Data Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading


 Bertina Singleton
 1 years ago
 Views:
Transcription
1 Dt Assimiltion Aln O Neill Dt Assimiltion Reserch Centre University of Reding
2 Contents Motivtion Univrite sclr dt ssimiltion Multivrite vector dt ssimiltion Optiml Interpoltion BLUE 3dVritionl Method Klmn Filter 4dVritionl Method Applictions of dt ssimiltion in erth system science
3 Motivtion
4 DARC Wht is dt ssimiltion? Dt ssimiltion is the technique whereby observtionl dt re combined with output from numericl model to produce n optiml estimte of the evolving stte of the system
5 Why We Need Dt Assimiltion rnge of observtions rnge of techniques different errors dt gps quntities not mesured quntities linked
6 DARC
7 Some Uses of Dt Assimiltion Opertionl wether nd ocen forecsting Sesonl wether forecsting Lndsurfce process Globl climte dtsets Plnning stellite mesurements Evlution of models nd observtions DARC
8 Preliminry Concepts
9 Wht We Wnt o Know x t tmos stte vector s t c surfce fluxes model prmeters X t x t, s t, c
10 Wht We Also Wnt o Know Errors in models Errors in observtions Wht observtions to mke
11 DAA ASSIMILAION SYSEM Dt Cche A Error Sttistics model observtions O DAS A Numericl Model F B
12 he Dt Assimiltion Process observtions forecsts compre reject djust estimtes of stte & prmeters
13 X observtion model trjectory t
14 DARC Dt Assimiltion: n nlogy Driving with your eyes closed: open eyes every 0 seconds nd correct trjectory
15 Bsic Concept of Dt Assimiltion Informtion is ccumulted in time into the model stte nd propgted to ll vribles
16 DARC Wht re the benefits of dt ssimiltion? Qulity control Combintion of dt Errors in dt nd in model Filling in dt poor regions Designing observtionl systems Mintining consistency Estimting unobserved quntities
17 DARC Methods of Dt Assimiltion Optiml interpoltion or pprox to it 3D vritionl method 3DVr 4D vritionl method 4DVr Klmn filter with pproximtions
18 ypes of Dt Assimiltion Sequentil Nonsequentil Intermittent Continous
19 Sequentil Intermittent Assimiltion obs obs obs obs obs obs nlysis model nlysis model nlysis
20 Sequentil Continuous Assimiltion obs obs obs obs obs
21 Nonsequentil Intermittent Assimiltion obs obs obs obs obs obs nlysis + model nlysis + model nlysis + model
22 Nonsequentil Continuous Assimiltion obs obs obs obs obs obs nlysis + model
23 Sttisticl Approch to Dt Assimiltion
24 DARC
25 Dt Assimiltion Mde Simple sclr cse
26 Lest Squres Method Minimum Vrince re two mesurements the 0, 0 > < > < > < > >< < + + ε ε σ ε σ ε ε ε ε ε t t
27 Estimte of the observtio ns : t s liner combintio n + he nlysis should be unbised : < > t +
28 Lest Squres Method Continued subject to the constrint : men squred error by minimizing its Estimte + + > + < > + >< < t t t σ σ ε ε σ
29 Lest Squres Method Continued σ σ σ + σ σ σ + σ σ σ + he precision of the nlysis is the sum of the precisions of the mesurements he nlysis therefore hs higher precision thn ny single mesurement if the sttistics re correct
30 Vritionl Approch 0 for which the vlue of is + J J σ σ J
31 Mximum Likelihood Estimte Obtin or ssume probbility distributions for the errors he best estimte of the stte is chosen to hve the gretest probbility, or mximum likelihood If errors normlly distributed,unbised nd uncorrelted, then sttes estimted by minimum vrince nd mximum likelihood re the sme
32 Mximum Likelihood Approch Bysin Derivtion A s s u m e w e hve lredy mde n observtio n the bckground forecst in dt ssimiltion hen the probbilit y distributi on of the truth for Gussin error sttistics is :, p exp σ the prior pdf
