The Thermodynamics of Aqueous Electrolyte Solutions

Size: px
Start display at page:

Download "The Thermodynamics of Aqueous Electrolyte Solutions"

Transcription

1 18 The Thermodynmics of Aqueous Electrolyte Solutions As discussed in Chpter 10, when slt is dissolved in wter or in other pproprite solvent, the molecules dissocite into ions. In queous solutions, strong electrolytes, tht is, those formed from strong cid neutrlized with strong bse, will dissocite lmost completely into ions, while wek electrolytes will dissocite only prtilly. In medi of lower dielectric constnt thn wter, such s furfurl, cetonitrile, lcohols, chlorocetic cid, dioxne, cetone, cetic cid, or in their mixtures with wter, conductivity mesurements show tht ll electrolytes re incresingly wek; tht is, they re prtilly ssocited, s the solvent moves down in the scle of dielectric constnts. Thus, the clssifiction of strong electrolytes s strong cids, bses, nd their slts (chlorides, fluorides, sulftes of sodium, potssium, mgnesium, copper, zinc, etc.) is only vlid in queous medi. On the other hnd, wek electrolytes such s cetic cid or chlorocetic cid in concentrted queous solutions cn ssocite to such high degree s to chnge the properties of wter s solvent. The dielectric constnt of ir is so low tht there re no ions present in the vpor phse over solution of voltile electrolyte. All molecules re fully ssocited. In mercury or sodium lmps, ions exist in the vpor phse under voltge difference nd in the bsence of ir. BASIC RELATIONS ith these considertions in mind, without specifying the extent of the ctul dissocition in queous solution, for 1 mole of n electrolyte E tht in totl dissocition would give + ctions C Z+ nd nions A Z, we write C A = C Z + A + Z + + For single electrolyte, the electroneutrlity condition reduces to v + Z + + v Z = 0 (18.1) In this eqution, the sign of the chrge is implicit in Z i. For clrity, it is better to hve the signs of the chrges explicit nd write v + Z + = v Z (18.1) 149

2 150 Clssicl Thermodynmics of Fluid Systems Vritions of this reltion tht re often used in the literture without further explntion my be confusing t first, so we write some of them in detil. 1 + = = + Z Z Z (18.1b) 1 Z = Z + + (18.1c) One importnt form is obtined by multiplying Eqution 18.1 first by Z to obtin + Z + Z = (Z ) 2 nd then multiplying Eqution 18.1 by Z + to obtin + (Z + ) 2 = Z + Z Tking the difference of these two expressions nd rerrnging, we get ZZ + ( Z ) ( Z ) = (18.1d) with + + (18.2) According to Eqution 12.15, the equilibrium constnt for the ionic dissocition in terms of ctivities tkes the form K + (18.3) T = + E For the dissocition of the electrolyte E, ccording to Eqution 12.16, the vlue of the equilibrium constnt is obtined from the stndrd Gibbs energy chnge: K T θ µ E µ µ = exp RT + + θ θ (18.4) Some tretments of electrolyte solutions hve proposed to use mole frctions s mesure of composition. For ll prcticl purposes, the use of mollity is simpler nd gives better rnge of vlues. As n exmple, the solubility of common slt (NCl) in wter t 298 K is 360 g kg 1 of wter or 6.16 moles per moles of wter. Thus, t sturtion, tht is, the mximum concentrtion of slt possible t this temperture, the mole frction of ech ion is 0.100, while the mollity is Hving decided to

