Alexander Invariant of Tangles

Size: px
Start display at page:

Download "Alexander Invariant of Tangles"

Transcription

1 The.nb (source) file is at based on the original program at drorbn.net/academicpensieve/ /polypoly/. 1. Γ-Calculus Alexander Invariant of Tangles The following code expresses an element of Γ calculus in a nice format. In[1]:= ΓCollect[Γ[ω_, λ_]] := Γ[Simplify[ω], Collect[λ, x _, Collect[#,y _, Factor]&]]; Format[Γ[ω_,λ_]] := Module[{S, M}, S = Union@Cases[Γ[ω,λ], (x y) a_ a, ]; M = Outer[Factor[ x#1y#2λ]&, S, S]; M = Prepend[M, y # & /@ S] // Transpose; M = Prepend[M, Prepend[x # & /@ S, ω]]; M // MatrixForm]; For instance, we can display an element of Γ calculus as follows. In[3]:= Γ ω,{y a,y b }. g 11 g 12 g 21 g 22.{x a,x b } Out[3]= ω x a x b y a g 11 g 12 y b g 21 g 22 Next we program the stitching operation In[4]:= Γ /: Γ[ω1_, λ1_]γ[ω2_, λ2_] := Γ[ω1*ω2, λ1+λ2]; m a_,e_ c_ [Γ[ω_, λ_]] := Module {α,β,γ,δ,θ,ϵ,ϕ,ψ,ξ,}, α β θ ya,xaλ ya,xeλ ya λ γ δ ϵ = ye,xaλ ye,xeλ ye λ /.(y x) a e 0; ϕ ψ Ξ xa λ xe λ λ Γ (=1-γ)ω, {y β+α δ/ θ+α ϵ/ c,1}. ψ+δ ϕ/ Ξ+ϕ ϵ/.{xc,1} /. {t a t c, t e t c } // ΓCollect ; R+ a_,e_ := Γ 1, {y a,y e }. 1 1-t a.{x 0 t a,x e } ; a R- a_,e_ := R+ a,e /. t a 1/t a ; Checking meta-associativity

2 2 GammaCalculusDemoFull.nb In[8]:= ζ=γ ω, {y 1,y 2,y 3,y S }. α 11 α 12 α 13 θ 1 α 21 α 22 α 23 θ 2 α 31 α 32 α 33 θ 3 ϕ 1 ϕ 2 ϕ 3 Ξ.{x 1,x 2,x 3,x S } (ζ//m 1,2 1 //m 1,3 1 ) (ζ//m 2,3 2 //m 1,2 1 ) Out[8]= Out[9]= ω x 1 x 2 x 3 x S y 1 α 11 α 12 α 13 θ 1 y 2 α 21 α 22 α 23 θ 2 y 3 α 31 α 32 α 33 θ 3 y S ϕ 1 ϕ 2 ϕ 3 Ξ Checking the RIII relation In[10]:= R+ 1,4 R+ 2,5 R- 6,3 //m 1,6 1 //m 2,4 2 //m 3,5 3 Out[10]= 1 x 1 x 2 x 3 (-1+t1) t2 y t 1 t1 y 2 0 t t 2 y t2 t1 In[11]:= R- 1,4 R+ 5,2 R+ 6,3 //m 1,5 1 //m 2,6 2 //m 3,4 3 Out[11]= 1 x 1 x 2 x 3 (-1+t1) t2 y t 1 t1 y 2 0 t t 2 y t2 t1 Checking the RII relations In[12]:= R+ i,j R- k,l //m i,k i //m j,l j Out[12]= 1 x i x j y i 1 0 y j 0 1 Checking the Overcrossings Commute (OC) relation In[13]:= R+ 4,2 R+ 1,3 //m 1,4 1 Out[13]= 1 x 1 x 2 x 3 y t t 1 y 2 0 t 1 0 y t 1

3 GammaCalculusDemoFull.nb 3 In[14]:= R+ 4,3 R+ 1,2 //m 1,4 1 Out[14]= 1 x 1 x 2 x 3 y t t 1 y 2 0 t 1 0 y t 1 Compute the invariant of the figure-eight knot In[15]:= R+ 1,6 R+ 5,2 R- 3,8 R- 7,4 //m 1,2 1 //m 1,3 1 //m 1,4 1 //m 1,5 1 //m 1,6 1 //m 1,7 1 //m 1,8 1 Out[15]= 3-1 t1 - t 1 x 1 y 1 1 As another example, let us compute the invariant of the following tangle In[16]:= R 7,2 R 10,6 R 5,11 R 3,12 R 4,8 R 9,1 // m 1,4 1 // m 2,5 2 // m 2,6 2 // m 2,7 2 // m 3,8 3 // m 3,9 3 // m 3,10 3 // m 3,11 3 // m 3,12 3 Out[16]= t2 t3 (-t 1 (-1 + t 3 ) + t 3 ) x 1 x 2 x 3 y 1 - y 2 0 y 3 t3 -t1-t3+t1 t3 t1 (-1+t3) -t1-t3+t1 t3 - (-1+t1) (-1+t3) t3 (-1+t2+t3) (-t1-t3+t1 t3) t2-1+t2+t3 t1 (-1+t3) (-1+t2+t3) (-t1-t3+t1 t3) - (-1+t1) (1-t2-2 t3+t2 t3) (-1+t2+t3) (-t1-t3+t1 t3) -1+t2-1+t2+t3-1+t1+t2-t1 t2+2 t3-3 t1 t3-t2 t3+t1 t2 t (-1+t2+t3) (-t1-t3+t1 t3) Now let us compute the invariant of the knot 7 7 in the Knot Atlas.