33 Mximum Likelihood Continued Byes' s formul for the posterior p d f given the observtio n i s : p p p p exp σ exp σ since p Mximize We get the i s the normlisin g fctor independen t sme posterior nswer p d f minimizing the cost Equivlenc e holds for multi  dimension l cse s o r ln to estimte o f the function for truth Gussin sttistics
34 Simple Sequentil Assimiltion error vrince i s : nlysis the nd, by : given i s weight optiml he the " innovtion " i s where Let b o b b b o b o b o b W W W W σ σ σ σ σ + +
35 Comments he nlysis is obtined by dding first guess to the innovtion Optiml weight is bckground error vrince multiplied by inverse of totl vrince Precision of nlysis is sum of precisions of bckground nd observtion Error vrince of nlysis is error vrince of bckground reduced by  optiml weight
36 Simple Assimiltion Cycle Observtion used once nd then discrded Forecst phse to updte Anlysis phse to updte Obtin bckground s b t i+ M [ t i ] nd nd Obtin vrince of bckground s b b b i b i+ σ b σ σ t σ t lterntively σ t i+ σ t i
37 Simple Klmn Filter,,,,,,, M covrince i s : e r r o r bckground Forecst where M M hen bised! not model, ] [ before step s Anlysis Q M M M Q t M t i i b i b m i m i t i i t b i b m m i t i t + > < + + > < σ ε σ ε ε ε ε ε ε
38 Multivrite Dt Assimiltion
39 Multivrite Cse x n x x t x stte vector y m y y t n vector observtio y
40 Stte Vectors x stte vector column mtrix x t true stte x b bckground stte x nlysis, estimte of x t
41 Ingredients of Good Estimte of the Stte Vector nlysis Strt from good first guess forecst from previous good nlysis Allow for errors in observtions nd first guess give most weight to dt you trust Anlysis should be smooth Anlysis should respect known physicl lws
42 Some Useful Mtrix Properties rnspose of product : A B B A Inverse of product : A B B A Inverse of trnspose : A A Positive definitene s s for symmetrix mtrix A : x, the sclr x A x > 0, unless x 0 this property is conserved through inversion
43 Observtions Observtions re gthered into n y observtion vector, clled the observtion vector Usully fewer observtions thn vribles in the model; they re irregulrly spced; nd my be of different kind to those in the model Introduce n observtion opertor to mp from model stte spce to observtion spce x H x
44 Errors
45 Vrince becomes Covrince Mtrix Errors in x i re often correlted sptil structure in flow dynmicl or chemicl reltionships Vrince for sclr cse becomes Covrince Mtrix for vector cse COV Digonl elements re the vrinces of x i Offdigonl elements re covrinces between x i nd x j Observtion of x i ffects estimte of x j
46 he Error Covrince Mtrix > < > < > < > < > < > < > < > < > < > < n n n n n n n n e e e e e e e e e e e e e e e e e e e e e e e e εε ε ε P i i e i e σ > <
47 Bckground Errors hey re the estimtion errors of the bckground stte: ε b x b x t B verge bis covrince < < ε b > ε < ε > ε < ε > b b >
48 Observtion Errors hey contin errors in the observtion process instrumentl error, errors in the design of H, nd representtiveness errors, ie discretizton errors tht prevent x t from being perfect representtion of the true stte ε y H x < ε > o t o R < ε < ε > ε < ε > o o o o >
49 Control Vribles We my not be ble to solve the nlysis problem for ll components of the model stte eg cloudrelted vribles, or need to reduce resolution he work spce is then not the model spce but the subspce in which we correct x b, clled controlvrible spce x x b + δx
50 Innovtions nd Residuls Key to dt ssimiltion is the use of differences between observtions nd the stte vector of the system We cll y H x b the innovtion We cll y H x the nlysis residul Give importnt informtion
51 Anlysis Errors hey re the estimtion errors of the nlysis stte tht we wnt to minimize ε x x t Covrince mtrix A
