0 f m i) m i+) A7) The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) f re s follos: N i) Ni) ) T i) m i) i, f m i) h i) f T i),α) f m i+) h i+) f T i+),α) f T i+) m i+) l i,..., I j. A8) The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) 0g re s follos: N i) Ni) ) 0g i, m i) m i+) ) hi+) g, 0g l i,..., I j. T i+),α) m i+) m i) A9) The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 5) g re s follos: N i) Ni) 5) T i+),α) g i,5 m i) m i+) ) hi+) g, g l i,..., I j 5. m i) m i+) ) T i+) A0)

28 Energies 06, 9, 77 8 of 7 The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 6) 0,Nu re s follos: N i) Ni) 6) 0,Nu i,6 T i+) T i) ) Hm,α) NuRe,α) NuRe,α) 0,Nu l i,..., I j 6, A) here Hm,α) NuRe,α) s defined in Eqution A05) nd NuRe,α) s defined in Eqution A59). 0,Nu The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 7),Nu re s follos: N i) Ni) 7),Nu i,7 T i+) T i) ) Hm,α) NuRe,α) NuRe,α),Nu l i,..., I j 7, A) here Hm,α) NuRe,α) s defined in Eqution A05) nd NuRe,α) s defined in Eqution A6).,Nu The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 8),Nu re s follos: N i) Ni) 8),Nu i,8 T i+) T i) ) Hm,α) NuRe,α) NuRe,α),Nu l i,..., I j 8, A) here Hm,α) NuRe,α) s defined in Eqution A05) nd NuRe,α) s defined in Eqution A6).,Nu The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 9),Nu re s follos: here Hm,α) NuRe,α) N i) Ni) 9),Nu i,9 T i+) T i) ) Hm,α) NuRe,α) NuRe,α),Nu l i,..., I j 9, A) NuRe,α) s defined in Eqution A05) nd s defined in Eqution A65).,Nu The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 0) W dkx re s follos: N i) i) N i,0 0) W 0 l i,..., I j 0. A5) dkx The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) W dky re s follos: N i) i) N i, ) W 0 l i,..., I j. A6) dky The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) z dk re s follos: N i) i) N i, ) z 0 l i,..., I j. A7) dk The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) z fn re s follos: N i) i) N i, ) z 0 l i,..., I j. A8) f n

29 Energies 06, 9, 77 9 of 7 The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) D fn re s follos: N i) Ni) ) D f n i, T i+) l i,..., I j, T i) ) Hm,α) NuRe,α) NuRe,α) m m D f n A9) here Hm,α) NuRe,α) s defined in Eqution A05), hile NuRe,α) m nd m D ere defined in Equtions f n A) nd A7), respectively. The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 5) z fill re s follos: N i) i) N i,5 5) z 0 l i,..., I j 5. A0) f ill The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 6) z rin re s follos: N i) 6) N i) i,6 z 0 l i,..., I j 6. A) rin The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 7) z bs re s follos: N i) i) N i,7 7) z 0 l i,..., I j 7. A) bs The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 8) z de re s follos: N i) i) N i,8 8) z 0 l i,..., I j 8. A) de The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 9) D h re s follos: here N i) i) N i,9 9) D h Hm, α) D h T i+) T i) ) Hm, α) l i,..., I j 9, A) D h Hm, α)/d h Re d < 00,Nu Hm,α) NuRe,α)D h 00 Re d Hm, α)/d h Re d > 0000 A5) The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 0) A fill re s follos: N i) i) N i,0 0) A f ill T i+) T i) ) Hm, α) l i,..., I j 0, A6) A f ill here: Hm, α) A f ill 0 Re d < 00,Nu Hm,α)Rem,α) NuRe,α)A f ill 00 Re d Hm, α)/a f ill Re d > 0000 A7)

30 Energies 06, 9, 77 0 of 7 The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) A surf re s follos: here: N i) i) N i, ) A sur f T i+) Hm, α) A sur f Hm, α) A sur f T i) ) Hm, α) l i,..., I j, A8) A sur f f htk ir NuRe, α) ts. A9) D h I The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) Pr re s follos: N i) i) N ) Pr i, T i+) T i) ) Hm, α) l i,..., I j, A50) Pr here: Hm, α) Pr 0 Re d 0000 Hm, α)/ Pr) Re d > 0000 A5) The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) V re s follos: N i) i) N i, ) V 0 l i,..., I j. A5) The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α ) V exit re s follos: N i) Ni) ) V exit i, T i+) l i,..., I j, T i) ) Hm,α) NuRe,α) NuRe,α) m m V exit A5) here Hm,α) NuRe,α) s defined in Eqution A05), hile NuRe,α) m nd m V nd ere defined previously exit in Equtions A) nd A86), respectively. The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 5) m,in re s follos: N ) N) 5) m,5,in h ) f T,in, α) h ) g,t ), α) T,in f g T ) + 0 f 0 g, l i j 5, A5) N i) i) N i,5 5) m 0 l i,..., I j 5. A55),in The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 6) T,in re s follos: N i) i) N i,6 6) T 0 l i,..., I j 6. A56),in

31 Energies 06, 9, 77 of 7 The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 7) m re s follos: N i) Ni) 7) m i,7 T i+) T i) ) Hm,α) NuRe,α) NuRe,α) m l i,..., I j 7, A57) ere defined previously in Equtions A) nd A05), respectively. The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 8) ω in re s follos: here Hm,α) NuRe,α) nd NuRe,α) m N i) i) N i,8 8) ω 0 l i,..., I j 8. A58) in The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 9) Re d re s follos: N i) Ni) 9) Re d i,9 T i+) T i) ) Hm,α) NuRe d,α) NuRe d,α) Re d l i,..., I j 9, A59) here Hm,α) NuRe,α) s defined in Eqution A05), nd NuRe,α) m s defined in Eqution A9). The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 50) Sc re s follos: N i) i) N 50) Sc i,50 0 l i,..., I j 50. A60) The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 5) Sh re s follos: N i) i) N 5) Sh i,5 0 l i,..., I j 5. A6) The derivtives of the liquid energy blnce equtions cf. Equtions A) A6) ith respect to the prmeter α 5) Nu re s follos: N i) i) N 5) Nu i,5 T i+) T i) here Hm,α) s defined in Eqution A05). NuRe,α) ) Hm, α) l i,..., I j 5, A6) Nu A. Derivtives of the Wter Vpor Continuity Equtions ith Respect to the Prmeters The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) T db re s follos: N i) i) N i, ) T 0 l i,..., I j. A6) db The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) T dp re s follos: N i) i) N i, ) T 0 l i,..., I j, A6) dp