3 The Thermodynmics of Aqueous Electrolyte Solutions 151 use mollity s the mesure of concentrtion, the next step is to choose the stndrd sttes for the ctivity coefficients to be used in the evlution of the ctivities by Thus, for the ction, nd for the nion, i = iγ i =i γ i (18.5) = γ = γ (18.5) = γ = γ (18.5b) In this expression, s the ctivities re dimensionless, i is the dimensionless mollity of the ion i nd is the dimensionless mollity of the electrolyte solute; tht is, the vlue of the mollity divided by 1[mole of i/1000g of solvent]. Similrly to the cse of the use of mollity for nonelectrolytes discussed in Chpter 15, the reference stte for the ctivity coefficient of the ions is their stte t infinite dilution, nd their stndrd stte is the idel solution in Henry s sense t 1[mole of i/1000g of solvent]. At the reference stte, the ctivity coefficient of n ion is normlized to unity. lim γ = 1 mi 0 i (18.6) MEAN IONIC ACTIVITY COEFFICIENT At the stndrd stte, the ctivity of n ion is equl to unity (dimensionless). This is so becuse in its stndrd stte the ion is in n idel solution t unit mollity. The normliztion of the ctivity coefficients of the ions to unity t their stte in n infinitely dilute solution is of gret importnce. At this stte, the presence of ny other ion is immteril, be it co-ion or counterion. Thus, the sme condition is vlid independently of the nture of the electrolyte generting the ion. ith this normliztion, lthough its vlue is not known, the stndrd stte potentil of n ion in solution is fixed nd well defined, nd it is independent where the ion cme from. The stndrd stte for the electrolyte is chosen so tht the constnt K T in Eqution 18.4 is equl to unity. µ = µ + µ θ E + + θ θ Agin here, the vlue of µ θ E for the electrolyte is not known, but we know tht for ech electrolyte it hs fixed nd well-defined vlue depending only on the temperture nd the pir of ions forming the electrolyte. Hence, from Eqution 18.3 we write E + ( + + ) ( ) ± ( + ) = = γ γ = γ (18.7)

4 152 Clssicl Thermodynmics of Fluid Systems where the men ionic ctivity coefficient of the electrolyte γ ± is defined s γ± γ+ + γ (18.8) with v v + + v, s defined by Eqution At infinite dilution, by normliztion of the ctivity coefficients of the ions, we hve limγ = 1 m 0 ± (18.9) OSMOTIC COEFFICIENT For single electrolyte queous solution t constnt temperture, neglecting pressure effects, the Gibbs Duhem eqution, which reltes the chnges in E with the chnges in the ctivity of wter, tkes the form n E d ln E + n d ln = 0 where ne = nd n = 1000/M re the number of moles of slt nd wter, respectively md ln E + ln = 0 M d (18.10) The ctivity of wter is sometimes given in terms of the osmotic coefficient of the solution, defined s 1000 ϕ M ( ) ln (18.11) j For n queous solution of nonvoltile electrolyte, the ctivity of wter is obtined directly by mesuring the vpor pressure, P, of the solution t the temperture of interest. From Eqution 16.4, we write j P = x γ = P (18.12) S Here, P S is the vpor pressure of pure wter t the temperture of the system. For work t high pressure, the correction fctors included in Eqution 16.2 should be included in Eqution It is of interest to obtin the reltions between the osmotic coefficient of single electrolyte solution, φ, nd the men ionic ctivity coefficient of the electrolyte. For single electrolyte in solution, Eqution tkes the form ln M ϕ (18.11) 1000

5 The Thermodynmics of Aqueous Electrolyte Solutions 153 Then, M M d ϕ ϕ d Combining this expression with the Gibbs Duhem eqution, Eqution 18.10, we get From Eqution 18.7, d E =dϕ+ϕ d E = + γ ± Thus, equting these two expressions nd rerrnging, the reltion between the osmotic coefficient of single electrolyte solution nd the men ionic ctivity coefficient tkes the form ( 1) γ ϕ ± = dϕ+ dm (18.13) This differentil reltion cn be used to obtin the men ionic ctivity coefficient in terms of the osmotic coefficient nd vice vers. Integrting between the limit t infinite dilution, where the men ionic ctivity coefficient nd the osmotic coefficient tend to unity, nd mollity m, ( ϕ1) ln γ ± = ( ϕ 1) + dm 0 (18.14) Becuse in Eqution the mollity ppers s rtio, for simplicity, the tilde differentiting it from its dimensionless vlue is sometimes dropped. Rerrnging Eqution 18.13, we write or md ln γ = md ϕ+ϕd d = dm ( ϕ) d ± dm ( ϕ ) = md ln γ + d Integrting between the sme limits s before nd rerrnging, ± ϕ= 1 ln γ ± + 1 m md 0 (18.15) Agin, s the mollity ppers s rtio in this expression, sometimes the difference between the mollity nd its dimensionless form is ignored.