52 Using the Error Covrince Mtrix Recll tht n error covrince mtrix x for the error in hs the form: C C < εε > y H x H If where is mtrix, then the error covrince for y C HCH y is given by:
53 BLUE Estimtor he BLUE estimtor is given by: he nlysis error covrince mtrix is: Note tht: b b + + R H B H B H K x y K x x H K H B I A + + R H H R H B R H B H B H
54 Sttisticl Interpoltion with Lest Squres Estimtion Clled Best Liner Unbised Estimtor BLUE Simplified versions of this lgorithm yield the most common lgorithms used tody in meteorology nd ocenogrphy
55 Assumptions Used in BLUE Linerized observtion opertor: H x H x b H x x b B R nd re positive definite Errors re unbised: < x x >< y H x > b t t Errors re uncorrelted: < x x y H x > b t t Liner nlysis: corrections to bckground depend linerly on bckground obs Optiml nlysis: minimum vrince estimte 0 0
56 Optiml Interpoltion observtion observtion opertor x x b + K y H x b nlysis linerity H H bckground forecst mtrix inverse K B H H B H + R limited re
57 y H x b t obs point dt void x b
58 END
Tests for the Ratio of Two Poisson Rates
Chpter 437 Tests for the Rtio of Two Poisson Rtes Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson
More informationNonLinear & Logistic Regression
NonLiner & Logistic Regression If the sttistics re boring, then you've got the wrong numbers. Edwrd R. Tufte (Sttistics Professor, Yle University) Regression Anlyses When do we use these? PART 1: find
More informationContinuous Random Variables
STAT/MATH 395 A  PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is relvlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht
More informationBest Approximation. Chapter The General Case
Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given
More informationNew Expansion and Infinite Series
Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06073 HIKARI Ltd, www.mhikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University
More informationLECTURE NOTE #12 PROF. ALAN YUILLE
LECTURE NOTE #12 PROF. ALAN YUILLE 1. Clustering, Kmens, nd EM Tsk: set of unlbeled dt D = {x 1,..., x n } Decompose into clsses w 1,..., w M where M is unknown. Lern clss models p(x w)) Discovery of
More informationGNSS Data Assimilation and GNSS Tomography for Global and Regional Models
GNSS Dt Assimiltion nd GNSS Tomogrphy for Globl nd Regionl Models M. Bender, K. Stephn, A. Rhodin, R. Potthst Germn Wether Service (DWD) Interntionl Symposium on Dt Assimiltion, Munich 214 27. Februry
More informationLecture 19: Continuous Least Squares Approximation
Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for
More informationNumerical integration
2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter
More information8 Laplace s Method and Local Limit Theorems
8 Lplce s Method nd Locl Limit Theorems 8. Fourier Anlysis in Higher DImensions Most of the theorems of Fourier nlysis tht we hve proved hve nturl generliztions to higher dimensions, nd these cn be proved
More informationMath 270A: Numerical Linear Algebra
Mth 70A: Numericl Liner Algebr Instructor: Michel Holst Fll Qurter 014 Homework Assignment #3 Due Give to TA t lest few dys before finl if you wnt feedbck. Exercise 3.1. (The Bsic Liner Method for Liner
More informationTHE UNIVERSITY OF CHICAGO Booth School of Business Business 41914, Spring Quarter 2015, Mr. Ruey S. Tsay
THE UNIVERSITY OF CHICAGO Booth School of Business Business 494, Spring Qurter 05, Mr. Ruey S. Tsy Reference: Chpter of the textbook. Introduction Lecture 3: Vector Autoregressive (VAR) Models Vector utoregressive
More informationSCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics
SCHOOL OF ENGINEERING & BUIL ENVIRONMEN Mthemtics An Introduction to Mtrices Definition of Mtri Size of Mtri Rows nd Columns of Mtri Mtri Addition Sclr Multipliction of Mtri Mtri Multipliction 7 rnspose