32 Energies 06, 9, 77 of 7 here: N I) ) N I) I, T ω in l i I j, A65) dp T dp ω in T dp T P tm e dp P tm e 0+ ). T dp T tdp A66) The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) T,in re s follos: N ) ) N ), T m,in l i j, A67),in m T,in here,in T,in s defined in Eqution A0). N i) i) N i, ) T 0 l i,... I j. A68),in The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) P tm re s follos: N i) N ) N I) ) i) P tm i, mi) m i+) m N I) I, P ω in mi) tm P tm here m P tm s defined in Eqution A5) nd: m P tm l i,..., I j, A69) m i+) m m P tm l i I j, A70) 0 + T dp ω in 0.6e P tm P tm e 0+ ). T dp A7) The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 5) ts re s follos: N i) i) N i,5 5) 0 l i,..., I j 5. A7) ts The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 6) k sum re s follos: N i) i) N i,6 6) k 0 l i,..., I j 6. A7) sum The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 7) µ re s follos: N i) i) N 7) µ i,7 0 l i,..., I j 7. A7)

33 Energies 06, 9, 77 of 7 The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 8) υ re s follos: N i) i) N 8) υ i,8 0 l i,..., I j 8. A75) The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 9) k ir re s follos: N i) i) N i,9 9) k 0 l i,..., I j 9. A76) ir The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 0) f ht re s follos: N i) i) N i,0 0) f 0 l i,..., I j 0. A77) ht The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) f mt re s follos: N i) i) N i, ) f 0 l i,..., I j. A78) mt The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) f re s follos: N i) i) N ) f i, 0 l i,..., I j. A79) The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) 0 re s follos: N i) i) N i, ) 0 l i,..., I j, A80) 0 here: N I) I) N I, ) ω in l i I j, A8) 0 0 ω in 0 + T dp 0.6P tme 0 P tm e 0+ ) T dp A8) The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) re s follos: N i) i) N i, ) 0 l i,..., I j, A8) N I) I) N I, ) ω in l i I j, A8)

34 Energies 06, 9, 77 of 7 here: ω in 0.6P tm e 0+ T dp T dp P tm e 0+ ). T dp A85) The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 5) 0,cp re s follos: N i) i) N i,5 5) 0 l i,..., I j 5. A86) 0,cp The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 6),cp re s follos: N i) i) N i,6 6) 0 l i,..., I j 6. A87),cp The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 7),cp re s follos: N i) i) N i,7 7) 0 l i,..., I j 7. A88),cp The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 8) 0,dv re s follos: N i) i) N i,8 8) 0 l i,..., I j 8. A89) 0,dv The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 9),dv re s follos: N i) i) N i,9 9) 0 l i,..., I j 9. A90),dv The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 0),dv re s follos: N i) i) N i,0 0) 0 l i,..., I j 0. A9),dv The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ),dv re s follos: N i) i) N i, ) 0 l i,..., I j. A9),dv The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) 0f re s follos: N i) i) N i, ) 0 l i,..., I j. A9) 0 f

35 Energies 06, 9, 77 5 of 7 The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) f re s follos: N i) i) N i, ) 0 l i,..., I j. A9) f The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) 0g re s follos: N i) i) N i, ) 0 l i,..., I j. A95) 0g The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 5) g re s follos: N i) i) N i,5 5) 0 l i,..., I j 5. A96) g The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 6) 0,Nu re s follos: N i) i) N i,6 6) 0 l i,..., I j 6. A97) 0,Nu The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 7),Nu re s follos: N i) i) N i,7 7) 0 l i,..., I j 7. A98),Nu The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 8),Nu re s follos: N i) i) N i,8 8) 0 l i,..., I j 8. A99),Nu The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 9),Nu re s follos: N i) i) N i,9 9) 0 l i,..., I j 9. A00),Nu The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 0) W dkx re s follos: N i) i) N i,0 0) W 0 l i,..., I j 0. A0) dkx The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) W dky re s follos: N i) i) N i, ) W 0 l i,..., I j. A0) dky

36 Energies 06, 9, 77 6 of 7 The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) z dk re s follos: N i) i) N i, ) z 0 l i,..., I j. A0) dk The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) z fn re s follos: N i) i) N i, ) z 0 l i,..., I j. A0) f n The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) D fn re s follos: N i) i) N i, ) D f n mi) m i+) m m D f n l i,..., I j, A05) here m D f n s defined in Eqution A7). The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 5) z fill re s follos: N i) i) N i,5 5) z 0 l i,..., I j 5. A06) f ill The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 6) z rin re s follos: N i) 6) N i) i,6 z 0 l i,..., I j 6. A07) rin The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 7) z bs re s follos: N i) i) N i,7 7) z 0 l i,..., I j 7. A08) bs The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 8) z de re s follos: N i) i) N i,8 8) z 0 l i,..., I j 8. A09) de The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 9) D h re s follos: N i) i) N i,9 9) D 0 l i,..., I j 9. A0) h

37 Energies 06, 9, 77 7 of 7 The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 0) A fill re s follos: N i) i) N i,0 0) A 0 l i,..., I j 0. A) f ill The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) A surf re s follos: N i) i) N i, ) A 0 l i,..., I j. A) sur f The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) Pr re s follos: N i) i) N ) Pr i, 0 l i,..., I j. A) The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) V re s follos: N i) i) N i, ) V 0 l i,..., I j. A) The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α ) V exit re s follos: N i) i) N i, ) V exit mi) m i+) m m V exit l i,..., I j, A5) here m V exit s defined in Eqution A86). The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 5) m,in re s follos: N ) ) N,5 5) m l i j 5, A6),in m N i) i) N i,5 5) m 0 l i,..., I j 5. A7),in The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 6) T,in re s follos: N i) i) N i,6 6) T 0 l i,..., I j 6. A8),in The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 7) m re s follos: N i) i) N i,7 7) m mi) m i+) l i,..., I j 7. A9) m

38 Energies 06, 9, 77 8 of 7 The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 8) ω in re s follos: N i) i) N i,8 8) ω 0 l i,..., I j 8, A0) in N I) I) N I,8 8) ω l i I j 8. A) in The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 9) Re d re s follos: N i) i) N i,9 9) Re 0 l i,..., I j 9. A) d The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 50) Sc re s follos: N i) i) N 50) Sc i,50 0 l i,..., I j 50. A) The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 5) Sh re s follos: N i) i) N 5) Sh i,5 0 l i,..., I j 5. A) The derivtives of the ter vpor continuity equtions cf. Equtions A7) A9) ith respect to the prmeter α 5) Nu re s follos: N i) i) N 5) Nu i,5 0 l i,..., I j 5. A5) A. Derivtives of the Air nd Wter Vpor Energy Blnce Equtions ith Respect to the Prmeters The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) T db re s follos: N i) i) N i, ) T 0 l i,..., I j, A6) db N I) ) ) T I, db C I) T I) +7.5 h I+) g, p, α + ω in T ),in C I) T I) +7.5 p, α + ω in g l i I j. N I) T,in,α) A7) Note: The vlue of the inlet ir temperture is set equl to dry-bulb temperture, lthough these quntities re treted s to different prmeters in the model. The dry-bulb temperture is used in mss diffusivity clcultions. The reltion beteen the to prmeters, i.e., T,in T db, needs to be ccounted for hen computing the respective derivtives: the derivtive of Eqution A) ith respect to the dry-bulb temperture must be the sme s the derivtive of Eqution A) ith respect to the inlet ir temperture.