4 4 GammaCalculusDemoFull.nb First we compute the invariant of the tangle inside the circle In[18]:= τ 1 = R 1,2 R 14,4 R 5,13 R 3,6 R 12,9 R 7,11 R 10,8 // m 1,4 1 // m 2,5 2 // m 2,6 2 // m 2,7 2 // m 2,8 2 // m 3,9 3 // m 3,10 3 // m 3,11 3 // m 3,12 3 // m 3,13 3 // m 3, t t3 x 1 Out[18]= y 1-1+t1+2 t2-2 t1 t2-t 2 2+t1 t t3-2 t1 t3-4 t2 t3+4 t1 t2 t3+t 2 2 t3-2 t1 t 2 2 t3-t 3 2+t1 t 3 2+t2 t t1 t2 t 3 2+t1 t 2 2 t 3 2 t2 (-t2-t3+t2 t3) y 2 - t1 (-1+t2)2 (-1+t3) 2 y 3 - t2 (-t2-t3+t2 t3) (-1+t3) (1-2 t2-t3+t2 t3) t2 (-t2-t3+t2 t3) The to obtain the invariant of the knot we perform two extra stitchings - In[19]:= τ 1 // m 2,1 2 // m 3,2 1 Out[19]= t t1-5 t 1 + t 12 x 1 y Extended Γ-Calculus First we format extended Γ-calculus In[20]:= eγcollect[eγ[ω_, λ_, σ_]] := eγ[simplify[ω], Collect[λ, x _, Collect[#, y _, Factor] &], σ]; Format[eΓ[ω_, λ_, σ_]] := Module[{S, M}, S = Union@Cases[eΓ[ω, λ, σ], (x y) a_ a, ]; M = Outer[Factor[ x#1 y #2 λ] &, S, S]; M = Prepend[M, y # & /@ S] // Transpose; M = Prepend[M, Prepend[x # & /@ S, ω]]; {M // MatrixForm, σ}]; eγ[ω1_, λ1_, σ1_] eγ[ω2_, λ2_, σ2_] := Simplify[PowerExpand[ω1 ω2 λ1 λ2 σ1 σ2 ]]; For example

5 GammaCalculusDemoFull.nb 5 In[23]:= eγ 1, {y a, y e } ta 0 t a.{x a, x e }, {s a, s e }.{v a, v e } Out[23]= 1 x a x e y a t a, s a v a + s e v e y e 0 t a Extended stitching In[24]:= eγ /: eγ[ω1_, λ1_, σ1_] eγ[ω2_, λ2_, σ2_] := eγ[ω1 * ω2, λ1 + λ2, σ1 + σ2]; em a_,e_ c_ [eγ[ω_, λ_, σ_]] := Module {α, β, γ, δ, θ, ϵ, ϕ, ψ, Ξ, }, α β θ γ δ ϵ = ya,x a λ ya,x e λ ya λ ye,x a λ ye,x e λ ye λ /. (y x) a e 0; ϕ ψ Ξ xa λ xe λ λ eγ = 1 - γ ω, {y c, 1}. β + α δ / θ + α ϵ / ψ + δ ϕ / Ξ + ϕ ϵ /.{x c, 1}, σ /. v a e 0 + v c ( va σ) ( ve σ) /. {t a t c, t e t c, b a b c, b e b c } // eγcollect ; + er a_,e_ := eγ 1, {y a, y e } ta.{x a, x e }, v a + t a v e ; 0 t a - + er a_,e_ := er a,e /. t a t 1 ā ; Cheking meta-associativity In[28]:= eζ = eγ ω, {y 1, y 2, y 3, y S }. α 11 α 12 α 13 θ 1 α 21 α 22 α 23 θ 2 α 31 α 32 α 33 θ 3 ϕ 1 ϕ 2 ϕ 3 Ξ.{x 1, x 2, x 3, x S }, s 1 v 1 + s 2 v 2 + s 3 v 3 + s S v S (eζ // em 1,2 1 // em 1,3 1 ) (eζ // em 2,3 2 // em 1,2 1 ) Out[28]= ω x 1 x 2 x 3 x S y 1 α 11 α 12 α 13 θ 1 y 2 α 21 α 22 α 23 θ 2 y 3 α 31 α 32 α 33 θ 3 y S ϕ 1 ϕ 2 ϕ 3 Ξ, s 1 v 1 + s 2 v 2 + s 3 v 3 + s S v S Out[29]= Strand reversal In[30]:= dh[a_][eγ[ω_, λ_, σ_]] := Module {α, θ, ϕ, Ξ, sa}, α θ ϕ Ξ = y a,x a λ ya λ xa λ λ /. (y x) a 0; sa = va σ; eγ α ω / sa, {y a, 1}. 1 α θ / α -ϕ / α (α Ξ - ϕ θ) / α.{x a, 1}, v a sa + σ /. {va 0} /. t a 1 t a, b a -b a // eγcollect ; Verifying the crossings

6 6 GammaCalculusDemoFull.nb + - In[31]:= er 1,2 // dh[1] (er 1,2 ) + - er 1,2 // dh[2] (er 1,2 ) - + er 1,2 // dh[1] (er 1,2 ) - + er 1,2 // dh[2] (er 1,2 ) Out[31]= Out[32]= Out[33]= Out[34]= Verifying the stitching relations In[35]:= ζ = eγ ω, {y b, y c, y S }. α β θ γ δ ϵ ϕ ψ Ξ.{x b, x c, x S }, s b v b + s c v c + s S v S (ζ // em b,c a // dh[a]) (ζ // dh[b] // dh[c] // em c,b a ) Out[35]= ω x b x c x S y b α β θ y c γ δ ϵ y S ϕ ψ Ξ, s b v b + s c v c + s S v S Out[36]= Strand doubling In[37]:= qδ[i_, j_, k_][eγ[ω_, λ_, σ_]] := Module ; {α, θ, ϕ, Ξ, si, M, ti,, ν}, α θ ϕ Ξ = y i,x i λ yi λ xi λ λ /. (y x) i 0 /. t i ti; si = vi σ /. t i ti; = -1 + ti; ν = α - si; M = -α+ti si+t j ν t j (-1+t k ) ν (-1+t j ) ν -si+ti α-t j ν (-1+t j ) θ t j (-1+t k ) θ ϕ ϕ Ξ eγ ω /. {t i t j t k }, {y j, y k, 1}.M.{x j, x k, 1} /. {ti t j t k }, σ /. {v i 0} + (v j + v k ) si /. t i ; ti t j t k // eγcollect Verifying the crossings