7/19/2011. Models of Solution Chemistry- III Acids and Bases

7/19/2011. Models of Solution Chemistry- III Acids and Bases Models of Solution Chemistry- III Acids nd Bses Ionic Atmosphere Model : Revisiting Ionic Strength Ionic strength - mesure of totl concentrtion of ions in the solution Chpter 8 1 2 i μ ( ) 2 c i z c concentrtion

More information

Fundamentals of Analytical Chemistry

Fundamentals of Analytical Chemistry Homework Fundmentls of nlyticl hemistry hpter 9 0, 1, 5, 7, 9 cids, Bses, nd hpter 9(b) Definitions cid Releses H ions in wter (rrhenius) Proton donor (Bronsted( Lowry) Electron-pir cceptor (Lewis) hrcteristic

More information

CHAPTER 08: MONOPROTIC ACID-BASE EQUILIBRIA

CHAPTER 08: MONOPROTIC ACID-BASE EQUILIBRIA Hrris: Quntittive Chemicl Anlysis, Eight Edition CHAPTER 08: MONOPROTIC ACIDBASE EQUILIBRIA CHAPTER 08: Opener A CHAPTER 08: Opener B CHAPTER 08: Opener C CHAPTER 08: Opener D CHAPTER 08: Opener E Chpter

More information

9-1 (a) A weak electrolyte only partially ionizes when dissolved in water. NaHCO 3 is an

9-1 (a) A weak electrolyte only partially ionizes when dissolved in water. NaHCO 3 is an Chpter 9 9- ( A ek electrolyte only prtilly ionizes hen dissolved in ter. NC is n exmple of ek electrolyte. (b A Brønsted-ory cid is cule tht dontes proton hen it encounters bse (proton cceptor. By this

More information

temperature is known as ionic product of water. It is designated as K w. Value of K w

temperature is known as ionic product of water. It is designated as K w. Value of K w Ionic product of ter The product of concentrtions of H nd OH ions in ter t prticulr temperture is knon s ionic product of ter. It is designted s K. H O H 1 OH ; H 57.3 kjm The vlue of [H ][OH ] K ; K[HO]

More information

Strong acids and bases. Strong acids and bases. Systematic Treatment of Equilibrium & Monoprotic Acid-base Equilibrium.

Strong acids and bases. Strong acids and bases. Systematic Treatment of Equilibrium & Monoprotic Acid-base Equilibrium. Strong cids nd bses Systemtic Tretment of Equilibrium & Monoprotic cid-bse Equilibrium onc. (M) 0.0.00 -.00-5.00-8 p Strong cids nd bses onc. (M) p 0.0.0.00 -.0.00-5 5.0.00-8 8.0? We hve to consider utoprotolysis

More information

1. Weak acids. For a weak acid HA, there is less than 100% dissociation to ions. The B-L equilibrium is:

1. Weak acids. For a weak acid HA, there is less than 100% dissociation to ions. The B-L equilibrium is: th 9 Homework: Reding, M&F, ch. 15, pp. 584-598, 602-605 (clcultions of ph, etc., for wek cids, wek bses, polyprotic cids, nd slts; fctors ffecting cid strength). Problems: Nkon, ch. 18, #1-10, 16-18,

More information

Organic Acids - Carboxylic Acids

Organic Acids - Carboxylic Acids Orgnic Acids - rboxylic Acids Orgnic cids - crboxylic cid functionl group rboxylic cids re redily deprotonted by bses such s NO eg 3 O O - + O - + O 3 O O Acid Bse onjugte Bse onjugte Acid This rection

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

concentration of the chemical species A to activity as shown below:

concentration of the chemical species A to activity as shown below: Fundmentl of Anlyticl Chemitry: th ed. Chpter Chpter - Activity, A, i the effective concentrtion of chemicl ecie A in olution. The ctivity coefficient, A, i the numericl fctor necery to convert the molr

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

The International Association for the Properties of Water and Steam. Release on the Ionization Constant of H 2 O

The International Association for the Properties of Water and Steam. Release on the Ionization Constant of H 2 O IAPWS R-7 The Interntionl Assocition for the Properties of Wter nd Stem Lucerne, Sitzerlnd August 7 Relese on the Ioniztion Constnt of H O 7 The Interntionl Assocition for the Properties of Wter nd Stem

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

Homework 04. Acids, Bases, and Salts

Homework 04. Acids, Bases, and Salts HW04 - Acids, Bses, nd Slts! This is preview of the published version of the quiz Strted: Feb 21 t 8:59m Quiz Instruc!ons Homework 04 Acids, Bses, nd Slts Question 1 In the reversible rection HCN + H O