More informationOrdinary differential equations
Ordinry differentil equtions Introduction to Synthetic Biology E Nvrro A Montgud P Fernndez de Cordob JF Urchueguí Overview IntroductionModelling Bsic concepts to understnd n ODE. Description nd properties
More informationChapter 2 Fundamental Concepts
Chpter 2 Fundmentl Concepts This chpter describes the fundmentl concepts in the theory of time series models In prticulr we introduce the concepts of stochstic process, men nd covrince function, sttionry
More informationPartial Derivatives. Limits. For a single variable function f (x), the limit lim
Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the righthnd side limit equls to the lefthnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles
More informationProblem. Statement. variable Y. Method: Step 1: Step 2: y d dy. Find F ( Step 3: Find f = Y. Solution: Assume
Functions of Rndom Vrible Problem Sttement We know the pdf ( or cdf ) of rndom r vrible. Define new rndom vrible Y = g. Find the pdf of Y. Method: Step : Step : Step 3: Plot Y = g( ). Find F ( y) by mpping
More informationEnergy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon
Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,
More informationINTRODUCTION TO LINEAR ALGEBRA
ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR AGEBRA Mtrices nd Vectors Prof. Dr. Bülent E. Pltin Spring Sections & / ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR
More informationSteinRule Estimation and Generalized Shrinkage Methods for Forecasting Using Many Predictors
SteinRule Estimtion nd Generlized Shrinkge Methods for Forecsting Using Mny Predictors Eric Hillebrnd CREATES Arhus University, Denmrk ehillebrnd@cretes.u.dk TeHwy Lee University of Cliforni, Riverside
More informationPreSession Review. Part 1: Basic Algebra; Linear Functions and Graphs
PreSession Review Prt 1: Bsic Algebr; Liner Functions nd Grphs A. Generl Review nd Introduction to Algebr Hierrchy of Arithmetic Opertions Opertions in ny expression re performed in the following order:
More information1 Online Learning and Regret Minimization
2.997 DecisionMking in LrgeScle Systems My 10 MIT, Spring 2004 Hndout #29 Lecture Note 24 1 Online Lerning nd Regret Minimiztion In this lecture, we consider the problem of sequentil decision mking in
More informationLecture 14: Quadrature
Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be relvlues nd smooth The pproximtion of n integrl by numericl
More informationChapter 2. Determinants
Chpter Determinnts The Determinnt Function Recll tht the X mtrix A c b d is invertible if dbc0. The expression dbc occurs so frequently tht it hs nme; it is clled the determinnt of the mtrix A nd is
More informationBest Approximation in the 2norm
Jim Lmbers MAT 77 Fll Semester 111 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the norm Suppose tht we wish to obtin function f n (x) tht is liner combintion
More informationMeasuring Electron Work Function in Metal
n experiment of the Electron topic Mesuring Electron Work Function in Metl Instructor: 梁生 Office: 7318 Emil: shling@bjtu.edu.cn Purposes 1. To understnd the concept of electron work function in metl nd
More informationTesting categorized bivariate normality with twostage. polychoric correlation estimates
Testing ctegorized bivrite normlity with twostge polychoric correltion estimtes Albert MydeuOlivres Dept. of Psychology University of Brcelon Address correspondence to: Albert MydeuOlivres. Fculty of
More informationNumerical Integration
Chpter 1 Numericl Integrtion Numericl differentition methods compute pproximtions to the derivtive of function from known vlues of the function. Numericl integrtion uses the sme informtion to compute numericl