7 GammaCalculusDemoFull.nb In[38]:= qδ[1, 1, 2][eR 1,3 ] (er 2,3 er 1,4 // em 3,4 3 ) qδ[1, 1, 2][eR 1,3 ] (er 1,3 er 2,4 // em 3,4 3 ) qδ[2, 2, 3][eR 1,2 ] (er 1,2 er 4,3 // em 1,4 1 ) qδ[2, 2, 3][eR 1,2 ] (er 1,3 er 4,2 // em 1,4 1 ) Out[38]= Out[39]= Out[40]= Out[41]= Verifying the stitching relations In[42]:= ζ = eγ ω, {y i, y j, y S }. α β θ γ δ ϵ ϕ ψ Ξ.{x i, x j, x S }, s i v i + s j v j + s S v S (ζ // qδ[i, i 1, i 2 ] // qδ[j, j 1, j 2 ] // em i1,j 1 k 1 // em i2,j 2 k 2 ) (ζ // em i,j k // qδ[k, k 1, k 2 ]) Out[42]= ω x i x j x S y i α β θ y j γ δ ϵ y S ϕ ψ Ξ, s i v i + s j v j + s S v S Out[43]= 3. The Lie Algebra G 0 Again first we format G 0 In[44]:= CF[expr_] := expr // Simplify; /: CF[ [ω_, λ_]] := [CF[ω], CF[λ]]; /: [ω1_, λ1_] [ω2_, λ2_] := CF@ [ω1 ω2, λ1 + λ2]; [ω1_, λ1_] [ω2_, λ2_] := CF[ω1 ω2 λ1 λ2]; So for instance In[48]:= [ω, Sum[l x,y b x c y + q x,y u x w y, {x, {i, j}}, {y, {i, j}}]] Out[48]= [ω, b i c i l i,i + b i c j l i,j + b j c i l j,i + b j c j l j,j + u i w i q i,i + u i w j q i,j + u j w i q j,i + u j w j q j,j ] The switching operators

8 8 GammaCalculusDemoFull.nb In[49]:= N ui_ c j_ k_[ [ω_, λ_]] := CF ω, e -γ β u k + γ c k + λ /. c j u i 0 /. {γ cj λ, β ui λ} ; N wi_ c j_ k_[ [ω_, λ_]] := CF ω, e γ α w k + γ c k + λ /. c j w i 0 /. {γ cj λ, α wi λ} ; N wi_ u j_ k_[ [ω_, λ_]] := CF ν ω, -b k ν α β + ν β u k + ν δ u k w k + ν α w k + λ /. w i u j 0 /. ν 1 + b k δ -1 /. {α wi λ /. u j 0, β uj λ /. w i 0, δ wi,u j λ} ; The stitching operation In[52]:= gm i_,j_ k_ [ [ω_, λ_]] := CF[Module[{x}, ( [ω, λ] // N wi c j x // N ui c x x // N wx u j x) /. {c i c k, w j w k, y_ x y k, b i j b k }]] + gr i_,j_ = 1, b i c j + b 1 ī e b i u i w j ; gr i_,j_ = 1, -b i c j + b 1 ī e -b i - 1 u i w j ; Next we program a map from G 0 to extended Γ-calculus. In[54]:= G0toΓ[e_] := Module {A, λ, L, ω, Q, n, II, DD, T, M, σ, i, j}, ω = e 1 /. e x_ e Simplify[x /. b i_ Log[t i ]] // Simplify; λ = e 2 ; A = Union@Cases[λ, (b c) a_ a, ]; L = Outer[Factor[ b#1 c#2 λ] &, A, A]; Q = Outer[Factor[ u#1 w #2 λ] &, A, A]; n = Length[A]; II = IdentityMatrix[n]; DD = DiagonalMatrix[Table[b i, {i, A}]]; L i,j T = DiagonalMatrix Table Product t A i, {i, 1, n}, {j, 1, n} ; L i,j σ = Sum Product t A i, {i, 1, n} v A j, {j, 1, n} ; M = T.(II - DD.Q) /. e x_ e Simplify[x /. b i_ Log[t i ]] // Simplify; eγ ω -1, Table[y i, {i, A}].M.Table[x i, {i, A}], σ ; Verifying the crossings In[55]:= + + er i,j gr i,j // G0toΓ - - er i,j gr i,j // G0toΓ Out[55]= Out[56]= Verifying the stitching relations

9 GammaCalculusDemoFull.nb 9 In[57]:= ζ = [ω, Sum[l x,y b x c y + q x,y u x w y, {x, {i, j, S}}, {y, {i, j, S}}]] ζ // G0toΓ // em i,j k ζ // gm i,j k // G0toΓ Out[57]= [ω, b i c i l i,i + b i c j l i,j + b i c S l i,s + b j c i l j,i + b j c j l j,j + b j c S l j,s + b S c i l S,i + b S c j l S,j + b S c S l S,S + u i w i q i,i + u i w j q i,j + u i w S q i,s + u j w i q j,i + u j w j q j,j + u j w S q j,s + u S w i q S,i + u S w j q S,j + u S w S q S,S ] Out[58]= Orientation reversal In[59]:= gh[a_][e_ ] := (e /. {c a -c a, w a -w a, b a -b a, u a -u a }) // N ua c a a // N wa c a a // N wa u a a

ALEXANDER INVARIANTS OF TANGLES VIA EXPANSIONS. Huan Vo

ALEXANDER INVARIANTS OF TANGLES VIA EXPANSIONS. Huan Vo ALEXANDER INVARIANTS OF TANGLES VIA EXPANSIONS by Huan Vo A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Mathematics University of

More information

Chapter 4. Matrices and Matrix Rings

Chapter 4. Matrices and Matrix Rings Chapter 4 Matrices and Matrix Rings We first consider matrices in full generality, i.e., over an arbitrary ring R. However, after the first few pages, it will be assumed that R is commutative. The topics,

More information

Solutions for Chapter 3

Solutions for Chapter 3 Solutions for Chapter Solutions for exercises in section 0 a X b x, y 6, and z 0 a Neither b Sew symmetric c Symmetric d Neither The zero matrix trivially satisfies all conditions, and it is the only possible

More information

E E I M (E, I) E I 2 E M I I X I Y X Y I X, Y I X > Y x X \ Y Y {x} I B E B M E C E C C M r E X E r (X) X X r (X) = X E B M X E Y E X Y X B E F E F F E E E M M M M M M E B M E \ B M M 0 M M M 0 0 M x M

More information

arxiv: v1 [math.qa] 24 Oct 2017

arxiv: v1 [math.qa] 24 Oct 2017 ON META-MONOIDS AND THE FOX-MILNOR CONDITION HUAN VO arxiv:171008993v1 [mathqa] 24 Oct 2017 ABSTRACT In this paper we introduce an algebraic structure known as meta-monoids which is suited for the study

More information

Carleson measures and elliptic boundary value problems Abstract. Mathematics Subject Classification (2010). Keywords. 1.

