Data Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Data Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading"

Transcription

1 Dt Assimiltion Aln O Neill Dt Assimiltion Reserch Centre University of Reding

2 Contents Motivtion Univrite sclr dt ssimiltion Multivrite vector dt ssimiltion Optiml Interpoltion BLUE 3d-Vritionl Method Klmn Filter 4d-Vritionl Method Applictions of dt ssimiltion in erth system science

3 Motivtion

4 DARC Wht is dt ssimiltion? Dt ssimiltion is the technique whereby observtionl dt re combined with output from numericl model to produce n optiml estimte of the evolving stte of the system

5 Why We Need Dt Assimiltion rnge of observtions rnge of techniques different errors dt gps quntities not mesured quntities linked

6 DARC

7 Some Uses of Dt Assimiltion Opertionl wether nd ocen forecsting Sesonl wether forecsting Lnd-surfce process Globl climte dtsets Plnning stellite mesurements Evlution of models nd observtions DARC

8 Preliminry Concepts

9 Wht We Wnt o Know x t tmos stte vector s t c surfce fluxes model prmeters X t x t, s t, c

10 Wht We Also Wnt o Know Errors in models Errors in observtions Wht observtions to mke

11 DAA ASSIMILAION SYSEM Dt Cche A Error Sttistics model observtions O DAS A Numericl Model F B

12 he Dt Assimiltion Process observtions forecsts compre reject djust estimtes of stte & prmeters

13 X observtion model trjectory t

14 DARC Dt Assimiltion: n nlogy Driving with your eyes closed: open eyes every 0 seconds nd correct trjectory

15 Bsic Concept of Dt Assimiltion Informtion is ccumulted in time into the model stte nd propgted to ll vribles

16 DARC Wht re the benefits of dt ssimiltion? Qulity control Combintion of dt Errors in dt nd in model Filling in dt poor regions Designing observtionl systems Mintining consistency Estimting unobserved quntities

17 DARC Methods of Dt Assimiltion Optiml interpoltion or pprox to it 3D vritionl method 3DVr 4D vritionl method 4DVr Klmn filter with pproximtions

18 ypes of Dt Assimiltion Sequentil Non-sequentil Intermittent Continous

19 Sequentil Intermittent Assimiltion obs obs obs obs obs obs nlysis model nlysis model nlysis

20 Sequentil Continuous Assimiltion obs obs obs obs obs

21 Non-sequentil Intermittent Assimiltion obs obs obs obs obs obs nlysis + model nlysis + model nlysis + model

22 Non-sequentil Continuous Assimiltion obs obs obs obs obs obs nlysis + model

23 Sttisticl Approch to Dt Assimiltion

24 DARC

25 Dt Assimiltion Mde Simple sclr cse

26 Lest Squres Method Minimum Vrince re two mesurements the 0, 0 > < > < > < > >< < + + ε ε σ ε σ ε ε ε ε ε t t

27 Estimte of the observtio ns : t s liner combintio n + he nlysis should be unbised : < > t +

28 Lest Squres Method Continued subject to the constrint : men squred error by minimizing its Estimte + + > + < > + >< < t t t σ σ ε ε σ

29 Lest Squres Method Continued σ σ σ + σ σ σ + σ σ σ + he precision of the nlysis is the sum of the precisions of the mesurements he nlysis therefore hs higher precision thn ny single mesurement if the sttistics re correct

30 Vritionl Approch 0 for which the vlue of is + J J σ σ J

31 Mximum Likelihood Estimte Obtin or ssume probbility distributions for the errors he best estimte of the stte is chosen to hve the gretest probbility, or mximum likelihood If errors normlly distributed,unbised nd uncorrelted, then sttes estimted by minimum vrince nd mximum likelihood re the sme

32 Mximum Likelihood Approch Bysin Derivtion A s s u m e w e hve lredy mde n observtio n the bckground forecst in dt ssimiltion hen the probbilit y distributi on of the truth for Gussin error sttistics is :, p exp σ the prior pdf

33 Mximum Likelihood Continued Byes' s formul for the posterior p d f given the observtio n i s : p p p p exp σ exp σ since p Mximize We get the i s the normlisin g fctor independen t sme posterior nswer p d f minimizing the cost Equivlenc e holds for multi - dimension l cse s o r ln to estimte o f the function for truth Gussin sttistics