39 Energies 06, 9, 77 9 of 7 The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) T dp re s follos: N i) i) N i, ) T 0 l i,..., I j, A8) dp N I) ) N I) I, T ω in ) g T dp T,in + 0g l i I j, A9) dp here ω in T dp s defined in Eqution A66). The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) T,in re s follos: N ) ) N ) T,,in h) g,t ) m l i j,,α) m,in T gt ) + 0g,in m m,in T,in A0) here ω,in T,in s defined in Eqution A0), nd N i) i) N i, ) T 0 l i,..., I j. A),in The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) P tm re s follos: N i) ) N I) ) N i) P tm i, T i+) T i) ) m )h i+) g, mi) m i+) m T i+),α) N I) P tm I, T i+) T i) ) m )h i+) g, mi) m i+) m T i+),α) Hm,α) NuRe,α) NuRe,α) m m P tm Hm,α) m m P tm l i,..., I j, Hm,α) NuRe,α) NuRe,α) m m P tm Hm,α) m m P tm m P tm A) m P tm + ω in P tm g T,in + 0g ) l i I j, A) here Hm,α) NuRe,α) nd NuRe,α) m ere defined in Equtions A) nd A05), respectively, hile m P tm nd ω in P tm ere defined in Equtions A5) nd A7), respectively. The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 5) ts re s follos: N i) N 5) here Hm,α) ts i) ts i,5 Ti+) T i) ) Hm, α) m ts l i,..., I j 5, A) s defined in Eqution A07). The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 6) k sum re s follos: N i) i) N i,6 6) k 0 l i,..., I j 6. A5) sum The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 7) µ re s follos: N i) N 7) i) µ i,7 Ti+) T i) ) Hm, α) m µ l i,..., I j 7, A6)

40 Energies 06, 9, 77 0 of 7 s defined in Eqution A0). The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 8) υ re s follos: here Hm,α) N i) i) N 8) υ i,8 0 l i,..., I j 8. A7) The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 9) k ir re s follos: N i) N 9) here Hm,α) k ir i) k ir i,9 Ti+) T i) ) Hm, α) m k ir l i,..., I j 9, A8) s defined in Eqution A). The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 0) f ht re s follos: N i) i) N i,0 0) f ht here Hm,α) f ht Ti+) T i) ) Hm, α) m f ht l i,..., I j 0, A9) s defined in Eqution A5). The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) f mt re s follos: N i) i) N i, ) f 0 l i,..., I j. A0) mt The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) f re s follos: N i) i) N ) f i, 0 l i,..., I j. A) The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) 0 re s follos: N I) N i) i) N i, ) 0 l i,..., I j, A) 0 I) N I, ) ω in ) g T 0,in + 0g l i I j, A) 0 here ω in s defined in Eqution A8). 0 The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) re s follos: here ω in N I) N i) i) N i, ) 0 l i,..., I j, A) I) N I, ) ω in ) g T,in + 0g l i I j, A5) s defined in Eqution A85).

41 Energies 06, 9, 77 of 7 The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 5) 0,cp re s follos: N i) i) N 5) 0,cp i,5 T i+) l i,..., I j 5. ) T i) C i) T i) p +7.5,α ) 0,cp T i+) T i) A6) The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 6),cp re s follos: N i) 6) N i) 0.5 T i+),cp i,6 T i+) T i) ) T i) C i) T i) p +7.5,α ),cp ) T i) + 7.5) l i,..., I j 6. A7) The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 7),cp re s follos: N i) 7) N i) 0.5 T i+) ) C i) T i) p +7.5,α ),cp i,7 T i+) T i),cp A8) T i) ) T i) l i,..., I j 7. The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 8) 0,dv re s follos: N i) i) N i,8 8) 0 l i,..., I j 8. A9) 0,dv The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 9),dv re s follos: N i) i) N i,9 9) 0 l i,..., I j 9. A50),dv The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 0),dv re s follos: N i) i) N i,0 0) 0 l i,..., I j 0. A5),dv The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ),dv re s follos: N i) i) N i, ) 0 l i,..., I j. A5),dv The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) 0f re s follos: N i) i) N i, ) 0 l i,..., I j. A5) 0 f

42 Energies 06, 9, 77 of 7 The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) f re s follos: N i) i) N i, ) 0 l i,..., I j. A5) f The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) 0g re s follos: N i) i) N i, ) 0g ω i+) ω i) + mi) m i+) m l i,..., I j. A55) The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 5) g re s follos: N i) i) N 5) g i,5 ω i+) T i+) l i,..., I j 5. ω i) T i) m i) m i+) ) T i+) + m A56) The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 6) 0,Nu re s follos: N i) i) N 6) 0,Nu i,6 Ti+) m T i) ) l i,..., I j 6, Hm,α) NuRe,α) NuRe,α) 0,Nu A57) here Hm,α) NuRe,α) nd NuRe,α) 0,Nu ere defined previously in Equtions A59) nd A05), respectively. The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 7),Nu re s follos: N i) i) N 7),Nu i,7 Ti+) m T i) ) l i,..., I j 7, Hm,α) NuRe,α) NuRe,α),Nu A58) ere defined previously in Equtions A6) nd A05), respectively. The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 8),Nu re s follos: here Hm,α) NuRe,α) nd NuRe,α),Nu N i) i) N 8),Nu i,8 Ti+) m T i) ) l i,..., I j 8, Hm,α) NuRe,α) NuRe,α),Nu A59) ere defined previously in Equtions A6) nd A05), respectively. The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 9),Nu re s follos: here Hm,α) NuRe,α) nd NuRe,α),Nu N i) i) N 9),Nu i,9 Ti+) m T i) ) l i,..., I j 9, Hm,α) NuRe,α) NuRe,α),Nu A60) here Hm,α) NuRe,α) nd NuRe,α) ere defined previously in Equtions A65) nd A05), respectively.,nu

43 Energies 06, 9, 77 of 7 The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 0) W dkx re s follos: N i) i) N i,0 0) W 0 l i,..., I j 0. A6) dkx The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) W dky re s follos: N i) i) N i, ) W 0 l i,..., I j. A6) dky The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) z dk re s follos: N i) i) N i, ) z 0 l i,..., I j. A6) dk The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) z fn re s follos: N i) i) N i, ) z 0 l i,..., I j. A6) f n The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) D fn re s follos: N i) i) N ) D i, f n T i+) )h i+) g, mi) m i+) m T i) ) m T i+),) Hm,α) NuRe,α) NuRe,α) m m D Hm,α) f n m m D f n l i,..., I j, m D f n A65) here Hm,α) NuRe,α) nd NuRe,α) m NuRe,α) m ere defined previously in Equtions A05) nd A), respectively, hile m D f n s defined in Eqution A7). The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 5) z fill re s follos: N i) i) N i,5 5) z 0 l i,..., I j 5. A66) f ill The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 6) z rin re s follos: N i) 6) N i) i,6 z 0 l i,..., I j 6. A67) rin The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 7) z bs re s follos: N i) i) N i,7 7) z 0 l i,..., I j 7. A68) bs