Carleson measures and elliptic boundary value problems Abstract. Mathematics Subject Classification (2010). Keywords. 1. 2 3 4 5 6 7 8 9 0 A 2 3 4 5 6 7 8 9 20 2 22 23 24 25 26 27 28 29 30 3 32 33 34 BMO BMO R n R n+ + BMO Q R n l(q) T Q = {(x, t) R n+ + : x I, 0 < t < l(q)} Q T Q dµ R n+ + C Q R n µ(t (Q)) < C Q Q 35 36

More information

Matrix Representation

Matrix Representation Matrix Representation Matrix Rep. Same basics as introduced already. Convenient method of working with vectors. Superposition Complete set of vectors can be used to express any other vector. Complete set

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry CS 468 (Spring 2013) Discrete Differential Geometry Lecture 13 13 May 2013 Tensors and Exterior Calculus Lecturer: Adrian Butscher Scribe: Cassidy Saenz 1 Vectors, Dual Vectors and Tensors 1.1 Inner Product

More information

Matrices and their operations No. 1

Matrices and their operations No. 1 Matrices and their operations No. 1 Multiplication of 2 2 Matrices Nobuyuki TOSE October 11, 2016 Review 1: 2 2 Matrices 2 2 matrices A ( a 1 a 2 ) ( a1 a 2 ) ( ) a11 a 12 a 21 a 22 A 2 2 matrix is given

More information

Geometry of the Special Unitary Group

Geometry of the Special Unitary Group Geometry of the Special Unitary Group The elements of SU 2 are the unitary 2 2 matrices with determinant 1. It is not hard to see that they have the form a 1) ) b, b ā with āa+bb = 1. This is the transpose

More information

1 Matrices and matrix algebra

1 Matrices and matrix algebra 1 Matrices and matrix algebra 1.1 Examples of matrices A matrix is a rectangular array of numbers and/or variables. For instance 4 2 0 3 1 A = 5 1.2 0.7 x 3 π 3 4 6 27 is a matrix with 3 rows and 5 columns

More information

Applied Matrix Algebra Lecture Notes Section 2.2. Gerald Höhn Department of Mathematics, Kansas State University

Applied Matrix Algebra Lecture Notes Section 2.2. Gerald Höhn Department of Mathematics, Kansas State University Applied Matrix Algebra Lecture Notes Section 22 Gerald Höhn Department of Mathematics, Kansas State University September, 216 Chapter 2 Matrices 22 Inverses Let (S) a 11 x 1 + a 12 x 2 + +a 1n x n = b

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 Chapter LINEAR EQUATIONS Introduction to linear equations A linear equation in n unknowns x,

More information

Linear Algebra and Matrix Inversion

Linear Algebra and Matrix Inversion Jim Lambers MAT 46/56 Spring Semester 29- Lecture 2 Notes These notes correspond to Section 63 in the text Linear Algebra and Matrix Inversion Vector Spaces and Linear Transformations Matrices are much

More information

Ä is a basis for V Ä W. Say xi

Ä is a basis for V Ä W. Say xi Groups Fields Vector paces Homework #3 (2014-2015 Answers Q1: Tensor products: concrete examples Let V W be two-dimensional vector spaces with bases { 1 2} v v { } w w o { vi wj} 1 2 Ä is a basis for V

More information

ON HOW TO CONSTRUCT LEFT SEMIMODULES FROM THE RIGHT ONES

ON HOW TO CONSTRUCT LEFT SEMIMODULES FROM THE RIGHT ONES italian journal of pure and applied mathematics n. 32 2014 (561 578) 561 ON HOW TO CONSTRUCT LEFT SEMIMODULES FROM THE RIGHT ONES Barbora Batíková Department of Mathematics CULS Kamýcká 129, 165 21 Praha

More information

Faculty of Engineering, Mathematics and Science School of Mathematics

Faculty of Engineering, Mathematics and Science School of Mathematics Faculty of Engineering, Mathematics and Science School of Mathematics JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Module MA3429: Differential Geometry I Trinity Term 2018???, May??? SPORTS

More information

I. Relationship with previous work

I. Relationship with previous work x x i t j J t = {0, 1,...J t } j t (p jt, x jt, ξ jt ) p jt R + x jt R k k ξ jt R ξ t T j = 0 t (z i, ζ i, G i ), ζ i z i R m G i G i (p j, x j ) i j U(z i, ζ i, x j, p j, ξ j ; G i ) = u(ζ i, x j,

More information

A.1 Appendix on Cartesian tensors

A.1 Appendix on Cartesian tensors 1 Lecture Notes on Fluid Dynamics (1.63J/2.21J) by Chiang C. Mei, February 6, 2007 A.1 Appendix on Cartesian tensors [Ref 1] : H Jeffreys, Cartesian Tensors; [Ref 2] : Y. C. Fung, Foundations of Solid

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

4 / Gaussian Ensembles. Level Density

4 / Gaussian Ensembles. Level Density 4 / Gaussian Ensembles. Level Density In this short chapter we reproduce a statistical mechanical argument of Wigner to "derive" the level density for the Gaussian ensembles. The joint probability density

More information

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 11 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,, a n, b are given real

More information

BFK-gluing formula for zeta-determinants of Laplacians and a warped product metric

BFK-gluing formula for zeta-determinants of Laplacians and a warped product metric BFK-gluing formula for zeta-determinants of Laplacians and a warped product metric Yoonweon Lee (Inha University, Korea) Geometric and Singular Analysis Potsdam University February 20-24, 2017 (Joint work

More information

Math review. Math review

Math review. Math review Math review 1 Math review 3 1 series approximations 3 Taylor s Theorem 3 Binomial approximation 3 sin(x), for x in radians and x close to zero 4 cos(x), for x in radians and x close to zero 5 2 some geometry

More information

Matrices. Chapter What is a Matrix? We review the basic matrix operations. An array of numbers a a 1n A = a m1...