34 Simple Sequentil Assimiltion error vrince i s : nlysis the nd, by : given i s weight optiml he the " innovtion " i s where Let b o b b b o b o b o b W W W W σ σ σ σ σ + +

35 Comments he nlysis is obtined by dding first guess to the innovtion Optiml weight is bckground error vrince multiplied by inverse of totl vrince Precision of nlysis is sum of precisions of bckground nd observtion Error vrince of nlysis is error vrince of bckground reduced by - optiml weight

36 Simple Assimiltion Cycle Observtion used once nd then discrded Forecst phse to updte Anlysis phse to updte Obtin bckground s b t i+ M [ t i ] nd nd Obtin vrince of bckground s b b b i b i+ σ b σ σ t σ t lterntively σ t i+ σ t i

37 Simple Klmn Filter,,,,,,, M covrince i s : e r r o r bckground Forecst where M M hen bised! not model, ] [ before step s Anlysis Q M M M Q t M t i i b i b m i m i t i i t b i b m m i t i t + > < + + > < σ ε σ ε ε ε ε ε ε

38 Multivrite Dt Assimiltion

39 Multivrite Cse x n x x t x stte vector y m y y t n vector observtio y

40 Stte Vectors x stte vector column mtrix x t true stte x b bckground stte x nlysis, estimte of x t

41 Ingredients of Good Estimte of the Stte Vector nlysis Strt from good first guess forecst from previous good nlysis Allow for errors in observtions nd first guess give most weight to dt you trust Anlysis should be smooth Anlysis should respect known physicl lws

42 Some Useful Mtrix Properties rnspose of product : A B B A Inverse of product : A B B A Inverse of trnspose : A A Positive definitene s s for symmetrix mtrix A : x, the sclr x A x > 0, unless x 0 this property is conserved through inversion

43 Observtions Observtions re gthered into n y observtion vector, clled the observtion vector Usully fewer observtions thn vribles in the model; they re irregulrly spced; nd my be of different kind to those in the model Introduce n observtion opertor to mp from model stte spce to observtion spce x H x

44 Errors

45 Vrince becomes Covrince Mtrix Errors in x i re often correlted sptil structure in flow dynmicl or chemicl reltionships Vrince for sclr cse becomes Covrince Mtrix for vector cse COV Digonl elements re the vrinces of x i Off-digonl elements re covrinces between x i nd x j Observtion of x i ffects estimte of x j

46 he Error Covrince Mtrix > < > < > < > < > < > < > < > < > < > < n n n n n n n n e e e e e e e e e e e e e e e e e e e e e e e e εε ε ε P i i e i e σ > <

47 Bckground Errors hey re the estimtion errors of the bckground stte: ε b x b x t B verge bis covrince < < ε b > ε < ε > ε < ε > b b >

48 Observtion Errors hey contin errors in the observtion process instrumentl error, errors in the design of H, nd representtiveness errors, ie discretizton errors tht prevent x t from being perfect representtion of the true stte ε y H x < ε > o t o R < ε < ε > ε < ε > o o o o >

49 Control Vribles We my not be ble to solve the nlysis problem for ll components of the model stte eg cloud-relted vribles, or need to reduce resolution he work spce is then not the model spce but the sub-spce in which we correct x b, clled control-vrible spce x x b + δx

50 Innovtions nd Residuls Key to dt ssimiltion is the use of differences between observtions nd the stte vector of the system We cll y H x b the innovtion We cll y H x the nlysis residul Give importnt informtion

51 Anlysis Errors hey re the estimtion errors of the nlysis stte tht we wnt to minimize ε x x t Covrince mtrix A

52 Using the Error Covrince Mtrix Recll tht n error covrince mtrix x for the error in hs the form: C C < εε > y H x H If where is mtrix, then the error covrince for y C HCH y is given by:

53 BLUE Estimtor he BLUE estimtor is given by: he nlysis error covrince mtrix is: Note tht: b b + + R H B H B H K x y K x x H K H B I A + + R H H R H B R H B H B H

54 Sttisticl Interpoltion with Lest Squres Estimtion Clled Best Liner Unbised Estimtor BLUE Simplified versions of this lgorithm yield the most common lgorithms used tody in meteorology nd ocenogrphy