44 Energies 06, 9, 77 of 7 The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 8) z de re s follos: N i) i) N i,8 8) z 0 l i,..., I j 8. A69) de The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 9) D h re s follos: N i) i) N i,9 9) D h here Hm,α) D h Ti+) T i) ) Hm, α) m D h l i,..., I j 9, A70) s defined in Eqution A5). The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 0) A fill re s follos: N i) i) N i,0 0) A f ill Ti+) T i) ) Hm, α) m A f ill l i,..., I j 0, A7) here Hm,α) A s defined in Eqution A7). f ill The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) A surf re s follos: N i) i) N i, ) A sur f Ti+) T i) ) Hm, α) m A sur f l i,..., I j, A7) here Hm,α) A s defined in Eqution A9). sur f The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) Pr re s follos: N i) i) N ) Pr i, Ti+) T i) ) Hm, α) m Pr l i,..., I j, A7) s defined in Eqution A5). The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) V re s follos: here Hm,α) Pr N i) i) N i, ) V 0 l i,..., I j. A7) The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α ) V exit re s follos: N i) i) N ) V i, exit T i+) )h i+) g, mi) m i+) m T i) ) m T i+),α) Hm,α) NuRe,α) NuRe,α) m m V Hm,α) exit m m V exit l i,..., I j, m V exit A75) here Hm,α) NuRe,α) nd NuRe,α) m ere defined previously in Equtions A05) nd A), respectively, hile m V exit s defined in Eqution A86).

45 Energies 06, 9, 77 5 of 7 The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 5) m,in re s follos: N ) ) N,5 5) m,in h) g,t ) m, α) ) gt + 0g l i j 5, A76) m N i) i) N i,5 5) m 0 l i,..., I j 5. A77),in The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 6) T,in re s follos: N i) i) N i,6 6) T 0 l i,..., I j 6, A78),in N I) I) N 6) C I) p ) T I,6,in C I) T I) +7.5 h I+) g, p, α + ω in T ),in T I) +7.5, α + ω in g l i I j 6. T,in,α) A79) The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 7) m re s follos: + T i+) N i) i) N 7) T i) ) m m i,7 Hm,α) NuRe,α) NuRe,α) m m i) ) h i+) g, T i+),α) m m i+) l i,..., I j 7, Hm,α) m A80) here Hm,α) NuRe,α) nd NuRe,α) m ere defined previously in Equtions A) nd A05), respectively. The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 8) ω in re s follos: N i) i) N i,8 8) ω 0 l i,..., I j 8, A8) in N I) I) N I,8 8) ω h I+) g, T,in, α) l i I j 8. A8) in The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 9) Re d re s follos: N i) i) N 9) Re d i,9 Ti+) m T i) ) l i,..., I j 9, Hm,α) NuRe d,α) NuRe d,α) Re d A8) here Hm,α) NuRe,α) s defined in Eqution A05) nd NuRe,α) Re s defined in Eqution A9). d The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 50) Sc re s follos: N i) i) N 50) Sc i,50 0 l i,..., I j 50. A8)

46 Energies 06, 9, 77 6 of 7 The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 5) Sh re s follos: N i) i) N 5) Sh i,5 0 l i,..., I j 5. A85) The derivtives of the ir/ter vpor energy blnce equtions cf. Equtions A0) A) ith respect to the prmeter α 5) Nu re s follos: N i) i) N 5) Nu i,5 Ti+) T i) ) Hm, α) m Nu here Hm,α) s defined in Eqution A05). NuRe,α) l i,..., I j 5, A86) References. Ccuci, D.G. Fng, R. Predictive modelling of prdigm mechnicl cooling toer. I: Adjoint sensitivity model. Energies 06, 9, 78. CrossRef. Ccuci, D.G. Predictive modeling of coupled multi-physics systems: I. Theory. Ann. Nucl. Energy 0, 70, CrossRef. Ccuci, D.G. Bde, M.C. Predictive modeling of coupled multi-physics systems: II. Illustrtive pplictions to rector physics. Ann. Nucl. Energy 0, 70, CrossRef. Ltten, C. Ccuci, D.G. Predictive modeling of coupled systems: Uncertinty reduction using multiple rector physics benchmrks. Nucl. Sci. Eng. 0, 78, CrossRef 5. Ccuci, D.G. Arsln, E. Reducing uncertinties vi predictive modeling: FLICA clibrtion using BFBT benchmrks. Nucl. Sci. Eng. 0, 76, 9 9. CrossRef 6. Arsln, E. Ccuci, D.G. Predictive modeling of liquid-sodium therml hydrulics experiments nd computtions. Ann. Nucl. Energy 0, 6, CrossRef 7. Alemn, S.E. Grrett, A.J. Opertionl Cooling Toer Model CTTool V.0) Svnnh River Ntionl Lbortory: Svnnh River, SC, USA, Jnury Grrett, A.J. Prker, M.J. Vill-Alemn, E. 00 Svnnh River Site Cooling Toer Collection SRNL-DOD Atmospheric Technologies Group Svnnh River Ntionl Lbortory: Aiken, SC, USA, Ccuci, D.G. Ionescu-Bujor, M. Model clibrtion nd best-estimte prediction through experimentl dt ssimiltion: I. mthemticl frmeork. Nucl. Sci. Eng. 00, 65, 8. CrossRef 0. Ccuci, D.G. Ionescu-Bujor, M. On the evlution of discrepnt scientific dt ith unrecognized errors. Nucl. Sci. Eng. 00, 65, 7. CrossRef. Frgó, I. Hvsi, A. Zltev, Z. Advnced Numericl Methods for Complex Environmentl Models: Needs nd Avilbility Benthm Science Publishers: Ok Prk, IL, USA, 0.. Ccuci, D.G. Nvon, M.I. Ionescu-Bujor, M. Computtionl Methods for Dt Evlution nd Assimiltion Chpmn & Hll/CRC: Boc Rton, FL, USA, 0.. Ccuci, D.G. Second-order djoint sensitivity nlysis methodology nd-asam) for computing exctly nd efficiently first- nd second-order sensitivities in lrge-scle liner systems: I. Computtionl methodology. J. Comput. Phys. 05, 8, CrossRef. Ccuci, D.G. Second-order djoint sensitivity nlysis methodology nd-asam) for lrge-scle nonliner systems: I. Theory. Nucl. Sci. Eng. 06, in press. 5. Ccuci, D.G. Second-order djoint sensitivity nlysis methodology nd-asam) for computing exctly nd efficiently first- nd second-order sensitivities in lrge-scle liner systems: II. Illustrtive ppliction to prdigm prticle diffusion problem. J. Comput. Phys. 05, 8, CrossRef 6. Ccuci, D.G. Second-Order Adjoint sensitivity nd uncertinty nlysis of benchmrk het trnsport problem: I. Anlyticl results. Nucl. Sci. Eng. 06, 8,. CrossRef