More informationECON 331 Lecture Notes: Ch 4 and Ch 5
Mtrix Algebr ECON 33 Lecture Notes: Ch 4 nd Ch 5. Gives us shorthnd wy of writing lrge system of equtions.. Allows us to test for the existnce of solutions to simultneous systems. 3. Allows us to solve
More informationTHERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION
XX IMEKO World Congress Metrology for Green Growth September 9,, Busn, Republic of Kore THERMAL EXPANSION COEFFICIENT OF WATER FOR OLUMETRIC CALIBRATION Nieves Medin Hed of Mss Division, CEM, Spin, mnmedin@mityc.es
More informationA SignalLevel Fusion Model for ImageBased Change Detection in DARPA's Dynamic Database System
SPIE Aerosense 001 Conference on Signl Processing, Sensor Fusion, nd Trget Recognition X, April 160, Orlndo FL. (Minor errors in published version corrected.) A SignlLevel Fusion Model for ImgeBsed
More information20 MATHEMATICS POLYNOMIALS
0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of
More informationOrdinary Differential Equations Boundary Value Problem
Ordinry Differentil Equtions Boundry Vlue Problem Shooting method Runge Kutt method Computerbsed solutions o BVPFD subroutine (Fortrn IMSL subroutine tht Solves (prmeterized) system of differentil equtions
More informationCS667 Lecture 6: Monte Carlo Integration 02/10/05
CS667 Lecture 6: Monte Crlo Integrtion 02/10/05 Venkt Krishnrj Lecturer: Steve Mrschner 1 Ide The min ide of Monte Crlo Integrtion is tht we cn estimte the vlue of n integrl by looking t lrge number of
More informationChapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY
Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in
More informationLatent Structure Linear Regression
Applied Mthemtics, 2014, 5, 808823 Published Online Mrch 2014 in SciRes. http://www.scirp.org/journl/m http://dx.doi.org/10.4236/m.2014.55077 Ltent Structure Liner Regression Agnr Höskuldsson Centre for
More informationOrthogonal Polynomials and LeastSquares Approximations to Functions
Chpter Orthogonl Polynomils nd LestSqures Approximtions to Functions **4/5/3 ET. Discrete LestSqures Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny
More informationMath 360: A primitive integral and elementary functions
Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:
More informationDiscrete Leastsquares Approximations
Discrete Lestsqures Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve
More informationUsing QM for Windows. Using QM for Windows. Using QM for Windows LEARNING OBJECTIVES. Solving Flair Furniture s LP Problem
LEARNING OBJECTIVES Vlu%on nd pricing (November 5, 2013) Lecture 11 Liner Progrmming (prt 2) 10/8/16, 2:46 AM Olivier J. de Jong, LL.M., MM., MBA, CFD, CFFA, AA www.olivierdejong.com Solving Flir Furniture
More informationEstimation on Monotone Partial Functional Linear Regression
A^VÇÚO 1 33 ò 1 4 Ï 217 c 8 Chinese Journl of Applied Probbility nd Sttistics Aug., 217, Vol. 33, No. 4, pp. 43344 doi: 1.3969/j.issn.114268.217.4.8 Estimtion on Monotone Prtil Functionl Liner Regression
More informationChapter 4 Contravariance, Covariance, and Spacetime Diagrams
Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz
More informationMath 8 Winter 2015 Applications of Integration
Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl
More informationPART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point.
PART MULTIPLE CHOICE Circle the pproprite response to ech of the questions below. Ech question hs vlue of point.. If in sequence the second level difference is constnt, thn the sequence is:. rithmetic
More informationSynoptic Meteorology I: Finite Differences September Partial Derivatives (or, Why Do We Care About Finite Differences?