55 Assumptions Used in BLUE Linerized observtion opertor: H x H x b H x x b B R nd re positive definite Errors re unbised: < x x >< y H x > b t t Errors re uncorrelted: < x x y H x > b t t Liner nlysis: corrections to bckground depend linerly on bckground obs Optiml nlysis: minimum vrince estimte 0 0

56 Optiml Interpoltion observtion observtion opertor x x b + K y H x b nlysis linerity H H bckground forecst mtrix inverse K B H H B H + R limited re

57 y H x b t obs point dt void x b

58 END

Tests for the Ratio of Two Poisson Rates

Tests for the Ratio of Two Poisson Rates Chpter 437 Tests for the Rtio of Two Poisson Rtes Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson

More information

Non-Linear & Logistic Regression

Non-Linear & Logistic Regression Non-Liner & Logistic Regression If the sttistics re boring, then you've got the wrong numbers. Edwrd R. Tufte (Sttistics Professor, Yle University) Regression Anlyses When do we use these? PART 1: find

More information

Continuous Random Variables

Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

LECTURE NOTE #12 PROF. ALAN YUILLE

LECTURE NOTE #12 PROF. ALAN YUILLE LECTURE NOTE #12 PROF. ALAN YUILLE 1. Clustering, K-mens, nd EM Tsk: set of unlbeled dt D = {x 1,..., x n } Decompose into clsses w 1,..., w M where M is unknown. Lern clss models p(x w)) Discovery of

More information

GNSS Data Assimilation and GNSS Tomography for Global and Regional Models

GNSS Data Assimilation and GNSS Tomography for Global and Regional Models GNSS Dt Assimiltion nd GNSS Tomogrphy for Globl nd Regionl Models M. Bender, K. Stephn, A. Rhodin, R. Potthst Germn Wether Service (DWD) Interntionl Symposium on Dt Assimiltion, Munich 214 27. Februry

More information

Lecture 19: Continuous Least Squares Approximation

Lecture 19: Continuous Least Squares Approximation Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for

More information

Numerical integration

Numerical integration 2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

More information

8 Laplace s Method and Local Limit Theorems

8 Laplace s Method and Local Limit Theorems 8 Lplce s Method nd Locl Limit Theorems 8. Fourier Anlysis in Higher DImensions Most of the theorems of Fourier nlysis tht we hve proved hve nturl generliztions to higher dimensions, nd these cn be proved

More information

Math 270A: Numerical Linear Algebra

Math 270A: Numerical Linear Algebra Mth 70A: Numericl Liner Algebr Instructor: Michel Holst Fll Qurter 014 Homework Assignment #3 Due Give to TA t lest few dys before finl if you wnt feedbck. Exercise 3.1. (The Bsic Liner Method for Liner

More information

THE UNIVERSITY OF CHICAGO Booth School of Business Business 41914, Spring Quarter 2015, Mr. Ruey S. Tsay

THE UNIVERSITY OF CHICAGO Booth School of Business Business 41914, Spring Quarter 2015, Mr. Ruey S. Tsay THE UNIVERSITY OF CHICAGO Booth School of Business Business 494, Spring Qurter 05, Mr. Ruey S. Tsy Reference: Chpter of the textbook. Introduction Lecture 3: Vector Autoregressive (VAR) Models Vector utoregressive

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics SCHOOL OF ENGINEERING & BUIL ENVIRONMEN Mthemtics An Introduction to Mtrices Definition of Mtri Size of Mtri Rows nd Columns of Mtri Mtri Addition Sclr Multipliction of Mtri Mtri Multipliction 7 rnspose

More information

Ordinary differential equations

Ordinary differential equations Ordinry differentil equtions Introduction to Synthetic Biology E Nvrro A Montgud P Fernndez de Cordob JF Urchueguí Overview Introduction-Modelling Bsic concepts to understnd n ODE. Description nd properties

More information

Chapter 2 Fundamental Concepts

Chapter 2 Fundamental Concepts Chpter 2 Fundmentl Concepts This chpter describes the fundmentl concepts in the theory of time series models In prticulr we introduce the concepts of stochstic process, men nd covrince function, sttionry