47 Energies 06, 9, 77 7 of 7 7. Ccuci, D.G. Ilic, M. Bde, M.C. Fng, R. Second-order djoint sensitivity nd uncertinty nlysis of benchmrk het trnsport problem II: Computtionl results using GM rector therml-hydrulics prmeters. Nucl. Sci. Eng. 06, 8, 8. CrossRef 8. Ccuci, D.G. Second-order djoint sensitivity nlysis methodology nd-asam) for lrge-scle nonliner systems: II. Illustrtive ppliction to prdigm nonliner het conduction benchmrk. Nucl. Sci. Eng. 06, in press. CrossRef 06 by the uthors licensee MDPI, Bsel, Sitzerlnd. This rticle is n open ccess rticle distributed under the terms nd conditions of the Cretive Commons Attribution CC-BY) license

Academic Editor: Hiroshi Sekimoto Received: 18 October 2016; Accepted: 28 November 2016; Published: 8 December 2016

Academic Editor: Hiroshi Sekimoto Received: 18 October 2016; Accepted: 28 November 2016; Published: 8 December 2016 energies Article Predictive Modeling of Buoyncy-Operted Cooling Toer under Unsturted Conditions: Adjoint Sensitivity Model nd Optiml Best-Estimte Results ith Reduced Predicted Uncertinties Federico Di

More information

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION XX IMEKO World Congress Metrology for Green Growth September 9,, Busn, Republic of Kore THERMAL EXPANSION COEFFICIENT OF WATER FOR OLUMETRIC CALIBRATION Nieves Medin Hed of Mss Division, CEM, Spin, mnmedin@mityc.es

More information

Psychrometric Applications

Psychrometric Applications Psychrometric Applictions The reminder of this presenttion centers on systems involving moist ir. A condensed wter phse my lso be present in such systems. The term moist irrefers to mixture of dry ir nd

More information

13: Diffusion in 2 Energy Groups

13: Diffusion in 2 Energy Groups 3: Diffusion in Energy Groups B. Rouben McMster University Course EP 4D3/6D3 Nucler Rector Anlysis (Rector Physics) 5 Sept.-Dec. 5 September Contents We study the diffusion eqution in two energy groups

More information

Predict Global Earth Temperature using Linier Regression

Predict Global Earth Temperature using Linier Regression Predict Globl Erth Temperture using Linier Regression Edwin Swndi Sijbt (23516012) Progrm Studi Mgister Informtik Sekolh Teknik Elektro dn Informtik ITB Jl. Gnesh 10 Bndung 40132, Indonesi 23516012@std.stei.itb.c.id

More information

A Matrix Algebra Primer

A Matrix Algebra Primer A Mtrix Algebr Primer Mtrices, Vectors nd Sclr Multipliction he mtrix, D, represents dt orgnized into rows nd columns where the rows represent one vrible, e.g. time, nd the columns represent second vrible,

More information

Data Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading

Data Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading Dt Assimiltion Aln O Neill Dt Assimiltion Reserch Centre University of Reding Contents Motivtion Univrite sclr dt ssimiltion Multivrite vector dt ssimiltion Optiml Interpoltion BLUE 3d-Vritionl Method

More information

Terminal Velocity and Raindrop Growth

Terminal Velocity and Raindrop Growth Terminl Velocity nd Rindrop Growth Terminl velocity for rindrop represents blnce in which weight mss times grvity is equl to drg force. F 3 π3 ρ L g in which is drop rdius, g is grvittionl ccelertion,

More information

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 33. Psychrometric Properties of Moist Air

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 33. Psychrometric Properties of Moist Air Deprtment of Mechnicl Engineering ME 3 Mechnicl Engineering hermodynmics Lecture 33 sychrometric roperties of Moist Air Air-Wter Vpor Mixtures Atmospheric ir A binry mixture of dry ir () + ter vpor ()

More information

The International Association for the Properties of Water and Steam. Release on the Ionization Constant of H 2 O

The International Association for the Properties of Water and Steam. Release on the Ionization Constant of H 2 O IAPWS R-7 The Interntionl Assocition for the Properties of Wter nd Stem Lucerne, Sitzerlnd August 7 Relese on the Ioniztion Constnt of H O 7 The Interntionl Assocition for the Properties of Wter nd Stem

More information

NOTE ON TRACES OF MATRIX PRODUCTS INVOLVING INVERSES OF POSITIVE DEFINITE ONES

NOTE ON TRACES OF MATRIX PRODUCTS INVOLVING INVERSES OF POSITIVE DEFINITE ONES Journl of pplied themtics nd Computtionl echnics 208, 7(), 29-36.mcm.pcz.pl p-issn 2299-9965 DOI: 0.752/jmcm.208..03 e-issn 2353-0588 NOE ON RCES OF RIX PRODUCS INVOLVING INVERSES OF POSIIVE DEFINIE ONES

More information

99/105 Comparison of OrcaFlex with standard theoretical results

99/105 Comparison of OrcaFlex with standard theoretical results 99/105 Comprison of OrcFlex ith stndrd theoreticl results 1. Introduction A number of stndrd theoreticl results from literture cn be modelled in OrcFlex. Such cses re, by virtue of being theoreticlly solvble,

More information

Population Dynamics Definition Model A model is defined as a physical representation of any natural phenomena Example: 1. A miniature building model.

Population Dynamics Definition Model A model is defined as a physical representation of any natural phenomena Example: 1. A miniature building model. Popultion Dynmics Definition Model A model is defined s physicl representtion of ny nturl phenomen Exmple: 1. A miniture building model. 2. A children cycle prk depicting the trffic signls 3. Disply of

More information

First Law of Thermodynamics. Control Mass (Closed System) Conservation of Mass. Conservation of Energy

First Law of Thermodynamics. Control Mass (Closed System) Conservation of Mass. Conservation of Energy First w of hermodynmics Reding Problems 3-3-7 3-0, 3-5, 3-05 5-5- 5-8, 5-5, 5-9, 5-37, 5-0, 5-, 5-63, 5-7, 5-8, 5-09 6-6-5 6-, 6-5, 6-60, 6-80, 6-9, 6-, 6-68, 6-73 Control Mss (Closed System) In this section

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. Description

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

Probability Distributions for Gradient Directions in Uncertain 3D Scalar Fields

Probability Distributions for Gradient Directions in Uncertain 3D Scalar Fields Technicl Report 7.8. Technische Universität München Probbility Distributions for Grdient Directions in Uncertin 3D Sclr Fields Tobis Pfffelmoser, Mihel Mihi, nd Rüdiger Westermnn Computer Grphics nd Visuliztion

More information

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8 Mth 3 Fll 0 The scope of the finl exm will include: Finl Exm Review. Integrls Chpter 5 including sections 5. 5.7, 5.0. Applictions of Integrtion Chpter 6 including sections 6. 6.5 nd section 6.8 3. Infinite

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

Conservation Law. Chapter Goal. 5.2 Theory

Conservation Law. Chapter Goal. 5.2 Theory Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very