Synoptic Meteorology I: Finite Differences 1618 September 2014 Prtil Derivtives (or, Why Do We Cre About Finite Differences?) With the exception of the idel gs lw, the equtions tht govern the evolution
More information3.4 Numerical integration
3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,
More informationLecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at UrbanaChampaign. March 20, 2014
Lecture 17 Integrtion: Guss Qudrture Dvid Semerro University of Illinois t UrbnChmpign Mrch 0, 014 Dvid Semerro (NCSA) CS 57 Mrch 0, 014 1 / 9 Tody: Objectives identify the most widely used qudrture method
More informationNumerical Integration
Numericl Integrtion Wouter J. Den Hn London School of Economics c 2011 by Wouter J. Den Hn June 3, 2011 Qudrture techniques I = f (x)dx n n w i f (x i ) = w i f i i=1 i=1 Nodes: x i Weights: w i Qudrture
More informationu( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 218, pp 4448): Determine the equation of the following graph.
nlyzing Dmped Oscilltions Prolem (Medor, exmple 218, pp 4448): Determine the eqution of the following grph. The eqution is ssumed to e of the following form f ( t) = K 1 u( t) + K 2 e!"t sin (#t + $
More informationNUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.
NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with
More informationDepartment of Chemical Engineering ChE101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VII
Tutoril VII: Liner Regression Lst updted 5/8/06 b G.G. Botte Deprtment of Chemicl Engineering ChE0: Approches to Chemicl Engineering Problem Solving MATLAB Tutoril VII Liner Regression Using Lest Squre
More informationA Posteriori Diagnostics of the Impact of Observations on the AROME France ConvectiveScale DataAssimilation System.
A Posteriori Dignostics of the Impct of Observtions on the AROME Frnce ConvectiveScle DtAssimiltion System. Pierre Brousseu, Gérld Desroziers nd Frnçois Bouttier CNRMGAME, CNRS nd MétéoFrnce, Toulouse,
More informationGeorgia State University. Georgia State University. Jing Wang Georgia State University. Fall
Georgi Stte University ScholrWorks @ Georgi Stte University Mthemtics Disserttions Deprtment of Mthemtics nd Sttistics Fll 122016 Functionl Principl Component Anlysis for Discretely Observed Functionl
More informationM 1 = + x 2 f(x)dx M 2 =
AppendixB The Delt method... Suppose you hve done study, over 4 yers, which yields 3 estimtes of survivl (sy, φ 1, φ 2, nd φ 3. But, suppose wht you re relly interested in is the estimte of the product
More informationThe Wave Equation I. MA 436 Kurt Bryan
1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string
More informationPolynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230
Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given
More informationMA Handout 2: Notation and Background Concepts from Analysis
MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,
More informationWe know that if f is a continuous nonnegative function on the interval [a, b], then b
1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going
More informationDIFA, University of Basilicata, Italy
Guido Msiello nd Crmine Serio DIFA, Uniersity of Bsilict, Itly 1 Bsic methodologicl steps to retriee surfce emissiity Step 1: Represent emissiity with Fourier cosine truncted series to lower it dimensionlity
More informationapproaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below
. Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.
More informationMath Calculus with Analytic Geometry II
orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove xxis) ( bove f under xxis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem
More informationMatrices and Determinants
Nme Chpter 8 Mtrices nd Determinnts Section 8.1 Mtrices nd Systems of Equtions Objective: In this lesson you lerned how to use mtrices, Gussin elimintion, nd GussJordn elimintion to solve systems of liner
More informationA027 Uncertainties in Local Anisotropy Estimation from Multioffset VSP Data
A07 Uncertinties in Locl Anisotropy Estimtion from Multioffset VSP Dt M. Asghrzdeh* (Curtin University), A. Bon (Curtin University), R. Pevzner (Curtin University), M. Urosevic (Curtin University) & B.