More information

Acid-Base Equilibria

Acid-Base Equilibria Tdeusz Górecki Ionic Equiliri Acid-Bse Equiliri Brønsted-Lory: n cid is proton, se is. Acid Bse ( 3 PO 4, O), ( N 4 ) nd ( PO - 4 ) cn ll ehve s cids. Exmple: 4 N N3 Sustnces hich cn ehve oth s cids nd

More information

Problem 22: Buffer solutions 1. The equilibrium, which governs the concentration of H + within the solution is HCOOH! HCOO + H + + Hence K

Problem 22: Buffer solutions 1. The equilibrium, which governs the concentration of H + within the solution is HCOOH! HCOO + H + + Hence K Problem : Buffer solutions. The equilibrium, hich governs the concentrtion of H ithin the solution is HCOOH! HCOO H [HCOO ] 4 Hence. [HCOOH] nd since [HCOOH] 0.00 M nd [HCOO ] 0.50 M -4 0.00 4..8 M 0.50

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

Read section 3.3, 3.4 Announcements:

Read section 3.3, 3.4 Announcements: Dte: 3/1/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: 1. f x = 3x 6, find the inverse, f 1 x., Using your grphing clcultor, Grph 1. f x,f

More information

Experiment 9: DETERMINATION OF WEAK ACID IONIZATION CONSTANT & PROPERTIES OF A BUFFERED SOLUTION

Experiment 9: DETERMINATION OF WEAK ACID IONIZATION CONSTANT & PROPERTIES OF A BUFFERED SOLUTION Experiment 9: DETERMINATION OF WEAK ACID IONIZATION CONSTANT & PROPERTIES OF A BUFFERED SOLUTION Purpose: Prt I: The cid ioniztion constnt of wek cid is to be determined, nd the cid is identified ccordingly.

More information

4 7x =250; 5 3x =500; Read section 3.3, 3.4 Announcements: Bell Ringer: Use your calculator to solve

4 7x =250; 5 3x =500; Read section 3.3, 3.4 Announcements: Bell Ringer: Use your calculator to solve Dte: 3/14/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: Use your clcultor to solve 4 7x =250; 5 3x =500; HW Requests: Properties of Log Equtions

More information

UNIT 1 FUNCTIONS AND THEIR INVERSES Lesson 1.4: Logarithmic Functions as Inverses Instruction

UNIT 1 FUNCTIONS AND THEIR INVERSES Lesson 1.4: Logarithmic Functions as Inverses Instruction Lesson : Logrithmic Functions s Inverses Prerequisite Skills This lesson requires the use of the following skills: determining the dependent nd independent vribles in n exponentil function bsed on dt from

More information

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions Hperbolic Functions Section : The inverse hperbolic functions Notes nd Emples These notes contin subsections on The inverse hperbolic functions Integrtion using the inverse hperbolic functions Logrithmic

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION XX IMEKO World Congress Metrology for Green Growth September 9,, Busn, Republic of Kore THERMAL EXPANSION COEFFICIENT OF WATER FOR OLUMETRIC CALIBRATION Nieves Medin Hed of Mss Division, CEM, Spin, mnmedin@mityc.es

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

Chapter 16 Acid Base Equilibria

Chapter 16 Acid Base Equilibria Chpter 16 Acid Bse Equilibri 16.1 Acids & Bses: A Brief Review Arrhenius cids nd bses: cid: n H + donor HA(q) H(q) A(q) bse: n OH donor OH(q) (q) OH(q) Brønsted Lowry cids nd bses: cid: n H + donor HA(q)

More information

Rel Gses 1. Gses (N, CO ) which don t obey gs lws or gs eqution P=RT t ll pressure nd tempertures re clled rel gses.. Rel gses obey gs lws t extremely low pressure nd high temperture. Rel gses devited

More information

Which of the following describes the net ionic reaction for the hydrolysis. Which of the following salts will produce a solution with the highest ph?

Which of the following describes the net ionic reaction for the hydrolysis. Which of the following salts will produce a solution with the highest ph? 95. Which of the following descries the net ionic rection for the hydrolysis of NH4Cl( s)? A. NH4 ( q) Cl & ( q) NH4Cl( s) B. NH Cl & 4 ( s) NH4 ( q) Cl ( q) C. Cl ( q) H O & 2 ( l) HCl( q) OH ( q) D.