More information

THE INTERVAL LATTICE BOLTZMANN METHOD FOR TRANSIENT HEAT TRANSFER IN A SILICON THIN FILM

THE INTERVAL LATTICE BOLTZMANN METHOD FOR TRANSIENT HEAT TRANSFER IN A SILICON THIN FILM ROMAI J., v.9, no.2(2013), 173 179 THE INTERVAL LATTICE BOLTZMANN METHOD FOR TRANSIENT HEAT TRANSFER IN A SILICON THIN FILM Alicj Piseck-Belkhyt, Ann Korczk Institute of Computtionl Mechnics nd Engineering,

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

The Thermodynamics of Aqueous Electrolyte Solutions

The Thermodynamics of Aqueous Electrolyte Solutions 18 The Thermodynmics of Aqueous Electrolyte Solutions As discussed in Chpter 10, when slt is dissolved in wter or in other pproprite solvent, the molecules dissocite into ions. In queous solutions, strong

More information

Math 124A October 04, 2011

Math 124A October 04, 2011 Mth 4A October 04, 0 Viktor Grigoryn 4 Vibrtions nd het flow In this lecture we will derive the wve nd het equtions from physicl principles. These re second order constnt coefficient liner PEs, which model

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nucler nd Prticle Physics (5110) Feb, 009 The Nucler Mss Spectrum The Liquid Drop Model //009 1 E(MeV) n n(n-1)/ E/[ n(n-1)/] (MeV/pir) 1 C 16 O 0 Ne 4 Mg 7.7 14.44 19.17 8.48 4 5 6 6 10 15.4.41

More information

Scientific notation is a way of expressing really big numbers or really small numbers.

Scientific notation is a way of expressing really big numbers or really small numbers. Scientific Nottion (Stndrd form) Scientific nottion is wy of expressing relly big numbers or relly smll numbers. It is most often used in scientific clcultions where the nlysis must be very precise. Scientific

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGI OIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. escription

More information

Week 10: Line Integrals

Week 10: Line Integrals Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.

More information

The Moving Center of Mass of a Leaking Bob

The Moving Center of Mass of a Leaking Bob The Moving Center of Mss of Leking Bob rxiv:1002.956v1 [physics.pop-ph] 21 Feb 2010 P. Arun Deprtment of Electronics, S.G.T.B. Khls College University of Delhi, Delhi 110 007, Indi. Februry 2, 2010 Abstrct

More information

Ordinary differential equations

Ordinary differential equations Ordinry differentil equtions Introduction to Synthetic Biology E Nvrro A Montgud P Fernndez de Cordob JF Urchueguí Overview Introduction-Modelling Bsic concepts to understnd n ODE. Description nd properties

More information

CBE 291b - Computation And Optimization For Engineers

CBE 291b - Computation And Optimization For Engineers The University of Western Ontrio Fculty of Engineering Science Deprtment of Chemicl nd Biochemicl Engineering CBE 9b - Computtion And Optimiztion For Engineers Mtlb Project Introduction Prof. A. Jutn Jn

More information

Credibility Hypothesis Testing of Fuzzy Triangular Distributions

Credibility Hypothesis Testing of Fuzzy Triangular Distributions 666663 Journl of Uncertin Systems Vol.9, No., pp.6-74, 5 Online t: www.jus.org.uk Credibility Hypothesis Testing of Fuzzy Tringulr Distributions S. Smpth, B. Rmy Received April 3; Revised 4 April 4 Abstrct

More information

Synoptic Meteorology I: Finite Differences September Partial Derivatives (or, Why Do We Care About Finite Differences?

Synoptic Meteorology I: Finite Differences September Partial Derivatives (or, Why Do We Care About Finite Differences? Synoptic Meteorology I: Finite Differences 16-18 September 2014 Prtil Derivtives (or, Why Do We Cre About Finite Differences?) With the exception of the idel gs lw, the equtions tht govern the evolution

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

Studies on Nuclear Fuel Rod Thermal Performance

Studies on Nuclear Fuel Rod Thermal Performance Avilble online t www.sciencedirect.com Energy Procedi 1 (1) 1 17 Studies on Nucler Fuel od herml Performnce Eskndri, M.1; Bvndi, A ; Mihndoost, A3* 1 Deprtment of Physics, Islmic Azd University, Shirz

More information

Numerical integration

Numerical integration 2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

More information

1B40 Practical Skills

1B40 Practical Skills B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need

More information

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018 Physics 201 Lb 3: Mesurement of Erth s locl grvittionl field I Dt Acquisition nd Preliminry Anlysis Dr. Timothy C. Blck Summer I, 2018 Theoreticl Discussion Grvity is one of the four known fundmentl forces.

More information

Simulated Performance of Packed Bed Solar Energy Storage System having Storage Material Elements of Large Size - Part I

Simulated Performance of Packed Bed Solar Energy Storage System having Storage Material Elements of Large Size - Part I The Open Fuels & Energy Science Journl, 2008, 1, 91-96 91 Open Access Simulted Performnce of Pcked Bed Solr Energy Storge System hving Storge Mteril Elements of Lrge Size - Prt I Rnjit Singh *,1, R.P.

More information

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations ME 3600 Control ystems Chrcteristics of Open-Loop nd Closed-Loop ystems Importnt Control ystem Chrcteristics o ensitivity of system response to prmetric vritions cn be reduced o rnsient nd stedy-stte responses

More information

Black oils Correlations Comparative Study

Black oils Correlations Comparative Study Reservoir Technologies Blck oils Correltions Comprtive Study Dr. Muhmmd Al-Mrhoun, Mnging Director Sturdy, 26 April, 2014 Copyright 2008, NExT, All rights reserved Blck oils Correltions Introduction to

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information

INTRODUCTION TO LINEAR ALGEBRA

INTRODUCTION TO LINEAR ALGEBRA ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR AGEBRA Mtrices nd Vectors Prof. Dr. Bülent E. Pltin Spring Sections & / ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR

More information

Multivariate problems and matrix algebra

Multivariate problems and matrix algebra University of Ferrr Stefno Bonnini Multivrite problems nd mtrix lgebr Multivrite problems Multivrite sttisticl nlysis dels with dt contining observtions on two or more chrcteristics (vribles) ech mesured

More information

INTRODUCTION. The three general approaches to the solution of kinetics problems are:

INTRODUCTION. The three general approaches to the solution of kinetics problems are: INTRODUCTION According to Newton s lw, prticle will ccelerte when it is subjected to unblnced forces. Kinetics is the study of the reltions between unblnced forces nd the resulting chnges in motion. The

More information

Student Activity 3: Single Factor ANOVA

Student Activity 3: Single Factor ANOVA MATH 40 Student Activity 3: Single Fctor ANOVA Some Bsic Concepts In designed experiment, two or more tretments, or combintions of tretments, is pplied to experimentl units The number of tretments, whether

More information

Math 270A: Numerical Linear Algebra

Math 270A: Numerical Linear Algebra Mth 70A: Numericl Liner Algebr Instructor: Michel Holst Fll Qurter 014 Homework Assignment #3 Due Give to TA t lest few dys before finl if you wnt feedbck. Exercise 3.1. (The Bsic Liner Method for Liner