More informationThe solutions of the single electron Hamiltonian were shown to be Bloch wave of the form: ( ) ( ) ikr
Lecture #1 Progrm 1. Bloch solutions. Reciprocl spce 3. Alternte derivtion of Bloch s theorem 4. Trnsforming the serch for egenfunctions nd eigenvlues from solving PDE to finding the evectors nd evlues
More informationMATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1
MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further
More informationPractice final exam solutions
University of Pennsylvni Deprtment of Mthemtics Mth 26 Honors Clculus II Spring Semester 29 Prof. Grssi, T.A. Asher Auel Prctice finl exm solutions 1. Let F : 2 2 be defined by F (x, y (x + y, x y. If
More informationMathematics notation and review
Appendix A Mthemtics nottion nd review This ppendix gives brief coverge of the mthemticl nottion nd concepts tht you ll encounter in this book. In the spce of few pges it is of course impossible to do
More informationY i = β 0 + β 1 X i + β 2 Z i + ε i
Homework Exercise #7 Economics 4340 Fll 009 Dr. W. Ken Frr Nme Instructions: Answer the questions given below on lined sheets of pper (or they my be typed) nd provide ll the necessry printouts of informtion
More informationCS 188: Artificial Intelligence
CS 188: Artificil Intelligence Lecture 19: Decision Digrms Pieter Abbeel  C Berkeley Mny slides over this course dpted from Dn Klein, Sturt Russell, Andrew Moore Decision Networks ME: choose the ction
More information1 Error Analysis of Simple Rules for Numerical Integration
cs41: introduction to numericl nlysis 11/16/10 Lecture 19: Numericl Integrtion II Instructor: Professor Amos Ron Scries: Mrk Cowlishw, Nthnel Fillmore 1 Error Anlysis of Simple Rules for Numericl Integrtion
More informationThe First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).
The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples
More informationHow do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?
XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=
More informationInterpreting Integrals and the Fundamental Theorem
Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of
More information38.2. The Uniform Distribution. Introduction. Prerequisites. Learning Outcomes
The Uniform Distribution 8. Introduction This Section introduces the simplest type of continuous probbility distribution which fetures continuous rndom vrible X with probbility density function f(x) which
More informationThinPlate Splines. Contents
ThinPlte Splines Dvid Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Cretive Commons Attribution 4.0 Interntionl License. To view copy of this
More informationPDE Notes. Paul Carnig. January ODE s vs PDE s 1
PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................
More informationStrategy: Use the Gibbs phase rule (Equation 5.3). How many components are present?
University Chemistry Quiz 4 2014/12/11 1. (5%) Wht is the dimensionlity of the threephse coexistence region in mixture of Al, Ni, nd Cu? Wht type of geometricl region dose this define? Strtegy: Use the
More informationAssimilation of seasurface temperature into a hydrodynamic model of Port Phillip Bay, Australia
Assimiltion o sesurce temperture into hydrodynmic model o Port Phillip By, Austrli Mtthew R.J. urner 1, Jerey P. Wlker 1, Peter R. Oke 2 nd Rodger B. Gryson 1 1 Deprtment o Civil nd Environmentl Engineering,
More informationCSCI FOUNDATIONS OF COMPUTER SCIENCE
1 CSCI 2200 FOUNDATIONS OF COMPUTER SCIENCE Spring 2015 My 7, 2015 2 Announcements Homework 9 is due now. Some finl exm review problems will be posted on the web site tody. These re prcqce problems not
More informationIntroduction to Numerical Analysis
Introduction to Numericl Anlysis Doron Levy Deprtment of Mthemtics nd Center for Scientific Computtion nd Mthemticl Modeling (CSCAMM) University of Mrylnd June 14, 2012 D. Levy CONTENTS Contents 1 Introduction
More information12 TRANSFORMING BIVARIATE DENSITY FUNCTIONS
1 TRANSFORMING BIVARIATE DENSITY FUNCTIONS Hving seen how to trnsform the probbility density functions ssocited with single rndom vrible, the next logicl step is to see how to trnsform bivrite probbility