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

Problem. Statement. variable Y. Method: Step 1: Step 2: y d dy. Find F ( Step 3: Find f = Y. Solution: Assume

Problem. Statement. variable Y. Method: Step 1: Step 2: y d dy. Find F ( Step 3: Find f = Y. Solution: Assume Functions of Rndom Vrible Problem Sttement We know the pdf ( or cdf ) of rndom r vrible. Define new rndom vrible Y = g. Find the pdf of Y. Method: Step : Step : Step 3: Plot Y = g( ). Find F ( y) by mpping

More information

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,

More information

INTRODUCTION TO LINEAR ALGEBRA

INTRODUCTION TO LINEAR ALGEBRA ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR AGEBRA Mtrices nd Vectors Prof. Dr. Bülent E. Pltin Spring Sections & / ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR

More information

Stein-Rule Estimation and Generalized Shrinkage Methods for Forecasting Using Many Predictors

Stein-Rule Estimation and Generalized Shrinkage Methods for Forecasting Using Many Predictors Stein-Rule Estimtion nd Generlized Shrinkge Methods for Forecsting Using Mny Predictors Eric Hillebrnd CREATES Arhus University, Denmrk ehillebrnd@cretes.u.dk Te-Hwy Lee University of Cliforni, Riverside

More information

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs Pre-Session Review Prt 1: Bsic Algebr; Liner Functions nd Grphs A. Generl Review nd Introduction to Algebr Hierrchy of Arithmetic Opertions Opertions in ny expression re performed in the following order:

More information

1 Online Learning and Regret Minimization

1 Online Learning and Regret Minimization 2.997 Decision-Mking in Lrge-Scle Systems My 10 MIT, Spring 2004 Hndout #29 Lecture Note 24 1 Online Lerning nd Regret Minimiztion In this lecture, we consider the problem of sequentil decision mking in

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

Chapter 2. Determinants

Chapter 2. Determinants Chpter Determinnts The Determinnt Function Recll tht the X mtrix A c b d is invertible if d-bc0. The expression d-bc occurs so frequently tht it hs nme; it is clled the determinnt of the mtrix A nd is

More information

Best Approximation in the 2-norm

Best Approximation in the 2-norm Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

More information

Measuring Electron Work Function in Metal

Measuring Electron Work Function in Metal n experiment of the Electron topic Mesuring Electron Work Function in Metl Instructor: 梁生 Office: 7-318 Emil: shling@bjtu.edu.cn Purposes 1. To understnd the concept of electron work function in metl nd

More information

Testing categorized bivariate normality with two-stage. polychoric correlation estimates

Testing categorized bivariate normality with two-stage. polychoric correlation estimates Testing ctegorized bivrite normlity with two-stge polychoric correltion estimtes Albert Mydeu-Olivres Dept. of Psychology University of Brcelon Address correspondence to: Albert Mydeu-Olivres. Fculty of

More information

Numerical Integration

Numerical Integration Chpter 1 Numericl Integrtion Numericl differentition methods compute pproximtions to the derivtive of function from known vlues of the function. Numericl integrtion uses the sme informtion to compute numericl

More information

ECON 331 Lecture Notes: Ch 4 and Ch 5

ECON 331 Lecture Notes: Ch 4 and Ch 5 Mtrix Algebr ECON 33 Lecture Notes: Ch 4 nd Ch 5. Gives us shorthnd wy of writing lrge system of equtions.. Allows us to test for the existnce of solutions to simultneous systems. 3. Allows us to solve

More information

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION XX IMEKO World Congress Metrology for Green Growth September 9,, Busn, Republic of Kore THERMAL EXPANSION COEFFICIENT OF WATER FOR OLUMETRIC CALIBRATION Nieves Medin Hed of Mss Division, CEM, Spin, mnmedin@mityc.es

More information

A Signal-Level Fusion Model for Image-Based Change Detection in DARPA's Dynamic Database System

A Signal-Level Fusion Model for Image-Based Change Detection in DARPA's Dynamic Database System SPIE Aerosense 001 Conference on Signl Processing, Sensor Fusion, nd Trget Recognition X, April 16-0, Orlndo FL. (Minor errors in published version corrected.) A Signl-Level Fusion Model for Imge-Bsed