More information

APPROXIMATE INTEGRATION

APPROXIMATE INTEGRATION APPROXIMATE INTEGRATION. Introduction We hve seen tht there re functions whose nti-derivtives cnnot be expressed in closed form. For these resons ny definite integrl involving these integrnds cnnot be

More information

Vadose Zone Hydrology

Vadose Zone Hydrology Objectives Vdose Zone Hydrology 1. Review bsic concepts nd terminology of soil physics. 2. Understnd the role of wter-tble dynmics in GW-SW interction. Drcy s lw is useful in region A. Some knowledge of

More information

Estimation of Binomial Distribution in the Light of Future Data

Estimation of Binomial Distribution in the Light of Future Data British Journl of Mthemtics & Computer Science 102: 1-7, 2015, Article no.bjmcs.19191 ISSN: 2231-0851 SCIENCEDOMAIN interntionl www.sciencedomin.org Estimtion of Binomil Distribution in the Light of Future

More information

Module 6: LINEAR TRANSFORMATIONS

Module 6: LINEAR TRANSFORMATIONS Module 6: LINEAR TRANSFORMATIONS. Trnsformtions nd mtrices Trnsformtions re generliztions of functions. A vector x in some set S n is mpped into m nother vector y T( x). A trnsformtion is liner if, for

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

Best Approximation in the 2-norm

Best Approximation in the 2-norm Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

More information

Lecture XVII. Vector functions, vector and scalar fields Definition 1 A vector-valued function is a map associating vectors to real numbers, that is

Lecture XVII. Vector functions, vector and scalar fields Definition 1 A vector-valued function is a map associating vectors to real numbers, that is Lecture XVII Abstrct We introduce the concepts of vector functions, sclr nd vector fields nd stress their relevnce in pplied sciences. We study curves in three-dimensionl Eucliden spce nd introduce the

More information

Driving Cycle Construction of City Road for Hybrid Bus Based on Markov Process Deng Pan1, a, Fengchun Sun1,b*, Hongwen He1, c, Jiankun Peng1, d

Driving Cycle Construction of City Road for Hybrid Bus Based on Markov Process Deng Pan1, a, Fengchun Sun1,b*, Hongwen He1, c, Jiankun Peng1, d Interntionl Industril Informtics nd Computer Engineering Conference (IIICEC 15) Driving Cycle Construction of City Rod for Hybrid Bus Bsed on Mrkov Process Deng Pn1,, Fengchun Sun1,b*, Hongwen He1, c,

More information

4 The dynamical FRW universe

4 The dynamical FRW universe 4 The dynmicl FRW universe 4.1 The Einstein equtions Einstein s equtions G µν = T µν (7) relte the expnsion rte (t) to energy distribution in the universe. On the left hnd side is the Einstein tensor which

More information

Reliable Optimal Production Control with Cobb-Douglas Model

Reliable Optimal Production Control with Cobb-Douglas Model Relible Computing 4: 63 69, 998. 63 c 998 Kluwer Acdemic Publishers. Printed in the Netherlnds. Relible Optiml Production Control with Cobb-Dougls Model ZHIHUI HUEY HU Texs A&M University, College Sttion,

More information

Remarks to the H-mode workshop paper

Remarks to the H-mode workshop paper 2 nd ITPA Confinement Dtbse nd Modeling Topicl Group Meeting, Mrch 11-14, 2002, Princeton Remrks to the H-mode workshop pper The development of two-term model for the confinement in ELMy H-modes using

More information

On the Uncertainty of Sensors Based on Magnetic Effects. E. Hristoforou, E. Kayafas, A. Ktena, DM Kepaptsoglou

On the Uncertainty of Sensors Based on Magnetic Effects. E. Hristoforou, E. Kayafas, A. Ktena, DM Kepaptsoglou On the Uncertinty of Sensors Bsed on Mgnetic Effects E. ristoforou, E. Kyfs, A. Kten, DM Kepptsoglou Ntionl Technicl University of Athens, Zogrfou Cmpus, Athens 1578, Greece Tel: +3177178, Fx: +3177119,

More information

G. MATEESCU 1 A. MATEESCU 1 C. SAMOILĂ 2 D. URSUŢIU 2

G. MATEESCU 1 A. MATEESCU 1 C. SAMOILĂ 2 D. URSUŢIU 2 PRELIMINARY EXPERIMENTS OF THE NEW FACILITY AND TECHNOLOGY FOR VACUUM DRYING AND THERMAL POLIMERIZATION OF THE TURBOGENERATORS STATOR BARS INSULATION (INTEPOL) G. MATEESCU 1 A. MATEESCU 1 C. SAMOILĂ 2

More information

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0. STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t

More information

Probabilistic Investigation of Sensitivities of Advanced Test- Analysis Model Correlation Methods

Probabilistic Investigation of Sensitivities of Advanced Test- Analysis Model Correlation Methods Probbilistic Investigtion of Sensitivities of Advnced Test- Anlysis Model Correltion Methods Liz Bergmn, Mtthew S. Allen, nd Dniel C. Kmmer Dept. of Engineering Physics University of Wisconsin-Mdison Rndll

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

Forces from Strings Under Tension A string under tension medites force: the mgnitude of the force from section of string is the tension T nd the direc

Forces from Strings Under Tension A string under tension medites force: the mgnitude of the force from section of string is the tension T nd the direc Physics 170 Summry of Results from Lecture Kinemticl Vribles The position vector ~r(t) cn be resolved into its Crtesin components: ~r(t) =x(t)^i + y(t)^j + z(t)^k. Rtes of Chnge Velocity ~v(t) = d~r(t)=

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer pprox.- energy surfces 2. Men-field (Hrtree-Fock) theory- orbitls 3. Pros nd cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usully does HF-how? 6. Bsis sets nd nottions 7. MPn,

More information

FEM ANALYSIS OF ROGOWSKI COILS COUPLED WITH BAR CONDUCTORS

FEM ANALYSIS OF ROGOWSKI COILS COUPLED WITH BAR CONDUCTORS XIX IMEKO orld Congress Fundmentl nd Applied Metrology September 6 11, 2009, Lisbon, Portugl FEM ANALYSIS OF ROGOSKI COILS COUPLED ITH BAR CONDUCTORS Mirko Mrrcci, Bernrdo Tellini, Crmine Zppcost University

More information

CHAPTER 4a. ROOTS OF EQUATIONS

CHAPTER 4a. ROOTS OF EQUATIONS CHAPTER 4. ROOTS OF EQUATIONS A. J. Clrk School o Engineering Deprtment o Civil nd Environmentl Engineering by Dr. Ibrhim A. Asskk Spring 00 ENCE 03 - Computtion Methods in Civil Engineering II Deprtment

More information

ME 354 Tutorial, Week#11 Non-Reacting Mixtures Psychrometrics Applied to a Cooling Tower

ME 354 Tutorial, Week#11 Non-Reacting Mixtures Psychrometrics Applied to a Cooling Tower ME 5 Tutoril, Week# Non-Recting Mixtures Psychroetrics Applied to Cooling Toer Wter exiting the condenser of poer plnt t 5 C enters cooling toer ith ss flo rte of 5000 kg/s. A stre of cooled ter is returned