More information

Families of Solutions to Bernoulli ODEs

Families of Solutions to Bernoulli ODEs In the fmily of solutions to the differentil eqution y ry dx + = it is shown tht vrition of the initil condition y( 0 = cuses horizontl shift in the solution curve y = f ( x, rther thn the verticl shift

More information

CHM Physical Chemistry I Chapter 1 - Supplementary Material

CHM Physical Chemistry I Chapter 1 - Supplementary Material CHM 3410 - Physicl Chemistry I Chpter 1 - Supplementry Mteril For review of some bsic concepts in mth, see Atkins "Mthemticl Bckground 1 (pp 59-6), nd "Mthemticl Bckground " (pp 109-111). 1. Derivtion

More information

Chapter 17: Additional Aspects of Aqueous Equilibria

Chapter 17: Additional Aspects of Aqueous Equilibria 1 Chpter 17: Additionl Aspects of Aqueous Equilibri Khoot! 1. Adding Br to sturted queous solution of decreses its solubility in wter. BSO 4, Li CO 3, PbS, AgBr. Which of the following mitures could be

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Physical Chemistry I for Biochemists Chem340. Lecture 38 (4/20/11) Yoshitaka Ishii. Announcement

Physical Chemistry I for Biochemists Chem340. Lecture 38 (4/20/11) Yoshitaka Ishii. Announcement Physicl Chemistry I for Biochemists Chem34 Lecture 38 (4//11) Yoshitk Ishii Ch. 9.7 9.1 9.1 Announcement HW1 due dte is 4/7 (Wed) Exm 3 will be returned probbly this Fridy Finl Exm 5/4 (Wed) 1 3 pm Quiz

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!!

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!! Nme: Algebr II Honors Pre-Chpter Homework Before we cn begin Ch on Rdicls, we need to be fmilir with perfect squres, cubes, etc Try nd do s mny s you cn without clcultor!!! n The nth root of n n Be ble

More information

Thermodynamic Model of the System H NH Na SO NO Cl HO at K

Thermodynamic Model of the System H NH Na SO NO Cl HO at K 4+ + 42-3- - 2 Article Subscriber ccess provided by the University of Wyoming Librries + Thermodynmic Model of the System H NH N SO NO Cl HO t 298.15 K Simon L. Clegg, Peter Brimblecombe, nd Anthony S.

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

Chapter 6 Techniques of Integration

Chapter 6 Techniques of Integration MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

More information

Module 2: Rate Law & Stoichiomtery (Chapter 3, Fogler)

Module 2: Rate Law & Stoichiomtery (Chapter 3, Fogler) CHE 309: Chemicl Rection Engineering Lecture-8 Module 2: Rte Lw & Stoichiomtery (Chpter 3, Fogler) Topics to be covered in tody s lecture Thermodynmics nd Kinetics Rection rtes for reversible rections

More information

Logarithms. Logarithm is another word for an index or power. POWER. 2 is the power to which the base 10 must be raised to give 100.

Logarithms. Logarithm is another word for an index or power. POWER. 2 is the power to which the base 10 must be raised to give 100. Logrithms. Logrithm is nother word for n inde or power. THIS IS A POWER STATEMENT BASE POWER FOR EXAMPLE : We lred know tht; = NUMBER 10² = 100 This is the POWER Sttement OR 2 is the power to which the

More information

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes Jim Lmbers MAT 169 Fll Semester 2009-10 Lecture 4 Notes These notes correspond to Section 8.2 in the text. Series Wht is Series? An infinte series, usully referred to simply s series, is n sum of ll of

More information

Chapter 11. Sequence and Series

Chapter 11. Sequence and Series Chpter 11 Sequence nd Series Lesson 11-1 Mthemticl Ptterns Sequence A sequence is n ordered list of numbers clled terms. Exmple Pge 591, #2 Describe ech pttern formed. Find the next three terms 4,8,16,32,64,...