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

Ordinary Differential Equations- Boundary Value Problem

Ordinary Differential Equations- Boundary Value Problem Ordinry Differentil Equtions- Boundry Vlue Problem Shooting method Runge Kutt method Computer-bsed solutions o BVPFD subroutine (Fortrn IMSL subroutine tht Solves (prmeterized) system of differentil equtions

More information

CS667 Lecture 6: Monte Carlo Integration 02/10/05

CS667 Lecture 6: Monte Carlo Integration 02/10/05 CS667 Lecture 6: Monte Crlo Integrtion 02/10/05 Venkt Krishnrj Lecturer: Steve Mrschner 1 Ide The min ide of Monte Crlo Integrtion is tht we cn estimte the vlue of n integrl by looking t lrge number of

More information

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in

More information

Latent Structure Linear Regression

Latent Structure Linear Regression Applied Mthemtics, 2014, 5, 808-823 Published Online Mrch 2014 in SciRes. http://www.scirp.org/journl/m http://dx.doi.org/10.4236/m.2014.55077 Ltent Structure Liner Regression Agnr Höskuldsson Centre for

More information

Orthogonal Polynomials and Least-Squares Approximations to Functions

Orthogonal Polynomials and Least-Squares Approximations to Functions Chpter Orthogonl Polynomils nd Lest-Squres Approximtions to Functions **4/5/3 ET. Discrete Lest-Squres Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny

More information

Math 360: A primitive integral and elementary functions

Math 360: A primitive integral and elementary functions Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:

More information

Discrete Least-squares Approximations

Discrete Least-squares Approximations Discrete Lest-squres Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve

More information

Using QM for Windows. Using QM for Windows. Using QM for Windows LEARNING OBJECTIVES. Solving Flair Furniture s LP Problem

Using QM for Windows. Using QM for Windows. Using QM for Windows LEARNING OBJECTIVES. Solving Flair Furniture s LP Problem LEARNING OBJECTIVES Vlu%on nd pricing (November 5, 2013) Lecture 11 Liner Progrmming (prt 2) 10/8/16, 2:46 AM Olivier J. de Jong, LL.M., MM., MBA, CFD, CFFA, AA www.olivierdejong.com Solving Flir Furniture

More information

Estimation on Monotone Partial Functional Linear Regression

Estimation on Monotone Partial Functional Linear Regression A^VÇÚO 1 33 ò 1 4 Ï 217 c 8 Chinese Journl of Applied Probbility nd Sttistics Aug., 217, Vol. 33, No. 4, pp. 433-44 doi: 1.3969/j.issn.11-4268.217.4.8 Estimtion on Monotone Prtil Functionl Liner Regression

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point.

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point. PART MULTIPLE CHOICE Circle the pproprite response to ech of the questions below. Ech question hs vlue of point.. If in sequence the second level difference is constnt, thn the sequence is:. rithmetic

More information

Synoptic Meteorology I: Finite Differences September Partial Derivatives (or, Why Do We Care About Finite Differences?

Synoptic Meteorology I: Finite Differences September Partial Derivatives (or, Why Do We Care About Finite Differences? Synoptic Meteorology I: Finite Differences 16-18 September 2014 Prtil Derivtives (or, Why Do We Cre About Finite Differences?) With the exception of the idel gs lw, the equtions tht govern the evolution

More information

3.4 Numerical integration

3.4 Numerical integration 3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

More information

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014 Lecture 17 Integrtion: Guss Qudrture Dvid Semerro University of Illinois t Urbn-Chmpign Mrch 0, 014 Dvid Semerro (NCSA) CS 57 Mrch 0, 014 1 / 9 Tody: Objectives identify the most widely used qudrture method

More information

Numerical Integration

Numerical Integration Numericl Integrtion Wouter J. Den Hn London School of Economics c 2011 by Wouter J. Den Hn June 3, 2011 Qudrture techniques I = f (x)dx n n w i f (x i ) = w i f i i=1 i=1 Nodes: x i Weights: w i Qudrture

More information

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph.