More information

Entropy ISSN

Entropy ISSN Entropy 006, 8[], 50-6 50 Entropy ISSN 099-4300 www.mdpi.org/entropy/ ENTROPY GENERATION IN PRESSURE GRADIENT ASSISTED COUETTE FLOW WITH DIFFERENT THERMAL BOUNDARY CONDITIONS Abdul Aziz Deprtment of Mechnicl

More information

x = b a N. (13-1) The set of points used to subdivide the range [a, b] (see Fig. 13.1) is

x = b a N. (13-1) The set of points used to subdivide the range [a, b] (see Fig. 13.1) is Jnury 28, 2002 13. The Integrl The concept of integrtion, nd the motivtion for developing this concept, were described in the previous chpter. Now we must define the integrl, crefully nd completely. According

More information

MATH SS124 Sec 39 Concepts summary with examples

MATH SS124 Sec 39 Concepts summary with examples This note is mde for students in MTH124 Section 39 to review most(not ll) topics I think we covered in this semester, nd there s exmples fter these concepts, go over this note nd try to solve those exmples

More information

Modelling Heat and Mass Transfer in a Cooling Tower under Hot and Humid Conditions

Modelling Heat and Mass Transfer in a Cooling Tower under Hot and Humid Conditions Journl of Advnced Engineering Reserch ISSN: 2393-8447 Volume 2, Issue 1, 2015, pp.1-10 Modelling Het nd Mss Trnsfer in Cooling Toer under Hot nd Humid Conditions Dng Trn Tho* nd Dng Quoc Phu School of

More information

Applications of Bernoulli s theorem. Lecture - 7

Applications of Bernoulli s theorem. Lecture - 7 Applictions of Bernoulli s theorem Lecture - 7 Prcticl Applictions of Bernoulli s Theorem The Bernoulli eqution cn be pplied to gret mny situtions not just the pipe flow we hve been considering up to now.

More information

Chapter 3 Polynomials

Chapter 3 Polynomials Dr M DRAIEF As described in the introduction of Chpter 1, pplictions of solving liner equtions rise in number of different settings In prticulr, we will in this chpter focus on the problem of modelling

More information

Factors affecting the phonation threshold pressure and frequency

Factors affecting the phonation threshold pressure and frequency 3SC Fctors ffecting the phontion threshold pressure nd frequency Zhoyn Zhng School of Medicine, University of Cliforni Los Angeles, CA, USA My, 9 57 th ASA Meeting, Portlnd, Oregon Acknowledgment: Reserch

More information

Introduction to Finite Element Method

Introduction to Finite Element Method Introduction to Finite Element Method Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pn.pl/ tzielins/ Tble of Contents 1 Introduction 1 1.1 Motivtion nd generl concepts.............

More information

Heat flux and total heat

Heat flux and total heat Het flux nd totl het John McCun Mrch 14, 2017 1 Introduction Yesterdy (if I remember correctly) Ms. Prsd sked me question bout the condition of insulted boundry for the 1D het eqution, nd (bsed on glnce

More information

ESCI 343 Atmospheric Dynamics II Lesson 14 Inertial/slantwise Instability

ESCI 343 Atmospheric Dynamics II Lesson 14 Inertial/slantwise Instability ESCI 343 Atmospheric Dynmics II Lesson 14 Inertil/slntwise Instbility Reference: An Introduction to Dynmic Meteorology (3 rd edition), J.R. Holton Atmosphere-Ocen Dynmics, A.E. Gill Mesoscle Meteorology

More information

The Properties of Stars

The Properties of Stars 10/11/010 The Properties of Strs sses Using Newton s Lw of Grvity to Determine the ss of Celestil ody ny two prticles in the universe ttrct ech other with force tht is directly proportionl to the product

More information

AMATH 731: Applied Functional Analysis Fall Additional notes on Fréchet derivatives

AMATH 731: Applied Functional Analysis Fall Additional notes on Fréchet derivatives AMATH 731: Applied Functionl Anlysis Fll 214 Additionl notes on Fréchet derivtives (To ccompny Section 3.1 of the AMATH 731 Course Notes) Let X,Y be normed liner spces. The Fréchet derivtive of n opertor

More information

Part I: Basic Concepts of Thermodynamics

Part I: Basic Concepts of Thermodynamics Prt I: Bsic Concepts o Thermodynmics Lecture 4: Kinetic Theory o Gses Kinetic Theory or rel gses 4-1 Kinetic Theory or rel gses Recll tht or rel gses: (i The volume occupied by the molecules under ordinry

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Discrete Least-squares Approximations

Discrete Least-squares Approximations Discrete Lest-squres Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve

More information

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011 Clssicl Mechnics From Moleculr to Con/nuum Physics I WS 11/12 Emilino Ippoli/ October, 2011 Wednesdy, October 12, 2011 Review Mthemtics... Physics Bsic thermodynmics Temperture, idel gs, kinetic gs theory,

More information

Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24

Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24 Mtrix lger Mtrix ddition, Sclr Multipliction nd rnsposition Mtrix lger Section.. Mtrix ddition, Sclr Multipliction nd rnsposition rectngulr rry of numers is clled mtrix ( the plurl is mtrices ) nd the

More information

Testing categorized bivariate normality with two-stage. polychoric correlation estimates

Testing categorized bivariate normality with two-stage. polychoric correlation estimates Testing ctegorized bivrite normlity with two-stge polychoric correltion estimtes Albert Mydeu-Olivres Dept. of Psychology University of Brcelon Address correspondence to: Albert Mydeu-Olivres. Fculty of

More information

ENSC 461 Tutorial, Week#9 Non-Reacting Mixtures Psychrometrics Applied to a Cooling Tower

ENSC 461 Tutorial, Week#9 Non-Reacting Mixtures Psychrometrics Applied to a Cooling Tower ENSC 61 Tutoril, Week#9 Non-Recting Mixtures Psychroetrics Applied to Cooling Toer Wter exiting the condenser of poer plnt t 5C enters cooling toer ith ss flo rte of 15000 kg/s. A stre of cooled ter is

More information

Lecture INF4350 October 12008

Lecture INF4350 October 12008 Biosttistics ti ti Lecture INF4350 October 12008 Anj Bråthen Kristoffersen Biomedicl Reserch Group Deprtment of informtics, UiO Gol Presenttion of dt descriptive tbles nd grphs Sensitivity, specificity,

More information

Continuous Random Variables

Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

More information

Monte Carlo method in solving numerical integration and differential equation

Monte Carlo method in solving numerical integration and differential equation Monte Crlo method in solving numericl integrtion nd differentil eqution Ye Jin Chemistry Deprtment Duke University yj66@duke.edu Abstrct: Monte Crlo method is commonly used in rel physics problem. The

More information

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response

More information

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes Jim Lmbers MAT 169 Fll Semester 2009-10 Lecture 4 Notes These notes correspond to Section 8.2 in the text. Series Wht is Series? An infinte series, usully referred to simply s series, is n sum of ll of

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information