More information

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one

More information

CHAPTER 20: Second Law of Thermodynamics

CHAPTER 20: Second Law of Thermodynamics CHAER 0: Second Lw of hermodynmics Responses to Questions 3. kg of liquid iron will hve greter entropy, since it is less ordered thn solid iron nd its molecules hve more therml motion. In ddition, het

More information

Chapter E - Problems

Chapter E - Problems Chpter E - Prolems Blinn College - Physics 2426 - Terry Honn Prolem E.1 A wire with dimeter d feeds current to cpcitor. The chrge on the cpcitor vries with time s QHtL = Q 0 sin w t. Wht re the current

More information

Experiment 9: WEAK ACID IONIZATION CONSTANT & PROPERTIES OF A BUFFERED SOLUTION

Experiment 9: WEAK ACID IONIZATION CONSTANT & PROPERTIES OF A BUFFERED SOLUTION Experiment 9: WEAK ACID IONIZATION CONSTANT & PROPERTIES OF A BUFFERED SOLUTION Purpose: Prt I: The cid ioniztion constnt of wek cid is to be determined, nd the cid is identified ccordingly. Prt II: The

More information

Measuring Electron Work Function in Metal

Measuring Electron Work Function in Metal n experiment of the Electron topic Mesuring Electron Work Function in Metl Instructor: 梁生 Office: 7-318 Emil: shling@bjtu.edu.cn Purposes 1. To understnd the concept of electron work function in metl nd

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

CHEMGURU.ORG YOUTUBE ; CHEMGURU. Syllabus. Acids and Bases, ph, Common ion effect, Buffer solutions, Hydrolysis of salts and Solubility Product.

CHEMGURU.ORG YOUTUBE ; CHEMGURU. Syllabus. Acids and Bases, ph, Common ion effect, Buffer solutions, Hydrolysis of salts and Solubility Product. Syllbus Acids nd Bses, ph, Common ion effect, Buffer solutions, Hydrolysis of slts nd Solubility Product. Acids nd Bses Here we discuss some importnt definitions of cids nd bses. Arrhenius Definition Arrhenius

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

Convergence of Fourier Series and Fejer s Theorem. Lee Ricketson

Convergence of Fourier Series and Fejer s Theorem. Lee Ricketson Convergence of Fourier Series nd Fejer s Theorem Lee Ricketson My, 006 Abstrct This pper will ddress the Fourier Series of functions with rbitrry period. We will derive forms of the Dirichlet nd Fejer

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

Terminal Velocity and Raindrop Growth

Terminal Velocity and Raindrop Growth Terminl Velocity nd Rindrop Growth Terminl velocity for rindrop represents blnce in which weight mss times grvity is equl to drg force. F 3 π3 ρ L g in which is drop rdius, g is grvittionl ccelertion,

More information

Strategy: Use the Gibbs phase rule (Equation 5.3). How many components are present?

Strategy: Use the Gibbs phase rule (Equation 5.3). How many components are present? University Chemistry Quiz 4 2014/12/11 1. (5%) Wht is the dimensionlity of the three-phse coexistence region in mixture of Al, Ni, nd Cu? Wht type of geometricl region dose this define? Strtegy: Use the

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10 University of Wshington Deprtment of Chemistry Chemistry 45 Winter Qurter Homework Assignment 4; Due t 5p.m. on // We lerned tht the Hmiltonin for the quntized hrmonic oscilltor is ˆ d κ H. You cn obtin

More information

FIRST EXAM. Answer any 4 of the following 5 questions. Please state any additional assumptions you made, and show all work.

FIRST EXAM. Answer any 4 of the following 5 questions. Please state any additional assumptions you made, and show all work. CEE 680 8 Mrch 018 FIRST EXAM Closed ook, one pge of notes llowed. Answer ny 4 of the following 5 questions. Plese stte ny dditionl ssumptions you mde, nd show ll work. Miscellneous Informtion: R = 1.987

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 7.. Introduction to Integrtion. 7. Integrl Clculus As ws the cse with the chpter on differentil

More information

Some Methods in the Calculus of Variations

Some Methods in the Calculus of Variations CHAPTER 6 Some Methods in the Clculus of Vritions 6-. If we use the vried function ( α, ) α sin( ) + () Then d α cos ( ) () d Thus, the totl length of the pth is d S + d d α cos ( ) + α cos ( ) d Setting

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Chemistry 36 Dr Jen M Stndrd Problem Set 3 Solutions 1 Verify for the prticle in one-dimensionl box by explicit integrtion tht the wvefunction ψ ( x) π x is normlized To verify tht ψ ( x) is normlized,