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph. nlyzing Dmped Oscilltions Prolem (Medor, exmple 2-18, pp 44-48): Determine the eqution of the following grph. The eqution is ssumed to e of the following form f ( t) = K 1 u( t) + K 2 e!"t sin (#t + $

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VII

Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VII Tutoril VII: Liner Regression Lst updted 5/8/06 b G.G. Botte Deprtment of Chemicl Engineering ChE-0: Approches to Chemicl Engineering Problem Solving MATLAB Tutoril VII Liner Regression Using Lest Squre

More information

A Posteriori Diagnostics of the Impact of Observations on the AROME- France Convective-Scale Data-Assimilation System.

A Posteriori Diagnostics of the Impact of Observations on the AROME- France Convective-Scale Data-Assimilation System. A Posteriori Dignostics of the Impct of Observtions on the AROME- Frnce Convective-Scle Dt-Assimiltion System. Pierre Brousseu, Gérld Desroziers nd Frnçois Bouttier CNRM-GAME, CNRS nd Météo-Frnce, Toulouse,

More information

Georgia State University. Georgia State University. Jing Wang Georgia State University. Fall

Georgia State University. Georgia State University. Jing Wang Georgia State University. Fall Georgi Stte University ScholrWorks @ Georgi Stte University Mthemtics Disserttions Deprtment of Mthemtics nd Sttistics Fll 12-2016 Functionl Principl Component Anlysis for Discretely Observed Functionl

More information

M 1 = + x 2 f(x)dx M 2 =

M 1 = + x 2 f(x)dx M 2 = AppendixB The Delt method... Suppose you hve done study, over 4 yers, which yields 3 estimtes of survivl (sy, φ 1, φ 2, nd φ 3. But, suppose wht you re relly interested in is the estimte of the product

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

MA Handout 2: Notation and Background Concepts from Analysis

MA Handout 2: Notation and Background Concepts from Analysis MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,

More information

We know that if f is a continuous nonnegative function on the interval [a, b], then b

We know that if f is a continuous nonnegative function on the interval [a, b], then b 1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going

More information

DIFA, University of Basilicata, Italy

DIFA, University of Basilicata, Italy Guido Msiello nd Crmine Serio DIFA, Uniersity of Bsilict, Itly 1 Bsic methodologicl steps to retriee surfce emissiity Step 1: Represent emissiity with Fourier cosine truncted series to lower it dimensionlity

More information

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below . Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.

More information

Math Calculus with Analytic Geometry II

Math Calculus with Analytic Geometry II orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

More information

Matrices and Determinants

Matrices and Determinants Nme Chpter 8 Mtrices nd Determinnts Section 8.1 Mtrices nd Systems of Equtions Objective: In this lesson you lerned how to use mtrices, Gussin elimintion, nd Guss-Jordn elimintion to solve systems of liner

More information

A027 Uncertainties in Local Anisotropy Estimation from Multi-offset VSP Data

A027 Uncertainties in Local Anisotropy Estimation from Multi-offset VSP Data A07 Uncertinties in Locl Anisotropy Estimtion from Multi-offset VSP Dt M. Asghrzdeh* (Curtin University), A. Bon (Curtin University), R. Pevzner (Curtin University), M. Urosevic (Curtin University) & B.

More information

The solutions of the single electron Hamiltonian were shown to be Bloch wave of the form: ( ) ( ) ikr

The solutions of the single electron Hamiltonian were shown to be Bloch wave of the form: ( ) ( ) ikr Lecture #1 Progrm 1. Bloch solutions. Reciprocl spce 3. Alternte derivtion of Bloch s theorem 4. Trnsforming the serch for egenfunctions nd eigenvlues from solving PDE to finding the e-vectors nd e-vlues

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

Practice final exam solutions

Practice final exam solutions University of Pennsylvni Deprtment of Mthemtics Mth 26 Honors Clculus II Spring Semester 29 Prof. Grssi, T.A. Asher Auel Prctice finl exm solutions 1. Let F : 2 2 be defined by F (x, y (x + y, x y. If

More information

Mathematics notation and review

Mathematics notation and review Appendix A Mthemtics nottion nd review This ppendix gives brief coverge of the mthemticl nottion nd concepts tht you ll encounter in this book. In the spce of few pges it is of course impossible to do