Matrices. Chapter What is a Matrix? We review the basic matrix operations. An array of numbers a a 1n A = a m1... Chapter Matrices We review the basic matrix operations What is a Matrix? An array of numbers a a n A = a m a mn with m rows and n columns is a m n matrix Element a ij in located in position (i, j The elements

More information

Chapter 2. Linear Algebra. rather simple and learning them will eventually allow us to explain the strange results of

Chapter 2. Linear Algebra. rather simple and learning them will eventually allow us to explain the strange results of Chapter 2 Linear Algebra In this chapter, we study the formal structure that provides the background for quantum mechanics. The basic ideas of the mathematical machinery, linear algebra, are rather simple

More information

A formula for the action of Dehn twists on the HOMFLY-PT type skein algebra and its application

A formula for the action of Dehn twists on the HOMFLY-PT type skein algebra and its application A formula for the action of Dehn twists on the HOMFLY-PT type skein algebra and its application Shunsuke Tsuji The university of Tokyo S Tsuji (Univ of Tokyo) Completed skein algebras 1 / 33 Outline of

More information

Abstract Algebra II Groups ( )

Abstract Algebra II Groups ( ) Abstract Algebra II Groups ( ) Melchior Grützmann / melchiorgfreehostingcom/algebra October 15, 2012 Outline Group homomorphisms Free groups, free products, and presentations Free products ( ) Definition

More information

DIFFERENTIAL MANIFOLDS HW Exercise Employing the summation convention, we have: [u, v] i = ui x j vj vi. x j u j

DIFFERENTIAL MANIFOLDS HW Exercise Employing the summation convention, we have: [u, v] i = ui x j vj vi. x j u j DIFFERENTIAL MANIFOLDS HW 3 KELLER VANDEBOGERT. Exercise.4 Employing the summation convention, we have: So that: [u, v] i = ui x j vj vi x j uj [w, [u, v]] i = wi x [u, k v]k x j x k wk v j ui v j x j

More information

ICS 6N Computational Linear Algebra Matrix Algebra

ICS 6N Computational Linear Algebra Matrix Algebra ICS 6N Computational Linear Algebra Matrix Algebra Xiaohui Xie University of California, Irvine xhx@uci.edu February 2, 2017 Xiaohui Xie (UCI) ICS 6N February 2, 2017 1 / 24 Matrix Consider an m n matrix

More information

arxiv: v1 [math.rt] 4 Jan 2016

arxiv: v1 [math.rt] 4 Jan 2016 IRREDUCIBLE REPRESENTATIONS OF THE CHINESE MONOID LUKASZ KUBAT AND JAN OKNIŃSKI Abstract. All irreducible representations of the Chinese monoid C n, of any rank n, over a nondenumerable algebraically closed

More information

Correlation 1. December 4, HMS, 2017, v1.1

Correlation 1. December 4, HMS, 2017, v1.1 Correlation 1 December 4, 2017 1 HMS, 2017, v1.1 Chapter References Diez: Chapter 7 Navidi, Chapter 7 I don t expect you to learn the proofs what will follow. Chapter References 2 Correlation The sample

More information

K(ζ) = 4ζ 2 x = 20 Θ = {θ i } Θ i=1 M = {m i} M i=1 A = {a i } A i=1 M A π = (π i ) n i=1 (Θ) n := Θ Θ (a, θ) u(a, θ) E γq [ E π m [u(a, θ)] ] C(π, Q) Q γ Q π m m Q m π m a Π = (π) U M A Θ

More information

CHAPTER 1. Polarisation

CHAPTER 1. Polarisation CHAPTER 1 Polarisation This report was prepared by Abhishek Dasgupta and Arijit Haldar based on notes in Dr. Ananda Dasgupta s Electromagnetism III class Topics covered in this chapter are the Jones calculus,

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

Combinatorial bases for representations. of the Lie superalgebra gl m n

Combinatorial bases for representations. of the Lie superalgebra gl m n Combinatorial bases for representations of the Lie superalgebra gl m n Alexander Molev University of Sydney Gelfand Tsetlin bases for gln Gelfand Tsetlin bases for gl n Finite-dimensional irreducible representations

More information

Symmetries, Fields and Particles 2013 Solutions

Symmetries, Fields and Particles 2013 Solutions Symmetries, Fields and Particles 03 Solutions Yichen Shi July 9, 04. a Define the groups SU and SO3, and find their Lie algebras. Show that these Lie algebras, including their bracket structure, are isomorphic.

More information

CHAPTER II: The QCD Lagrangian

CHAPTER II: The QCD Lagrangian CHAPTER II: The QCD Lagrangian.. Preparation: Gauge invariance for QED - 8 - Ã µ UA µ U i µ U U e U A µ i.5 e U µ U U Consider electrons represented by Dirac field ψx. Gauge transformation: Gauge field

More information

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic A FIRST COURSE IN LINEAR ALGEBRA An Open Text by Ken Kuttler Matrix Arithmetic Lecture Notes by Karen Seyffarth Adapted by LYRYX SERVICE COURSE SOLUTION Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)

More information

Sophus Lie s Approach to Differential Equations

Sophus Lie s Approach to Differential Equations Sophus Lie s Approach to Differential Equations IAP lecture 2006 (S. Helgason) 1 Groups Let X be a set. A one-to-one mapping ϕ of X onto X is called a bijection. Let B(X) denote the set of all bijections

More information

Simple classical Lie algebras in characteristic 2 and their gradations, II.