More information5.5 The Substitution Rule
5.5 The Substitution Rule Given the usefulness of the Fundmentl Theorem, we wnt some helpful methods for finding ntiderivtives. At the moment, if n ntiderivtive is not esily recognizble, then we re in
More informationCALCULATED POWDER XRAY DIFFRACTION LINE PROFILES VIA ABSORPTION
16 17 CALCULATED POWDER XRAY DFFRACTON LNE PROFLES VA ABSORPTON Keji Liu nd Heifen Chen School of Mteril Science nd Engineering, Shnghi nstitute of Technology, Shnghi, Chin 2233 ABSTRACT We hve clculted
More informationSection 4.8. D v(t j 1 ) t. (4.8.1) j=1
Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions
More informationREVIEW Chapter 1 The Real Number System
Mth 7 REVIEW Chpter The Rel Number System In clss work: Solve ll exercises. (Sections. &. Definition A set is collection of objects (elements. The Set of Nturl Numbers N N = {,,,, 5, } The Set of Whole
More informationMTH 122 Fall 2008 Essex County College Division of Mathematics Handout Version 10 1 October 14, 2008
MTH 22 Fll 28 Essex County College Division of Mthemtics Hndout Version October 4, 28 Arc Length Everyone should be fmilir with the distnce formul tht ws introduced in elementry lgebr. It is bsic formul
More informationChapter Direct Method of Interpolation More Examples Electrical Engineering
Chpter. Direct Method of Interpoltion More Emples Electricl Engineering Emple hermistors re used to mesure the temperture of bodies. hermistors re bsed on mterils chnge in resistnce with temperture. o
More informationSection 14.3 Arc Length and Curvature
Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in
More informationLecture Notes PH 411/511 ECE 598 A. La Rosa Portland State University INTRODUCTION TO QUANTUM MECHANICS
Lecture Notes PH 4/5 ECE 598. L Ros Portlnd Stte University INTRODUCTION TO QUNTUM MECHNICS Underlying subject of the PROJECT ssignment: QUNTUM ENTNGLEMENT Fundmentls: EPR s view on the completeness of
More informationQuantum Physics II (8.05) Fall 2013 Assignment 2
Quntum Physics II (8.05) Fll 2013 Assignment 2 Msschusetts Institute of Technology Physics Deprtment Due Fridy September 20, 2013 September 13, 2013 3:00 pm Suggested Reding Continued from lst week: 1.
More informationWeek 10: Riemann integral and its properties
Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the
More informationEntropy and Ergodic Theory Notes 10: Large Deviations I
Entropy nd Ergodic Theory Notes 10: Lrge Devitions I 1 A chnge of convention This is our first lecture on pplictions of entropy in probbility theory. In probbility theory, the convention is tht ll logrithms
More informationLecture 3. Limits of Functions and Continuity
Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live
More informationCorrelation and Regression
Topic 3 Correltion nd Regression In this section, we shll tke creful look t the nture of liner reltionships found in the dt used to construct sctterplot. The first of these, correltion, emines this reltionship
More informationOptimal Experiment Design with Diffuse Prior Information
Optiml Experiment Design with Diffuse Prior Informtion Cristin R. Rojs Grhm C. Goodwin Jmes S. Welsh Arie Feuer Abstrct In system identifiction one lwys ims to lern s much s possible bout system from given
More informationQuantum Physics I (8.04) Spring 2016 Assignment 8
Quntum Physics I (8.04) Spring 206 Assignment 8 MIT Physics Deprtment Due Fridy, April 22, 206 April 3, 206 2:00 noon Problem Set 8 Reding: Griffiths, pges 7376, 882 (on scttering sttes). Ohnin, Chpter
More informationChapter 4 Models for Stationary Time Series
Chpter 4 Models for Sttionry Time Series This chpter discusses the bsic concepts of brod clss of prmetric time series models the utoregressivemoving verge models (ARMA. These models hve ssumed gret importnce
More informationSection 4: Integration ECO4112F 2011
Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic
More informationSTEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.
STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t
More information