More information

Y i = β 0 + β 1 X i + β 2 Z i + ε i

Y i = β 0 + β 1 X i + β 2 Z i + ε i Homework Exercise #7 Economics 4340 Fll 009 Dr. W. Ken Frr Nme Instructions: Answer the questions given below on lined sheets of pper (or they my be typed) nd provide ll the necessry printouts of informtion

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificil Intelligence Lecture 19: Decision Digrms Pieter Abbeel --- C Berkeley Mny slides over this course dpted from Dn Klein, Sturt Russell, Andrew Moore Decision Networks ME: choose the ction

More information

1 Error Analysis of Simple Rules for Numerical Integration

1 Error Analysis of Simple Rules for Numerical Integration cs41: introduction to numericl nlysis 11/16/10 Lecture 19: Numericl Integrtion II Instructor: Professor Amos Ron Scries: Mrk Cowlishw, Nthnel Fillmore 1 Error Anlysis of Simple Rules for Numericl Integrtion

More information

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a). The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

Interpreting Integrals and the Fundamental Theorem

Interpreting Integrals and the Fundamental Theorem Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of

More information

38.2. The Uniform Distribution. Introduction. Prerequisites. Learning Outcomes

38.2. The Uniform Distribution. Introduction. Prerequisites. Learning Outcomes The Uniform Distribution 8. Introduction This Section introduces the simplest type of continuous probbility distribution which fetures continuous rndom vrible X with probbility density function f(x) which

More information

Thin-Plate Splines. Contents

Thin-Plate Splines. Contents Thin-Plte Splines Dvid Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Cretive Commons Attribution 4.0 Interntionl License. To view copy of this

More information

PDE Notes. Paul Carnig. January ODE s vs PDE s 1

PDE Notes. Paul Carnig. January ODE s vs PDE s 1 PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................

More information

Strategy: Use the Gibbs phase rule (Equation 5.3). How many components are present?

Strategy: Use the Gibbs phase rule (Equation 5.3). How many components are present? University Chemistry Quiz 4 2014/12/11 1. (5%) Wht is the dimensionlity of the three-phse coexistence region in mixture of Al, Ni, nd Cu? Wht type of geometricl region dose this define? Strtegy: Use the

More information

Assimilation of sea-surface temperature into a hydrodynamic model of Port Phillip Bay, Australia

Assimilation of sea-surface temperature into a hydrodynamic model of Port Phillip Bay, Australia Assimiltion o se-surce temperture into hydrodynmic model o Port Phillip By, Austrli Mtthew R.J. urner 1, Jerey P. Wlker 1, Peter R. Oke 2 nd Rodger B. Gryson 1 1 Deprtment o Civil nd Environmentl Engineering,

More information

CSCI FOUNDATIONS OF COMPUTER SCIENCE

CSCI FOUNDATIONS OF COMPUTER SCIENCE 1 CSCI- 2200 FOUNDATIONS OF COMPUTER SCIENCE Spring 2015 My 7, 2015 2 Announcements Homework 9 is due now. Some finl exm review problems will be posted on the web site tody. These re prcqce problems not

More information

Introduction to Numerical Analysis

Introduction to Numerical Analysis Introduction to Numericl Anlysis Doron Levy Deprtment of Mthemtics nd Center for Scientific Computtion nd Mthemticl Modeling (CSCAMM) University of Mrylnd June 14, 2012 D. Levy CONTENTS Contents 1 Introduction

More information

12 TRANSFORMING BIVARIATE DENSITY FUNCTIONS

12 TRANSFORMING BIVARIATE DENSITY FUNCTIONS 1 TRANSFORMING BIVARIATE DENSITY FUNCTIONS Hving seen how to trnsform the probbility density functions ssocited with single rndom vrible, the next logicl step is to see how to trnsform bivrite probbility

More information

5.5 The Substitution Rule

5.5 The Substitution Rule 5.5 The Substitution Rule Given the usefulness of the Fundmentl Theorem, we wnt some helpful methods for finding ntiderivtives. At the moment, if n nti-derivtive is not esily recognizble, then we re in

More information

CALCULATED POWDER X-RAY DIFFRACTION LINE PROFILES VIA ABSORPTION

CALCULATED POWDER X-RAY DIFFRACTION LINE PROFILES VIA ABSORPTION 16 17 CALCULATED POWDER X-RAY DFFRACTON LNE PROFLES VA ABSORPTON Keji Liu nd Heifen Chen School of Mteril Science nd Engineering, Shnghi nstitute of Technology, Shnghi, Chin 2233 ABSTRACT We hve clculted