Simple classical Lie algebras in characteristic 2 and their gradations, II. Simple classical Lie algebras in characteristic 2 and their gradations, II. A. N. Grishkov 1 M. Guerreiro 2 Rua do Matão, 1010 - Butantã CEP 05508-900 - São Paulo-SP - Brazil grishkov@ime.usp.br Departamento

More information

Linear Algebra and Dirac Notation, Pt. 1

Linear Algebra and Dirac Notation, Pt. 1 Linear Algebra and Dirac Notation, Pt. 1 PHYS 500 - Southern Illinois University February 1, 2017 PHYS 500 - Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, 2017 1 / 13

More information

Vectors. September 2, 2015

Vectors. September 2, 2015 Vectors September 2, 2015 Our basic notion of a vector is as a displacement, directed from one point of Euclidean space to another, and therefore having direction and magnitude. We will write vectors in

More information

The GEOMETRY of the OCTONIONS

The GEOMETRY of the OCTONIONS The GEOMETRY of the OCTONIONS Tevian Dray I: Octonions II: Rotations III: Lorentz Transformations IV: Dirac Equation V: Exceptional Groups VI: Eigenvectors DIVISION ALGEBRAS Real Numbers: R Quaternions:

More information

UNIVERSITY OF DUBLIN

UNIVERSITY OF DUBLIN UNIVERSITY OF DUBLIN TRINITY COLLEGE JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Faculty of Engineering, Mathematics and Science school of mathematics Trinity Term 2015 Module MA3429

More information

1 Geometry of R Conic Sections Parametric Equations More Parametric Equations Polar Coordinates...

1 Geometry of R Conic Sections Parametric Equations More Parametric Equations Polar Coordinates... Contents 1 Geometry of R 1.1 Conic Sections............................................ 1. Parametric Equations........................................ 3 1.3 More Parametric Equations.....................................

More information

Matrices. Math 240 Calculus III. Wednesday, July 10, Summer 2013, Session II. Matrices. Math 240. Definitions and Notation.

Matrices. Math 240 Calculus III. Wednesday, July 10, Summer 2013, Session II. Matrices. Math 240. Definitions and Notation. function Matrices Calculus III Summer 2013, Session II Wednesday, July 10, 2013 Agenda function 1. 2. function function Definition An m n matrix is a rectangular array of numbers arranged in m horizontal

More information

MAT 2037 LINEAR ALGEBRA I web:

MAT 2037 LINEAR ALGEBRA I web: MAT 237 LINEAR ALGEBRA I 2625 Dokuz Eylül University, Faculty of Science, Department of Mathematics web: Instructor: Engin Mermut http://kisideuedutr/enginmermut/ HOMEWORK 2 MATRIX ALGEBRA Textbook: Linear

More information

ECS 178 Course Notes QUATERNIONS

ECS 178 Course Notes QUATERNIONS ECS 178 Course Notes QUATERNIONS Kenneth I. Joy Institute for Data Analysis and Visualization Department of Computer Science University of California, Davis Overview The quaternion number system was discovered

More information

MATRICES The numbers or letters in any given matrix are called its entries or elements

MATRICES The numbers or letters in any given matrix are called its entries or elements MATRICES A matrix is defined as a rectangular array of numbers. Examples are: 1 2 4 a b 1 4 5 A : B : C 0 1 3 c b 1 6 2 2 5 8 The numbers or letters in any given matrix are called its entries or elements

More information

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x =

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x = Linear Algebra Review Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1 x x = 2. x n Vectors of up to three dimensions are easy to diagram.

More information

Symmetry Methods for Differential and Difference Equations. Peter Hydon

Symmetry Methods for Differential and Difference Equations. Peter Hydon Lecture 2: How to find Lie symmetries Symmetry Methods for Differential and Difference Equations Peter Hydon University of Kent Outline 1 Reduction of order for ODEs and O Es 2 The infinitesimal generator

More information

A FORMULA FOR THE -core OF AN IDEAL

A FORMULA FOR THE -core OF AN IDEAL A FORMULA FOR THE -core OF AN IDEAL LOUIZA FOULI, JANET C. VASSILEV, AND ADELA N. VRACIU Abstract. Expanding on the work of Fouli and Vassilev [FV], we determine a formula for the -core for ideals in two

More information

Extra Problems: Chapter 1

Extra Problems: Chapter 1 MA131 (Section 750002): Prepared by Asst.Prof.Dr.Archara Pacheenburawana 1 Extra Problems: Chapter 1 1. In each of the following answer true if the statement is always true and false otherwise in the space

More information

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Somnath Bhowmick Materials Science and Engineering, IIT Kanpur April 6, 2018 Tensile test and Hooke s Law Upto certain strain (0.75),

More information

SPINNING AND BRANCHED CYCLIC COVERS OF KNOTS. 1. Introduction

SPINNING AND BRANCHED CYCLIC COVERS OF KNOTS. 1. Introduction SPINNING AND BRANCHED CYCLIC COVERS OF KNOTS C. KEARTON AND S.M.J. WILSON Abstract. A necessary and sufficient algebraic condition is given for a Z- torsion-free simple q-knot, q >, to be the r-fold branched

More information

Supplement to Multiresolution analysis on the symmetric group

Supplement to Multiresolution analysis on the symmetric group Supplement to Multiresolution analysis on the symmetric group Risi Kondor and Walter Dempsey Department of Statistics and Department of Computer Science The University of Chicago risiwdempsey@uchicago.edu

More information

Modular Categories and Applications I

Modular Categories and Applications I I Modular Categories and Applications I Texas A&M University U. South Alabama, November 2009 Outline I 1 Topological Quantum Computation 2 Fusion Categories Ribbon and Modular Categories Fusion Rules and

More information

Complex Hadamard matrices and 3-class association schemes

Complex Hadamard matrices and 3-class association schemes Complex Hadamard matrices and 3-class association schemes Akihiro Munemasa 1 1 Graduate School of Information Sciences Tohoku University (joint work with Takuya Ikuta) June 26, 2013 The 30th Algebraic

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K. R. MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Corrected Version, 7th April 013 Comments to the author at keithmatt@gmail.com Chapter 1 LINEAR EQUATIONS 1.1

More information

Mathematics Review Exercises. (answers at end)

Mathematics Review Exercises. (answers at end) Brock University Physics 1P21/1P91 Mathematics Review Exercises (answers at end) Work each exercise without using a calculator. 1. Express each number in scientific notation. (a) 437.1 (b) 563, 000 (c)