More information

Acid Base Equilibrium Review

Acid Base Equilibrium Review Acid Bse Equilirium Review Proof of true understnding of cid se equilirium culmintes in the ility to find ph of ny solution or comintion of solutions. The ility to determine ph of multitude of solutions

More information

AP Calculus Multiple Choice: BC Edition Solutions

AP Calculus Multiple Choice: BC Edition Solutions AP Clculus Multiple Choice: BC Edition Solutions J. Slon Mrch 8, 04 ) 0 dx ( x) is A) B) C) D) E) Divergent This function inside the integrl hs verticl symptotes t x =, nd the integrl bounds contin this

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

fiziks Institute for NET/JRF, GATE, IIT JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics Solid Stte Physics JEST-0 Q. bem of X-rys is incident on BCC crystl. If the difference between the incident nd scttered wvevectors is K nxˆkyˆlzˆ where xˆ, yˆ, zˆ re the unit vectors of the ssocited cubic

More information

1 Probability Density Functions

1 Probability Density Functions Lis Yn CS 9 Continuous Distributions Lecture Notes #9 July 6, 28 Bsed on chpter by Chris Piech So fr, ll rndom vribles we hve seen hve been discrete. In ll the cses we hve seen in CS 9, this ment tht our

More information

ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS

ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS F. Tkeo 1 nd M. Sk 1 Hchinohe Ntionl College of Technology, Hchinohe, Jpn; Tohoku University, Sendi, Jpn Abstrct:

More information

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below . Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.

More information

221B Lecture Notes WKB Method

221B Lecture Notes WKB Method Clssicl Limit B Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using

More information

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ).

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ). AP Clculus BC Review Chpter 8 Prt nd Chpter 9 Things to Know nd Be Ale to Do Know everything from the first prt of Chpter 8 Given n integrnd figure out how to ntidifferentite it using ny of the following

More information

Psychrometric Applications

Psychrometric Applications Psychrometric Applictions The reminder of this presenttion centers on systems involving moist ir. A condensed wter phse my lso be present in such systems. The term moist irrefers to mixture of dry ir nd

More information

Math 31S. Rumbos Fall Solutions to Assignment #16

Math 31S. Rumbos Fall Solutions to Assignment #16 Mth 31S. Rumbos Fll 2016 1 Solutions to Assignment #16 1. Logistic Growth 1. Suppose tht the growth of certin niml popultion is governed by the differentil eqution 1000 dn N dt = 100 N, (1) where N(t)

More information

Hydronium or hydroxide ions can also be produced by a reaction of certain substances with water:

Hydronium or hydroxide ions can also be produced by a reaction of certain substances with water: Chpter 14 1 ACIDS/BASES Acids hve tste, rect with most metls to produce, rect with most crbontes to produce, turn litmus nd phenolphthlein. Bses hve tste rect very well well with most metls or crbontes,

More information

Acids and Bases. H + (aq) + Cl - (aq) 100 molecules HCl 100 H+ ions Cl- ions 100% HCl molecules dissociate in water.

Acids and Bases. H + (aq) + Cl - (aq) 100 molecules HCl 100 H+ ions Cl- ions 100% HCl molecules dissociate in water. Acids nd Bses Acids: in generl cid is the substnce tht produces H ions when it is dissolved in wter. Acids cn be divided into two different clsses: Strong cid: is one tht completely dissocites into its

More information

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 33. Psychrometric Properties of Moist Air

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 33. Psychrometric Properties of Moist Air Deprtment of Mechnicl Engineering ME 3 Mechnicl Engineering hermodynmics Lecture 33 sychrometric roperties of Moist Air Air-Wter Vpor Mixtures Atmospheric ir A binry mixture of dry ir () + ter vpor ()

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Deprtment 8.044 Sttisticl Physics I Spring Term 03 Problem : Doping Semiconductor Solutions to Problem Set # ) Mentlly integrte the function p(x) given in

More information

Heat flux and total heat

Heat flux and total heat Het flux nd totl het John McCun Mrch 14, 2017 1 Introduction Yesterdy (if I remember correctly) Ms. Prsd sked me question bout the condition of insulted boundry for the 1D het eqution, nd (bsed on glnce

More information

Polynomials and Division Theory

Polynomials and Division Theory Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

More information

Each term is formed by adding a constant to the previous term. Geometric progression