More information

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1 Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

More information

REVIEW Chapter 1 The Real Number System

REVIEW Chapter 1 The Real Number System Mth 7 REVIEW Chpter The Rel Number System In clss work: Solve ll exercises. (Sections. &. Definition A set is collection of objects (elements. The Set of Nturl Numbers N N = {,,,, 5, } The Set of Whole

More information

MTH 122 Fall 2008 Essex County College Division of Mathematics Handout Version 10 1 October 14, 2008

MTH 122 Fall 2008 Essex County College Division of Mathematics Handout Version 10 1 October 14, 2008 MTH 22 Fll 28 Essex County College Division of Mthemtics Hndout Version October 4, 28 Arc Length Everyone should be fmilir with the distnce formul tht ws introduced in elementry lgebr. It is bsic formul

More information

Chapter Direct Method of Interpolation More Examples Electrical Engineering

Chapter Direct Method of Interpolation More Examples Electrical Engineering Chpter. Direct Method of Interpoltion More Emples Electricl Engineering Emple hermistors re used to mesure the temperture of bodies. hermistors re bsed on mterils chnge in resistnce with temperture. o

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

Lecture Notes PH 411/511 ECE 598 A. La Rosa Portland State University INTRODUCTION TO QUANTUM MECHANICS

Lecture Notes PH 411/511 ECE 598 A. La Rosa Portland State University INTRODUCTION TO QUANTUM MECHANICS Lecture Notes PH 4/5 ECE 598. L Ros Portlnd Stte University INTRODUCTION TO QUNTUM MECHNICS Underlying subject of the PROJECT ssignment: QUNTUM ENTNGLEMENT Fundmentls: EPR s view on the completeness of

More information

Quantum Physics II (8.05) Fall 2013 Assignment 2

Quantum Physics II (8.05) Fall 2013 Assignment 2 Quntum Physics II (8.05) Fll 2013 Assignment 2 Msschusetts Institute of Technology Physics Deprtment Due Fridy September 20, 2013 September 13, 2013 3:00 pm Suggested Reding Continued from lst week: 1.

More information

Week 10: Riemann integral and its properties

Week 10: Riemann integral and its properties Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the

More information

Entropy and Ergodic Theory Notes 10: Large Deviations I

Entropy and Ergodic Theory Notes 10: Large Deviations I Entropy nd Ergodic Theory Notes 10: Lrge Devitions I 1 A chnge of convention This is our first lecture on pplictions of entropy in probbility theory. In probbility theory, the convention is tht ll logrithms

More information

Lecture 3. Limits of Functions and Continuity

Lecture 3. Limits of Functions and Continuity Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live

More information

Correlation and Regression

Correlation and Regression Topic 3 Correltion nd Regression In this section, we shll tke creful look t the nture of liner reltionships found in the dt used to construct sctterplot. The first of these, correltion, emines this reltionship

More information

Optimal Experiment Design with Diffuse Prior Information

Optimal Experiment Design with Diffuse Prior Information Optiml Experiment Design with Diffuse Prior Informtion Cristin R. Rojs Grhm C. Goodwin Jmes S. Welsh Arie Feuer Abstrct In system identifiction one lwys ims to lern s much s possible bout system from given

More information

Quantum Physics I (8.04) Spring 2016 Assignment 8

Quantum Physics I (8.04) Spring 2016 Assignment 8 Quntum Physics I (8.04) Spring 206 Assignment 8 MIT Physics Deprtment Due Fridy, April 22, 206 April 3, 206 2:00 noon Problem Set 8 Reding: Griffiths, pges 73-76, 8-82 (on scttering sttes). Ohnin, Chpter

More information

Chapter 4 Models for Stationary Time Series

Chapter 4 Models for Stationary Time Series Chpter 4 Models for Sttionry Time Series This chpter discusses the bsic concepts of brod clss of prmetric time series models the utoregressive-moving verge models (ARMA. These models hve ssumed gret importnce

More information

Section 4: Integration ECO4112F 2011

Section 4: Integration ECO4112F 2011 Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic

More information

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0. STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t

More information