More information

GROUP THEORY PRIMER. New terms: so(2n), so(2n+1), symplectic algebra sp(2n)

GROUP THEORY PRIMER. New terms: so(2n), so(2n+1), symplectic algebra sp(2n) GROUP THEORY PRIMER New terms: so(2n), so(2n+1), symplectic algebra sp(2n) 1. Some examples of semi-simple Lie algebras In the previous chapter, we developed the idea of understanding semi-simple Lie algebras

More information

Inductive and Recursive Moving Frames for Lie Pseudo-Groups

Inductive and Recursive Moving Frames for Lie Pseudo-Groups Inductive and Recursive Moving Frames for Lie Pseudo-Groups Francis Valiquette (Joint work with Peter) Symmetries of Differential Equations: Frames, Invariants and Applications Department of Mathematics

More information

MAXIMAL ORDERS IN COMPLETELY 0-SIMPLE SEMIGROUPS

MAXIMAL ORDERS IN COMPLETELY 0-SIMPLE SEMIGROUPS MAXIMAL ORDERS IN COMPLETELY 0-SIMPLE SEMIGROUPS John Fountain and Victoria Gould Department of Mathematics University of York Heslington York YO1 5DD, UK e-mail: jbf1@york.ac.uk varg1@york.ac.uk Abstract

More information

Jim Lambers MAT 610 Summer Session Lecture 1 Notes

Jim Lambers MAT 610 Summer Session Lecture 1 Notes Jim Lambers MAT 60 Summer Session 2009-0 Lecture Notes Introduction This course is about numerical linear algebra, which is the study of the approximate solution of fundamental problems from linear algebra

More information

Symmetries, Fields and Particles 2013 Solutions

Symmetries, Fields and Particles 2013 Solutions Symmetries, Fields and Particles 013 Solutions Yichen Shi Easter 014 1. (a) Define the groups SU() and SO(3), and find their Lie algebras. Show that these Lie algebras, including their bracket structure,

More information

ON THE MATRIX EQUATION XA AX = X P

ON THE MATRIX EQUATION XA AX = X P ON THE MATRIX EQUATION XA AX = X P DIETRICH BURDE Abstract We study the matrix equation XA AX = X p in M n (K) for 1 < p < n It is shown that every matrix solution X is nilpotent and that the generalized

More information

E 2 = p 2 + m 2. [J i, J j ] = iɛ ijk J k

E 2 = p 2 + m 2. [J i, J j ] = iɛ ijk J k 3.1. KLEIN GORDON April 17, 2015 Lecture XXXI Relativsitic Quantum Mechanics 3.1 Klein Gordon Before we get to the Dirac equation, let s consider the most straightforward derivation of a relativistically

More information

HIGHER-ORDER THEORIES

HIGHER-ORDER THEORIES HIGHER-ORDER THEORIES Third-order Shear Deformation Plate Theory Displacement and strain fields Equations of motion Navier s solution for bending Layerwise Laminate Theory Interlaminar stress and strain

More information

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^ ! #" $%! & ' ( ) ) (, -. / ( 0 1#2 ' ( ) ) (, -3 / 0 4, 5 6/ 6 7, 6 8 9/ 5 :/ 5 ;=? @ A BDC EF G H I EJ KL M @C N G H I OPQ ;=R F L EI E G H A S T U S V@C N G H IDW G Q G XYU Z A [ H R C \ G ] ^ _ `

More information

Knot Floer Homology and the Genera of Torus Knots

Knot Floer Homology and the Genera of Torus Knots Knot Floer Homology and the Genera of Torus Knots Edward Trefts April, 2008 Introduction The goal of this paper is to provide a new computation of the genus of a torus knot. This paper will use a recent

More information

Product of derivations on C -algebras

Product of derivations on C -algebras Int. J. Nonlinear Anal. Appl. 7 (2016) No. 2, 109-114 ISSN: 2008-6822 (electronic) http://www.ijnaa.semnan.ac.ir Product of derivations on C -algebras Sayed Khalil Ekrami a,, Madjid Mirzavaziri b, Hamid

More information

Page 23, part (c) of Exercise 5: Adapt the argument given at the end of the section should be Adapt the argument used for the circle x 2 +y 2 = 1

Page 23, part (c) of Exercise 5: Adapt the argument given at the end of the section should be Adapt the argument used for the circle x 2 +y 2 = 1 Ideals, Varieties and Algorithms, fourth edition Errata for the fourth edition as of August 6, 2018 Page 23, part (c) of Exercise 5: Adapt the argument given at the end of the section should be Adapt the

More information

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD () Instanton (definition) (2) ADHM construction (3) Compactification. Instantons.. Notation. Throughout this talk, we will use the following notation:

More information

CS 468. Differential Geometry for Computer Science. Lecture 13 Tensors and Exterior Calculus

CS 468. Differential Geometry for Computer Science. Lecture 13 Tensors and Exterior Calculus CS 468 Differential Geometry for Computer Science Lecture 13 Tensors and Exterior Calculus Outline Linear and multilinear algebra with an inner product Tensor bundles over a surface Symmetric and alternating

More information

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock WEYL S LEMMA, ONE OF MANY Daniel W Stroock Abstract This note is a brief, and somewhat biased, account of the evolution of what people working in PDE s call Weyl s Lemma about the regularity of solutions

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

DIFFERENTIAL OPERATORS ON A CUBIC CONE

DIFFERENTIAL OPERATORS ON A CUBIC CONE DIFFERENTIAL OPERATORS ON A CUBIC CONE I. N. Bernstein, I. M. Gel'fand, and S. I. Gel'fand Consider in the space C 3 with the coordinates x {, x 2, x 3 the surface X defined by the equation x\ + x\ + x\

More information

Ranking accounting, banking and finance journals: A note

Ranking accounting, banking and finance journals: A note MPRA Munich Personal RePEc Archive Ranking accounting, banking and finance ournals: A note George Halkos and Nickolaos Tzeremes University of Thessaly, Department of Economics January 2012 Online at https://mpra.ub.uni-muenchen.de/36166/