Each term is formed by adding a constant to the previous term. Geometric progression Chpter 4 Mthemticl Progressions PROGRESSION AND SEQUENCE Sequence A sequence is succession of numbers ech of which is formed ccording to definite lw tht is the sme throughout the sequence. Arithmetic Progression

More information

Chem 130 Third Exam. Total /100

Chem 130 Third Exam. Total /100 Nme Chem 130 Third Exm On the following pges you will find eight questions covering vries topics rnging from precipittion solubility, cid bse, nd oxidtion reduction rections to metl lignd complexes nd

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

A5682: Introduction to Cosmology Course Notes. 4. Cosmic Dynamics: The Friedmann Equation. = GM s

A5682: Introduction to Cosmology Course Notes. 4. Cosmic Dynamics: The Friedmann Equation. = GM s 4. Cosmic Dynmics: The Friedmnn Eqution Reding: Chpter 4 Newtonin Derivtion of the Friedmnn Eqution Consider n isolted sphere of rdius R s nd mss M s, in uniform, isotropic expnsion (Hubble flow). The

More information

Part I: Basic Concepts of Thermodynamics

Part I: Basic Concepts of Thermodynamics Prt I: Bsic Concepts o Thermodynmics Lecture 4: Kinetic Theory o Gses Kinetic Theory or rel gses 4-1 Kinetic Theory or rel gses Recll tht or rel gses: (i The volume occupied by the molecules under ordinry

More information

6.2 CONCEPTS FOR ADVANCED MATHEMATICS, C2 (4752) AS

6.2 CONCEPTS FOR ADVANCED MATHEMATICS, C2 (4752) AS 6. CONCEPTS FOR ADVANCED MATHEMATICS, C (475) AS Objectives To introduce students to number of topics which re fundmentl to the dvnced study of mthemtics. Assessment Emintion (7 mrks) 1 hour 30 minutes.

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Introduction Lecture 3 Gussin Probbility Distribution Gussin probbility distribution is perhps the most used distribution in ll of science. lso clled bell shped curve or norml distribution Unlike the binomil

More information

Chapter 14. Matrix Representations of Linear Transformations

Chapter 14. Matrix Representations of Linear Transformations Chpter 4 Mtrix Representtions of Liner Trnsformtions When considering the Het Stte Evolution, we found tht we could describe this process using multipliction by mtrix. This ws nice becuse computers cn

More information

Theoretical foundations of Gaussian quadrature

Theoretical foundations of Gaussian quadrature Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

More information

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,

More information

Supplementary Material (ESI) for Soft Matter This journal is The Royal Society of Chemistry Supplementary data

Supplementary Material (ESI) for Soft Matter This journal is The Royal Society of Chemistry Supplementary data Supplementry Mteril (ESI) for Soft Mtter This journl is The Royl Society of hemistry 009 Supplementry dt Quntifying Hydrogel Response using Lser Light Scttering. Joshu M. G. Swnn, Wim Brs b, Jonthn R.

More information

Chapter 5 Bending Moments and Shear Force Diagrams for Beams

Chapter 5 Bending Moments and Shear Force Diagrams for Beams Chpter 5 ending Moments nd Sher Force Digrms for ems n ddition to illy loded brs/rods (e.g. truss) nd torsionl shfts, the structurl members my eperience some lods perpendiculr to the is of the bem nd will

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information

Math 100 Review Sheet

Math 100 Review Sheet Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s

More information

UNIT 5 QUADRATIC FUNCTIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Instruction

UNIT 5 QUADRATIC FUNCTIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Instruction Lesson 3: Creting Qudrtic Equtions in Two or More Vriles Prerequisite Skills This lesson requires the use of the following skill: solving equtions with degree of Introduction 1 The formul for finding the

More information

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1 Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

More information

CALCULUS WITHOUT LIMITS

CALCULUS WITHOUT LIMITS CALCULUS WITHOUT LIMITS The current stndrd for the clculus curriculum is, in my opinion, filure in mny spects. We try to present it with the modern stndrd of mthemticl rigor nd comprehensiveness but of

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

Review of basic calculus

Review of basic calculus Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below

More information

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15 Physics H - Introductory Quntum Physics I Homework #8 - Solutions Fll 4 Due 5:1 PM, Mondy 4/11/15 [55 points totl] Journl questions. Briefly shre your thoughts on the following questions: Of the mteril

More information