More information

Hamiltonian flows, cotangent lifts, and momentum maps

Hamiltonian flows, cotangent lifts, and momentum maps Hamiltonian flows, cotangent lifts, and momentum maps Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto April 3, 2014 1 Symplectic manifolds Let (M, ω) and (N, η) be symplectic

More information

Hyperbolic volumes and zeta values An introduction

Hyperbolic volumes and zeta values An introduction Hyperbolic volumes and zeta values An introduction Matilde N. Laĺın University of Alberta mlalin@math.ulberta.ca http://www.math.ualberta.ca/~mlalin Annual North/South Dialogue in Mathematics University

More information

Class Meeting # 12: Kirchhoff s Formula and Minkowskian Geometry

Class Meeting # 12: Kirchhoff s Formula and Minkowskian Geometry MATH 8.52 COURSE NOTES - CLASS MEETING # 2 8.52 Introduction to PDEs, Spring 207 Professor: Jared Speck Class Meeting # 2: Kirchhoff s Formula and Minkowskian Geometry. Kirchhoff s Formula We are now ready

More information

Chap. 3. Controlled Systems, Controllability

Chap. 3. Controlled Systems, Controllability Chap. 3. Controlled Systems, Controllability 1. Controllability of Linear Systems 1.1. Kalman s Criterion Consider the linear system ẋ = Ax + Bu where x R n : state vector and u R m : input vector. A :

More information

A Note on Cohomology of a Riemannian Manifold

A Note on Cohomology of a Riemannian Manifold Int. J. Contemp. ath. Sciences, Vol. 9, 2014, no. 2, 51-56 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2014.311131 A Note on Cohomology of a Riemannian anifold Tahsin Ghazal King Saud

More information

HIGHER-ORDER THEORIES

HIGHER-ORDER THEORIES HIGHER-ORDER THEORIES THIRD-ORDER SHEAR DEFORMATION PLATE THEORY LAYERWISE LAMINATE THEORY J.N. Reddy 1 Third-Order Shear Deformation Plate Theory Assumed Displacement Field µ u(x y z t) u 0 (x y t) +

More information

Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl --

Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl -- Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl -- Consider the function h(x) =IJ\ 4-8x 3-12x 2 + 24x {?\whose graph is

More information

The reflexive and anti-reflexive solutions of the matrix equation A H XB =C

The reflexive and anti-reflexive solutions of the matrix equation A H XB =C Journal of Computational and Applied Mathematics 200 (2007) 749 760 www.elsevier.com/locate/cam The reflexive and anti-reflexive solutions of the matrix equation A H XB =C Xiang-yang Peng a,b,, Xi-yan

More information

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D.

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Ruppert A. EMPIRICAL ESTIMATE OF THE KERNEL MIXTURE Here we

More information

A (computer friendly) alternative to Morse Novikov theory for real and angle valued maps

A (computer friendly) alternative to Morse Novikov theory for real and angle valued maps A (computer friendly) alternative to Morse Novikov theory for real and angle valued maps Dan Burghelea Department of mathematics Ohio State University, Columbus, OH based on joint work with Stefan Haller

More information

Algebra I Fall 2007

Algebra I Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.701 Algebra I Fall 007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.701 007 Geometry of the Special Unitary

More information

L8. Basic concepts of stress and equilibrium

L8. Basic concepts of stress and equilibrium L8. Basic concepts of stress and equilibrium Duggafrågor 1) Show that the stress (considered as a second order tensor) can be represented in terms of the eigenbases m i n i n i. Make the geometrical representation

More information

Controllability, Observability & Local Decompositions

Controllability, Observability & Local Decompositions ontrollability, Observability & Local Decompositions Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Lie Bracket Distributions ontrollability ontrollability Distributions

More information

Worksheet A VECTORS 1 G H I D E F A B C

Worksheet A VECTORS 1 G H I D E F A B C Worksheet A G H I D E F A B C The diagram shows three sets of equally-spaced parallel lines. Given that AC = p that AD = q, express the following vectors in terms of p q. a CA b AG c AB d DF e HE f AF

More information

Groups. 3.1 Definition of a Group. Introduction. Definition 3.1 Group

Groups. 3.1 Definition of a Group. Introduction. Definition 3.1 Group C H A P T E R t h r e E Groups Introduction Some of the standard topics in elementary group theory are treated in this chapter: subgroups, cyclic groups, isomorphisms, and homomorphisms. In the development

More information

Chapter 3 Stress, Strain, Virtual Power and Conservation Principles

Chapter 3 Stress, Strain, Virtual Power and Conservation Principles Chapter 3 Stress, Strain, irtual Power and Conservation Principles 1 Introduction Stress and strain are key concepts in the analytical characterization of the mechanical state of a solid body. While stress

More information

Survey on Weak Amenability

Survey on Weak Amenability Survey on Weak Amenability OZAWA, Narutaka RIMS at Kyoto University Conference on von Neumann Algebras and Related Topics January 2012 Research partially supported by JSPS N. OZAWA (RIMS at Kyoto University)

More information

Classical Lie algebras and Yangians

Classical Lie algebras and Yangians Classical Lie algebras and Yangians Alexander Molev University of Sydney Advanced Summer School Integrable Systems and Quantum Symmetries Prague 2007 Lecture 1. Casimir elements for classical Lie algebras

More information

Homework 2 Foundations of Computational Math 2 Spring 2019

Homework 2 Foundations of Computational Math 2 Spring 2019 Homework 2 Foundations of Computational Math 2 Spring 2019 Problem 2.1 (2.1.a) Suppose (v 1,λ 1 )and(v 2,λ 2 ) are eigenpairs for a matrix A C n n. Show that if λ 1 λ 2 then v 1 and v 2 are linearly independent.

More information

Biderivations of the Algebra of Strictly Upper Triangular Matrices over a Commutative Ring

Biderivations of the Algebra of Strictly Upper Triangular Matrices over a Commutative Ring Journal of Mathematical Research & Exposition Nov., 2011, Vol. 31, No. 6, pp. 965 976 DOI:10.3770/j.issn:1000-341X.2011.06.002 Http://jmre.dlut.edu.cn Biderivations of the Algebra of Strictly Upper Triangular

More information

Computing Moore-Penrose Inverses of Ore Polynomial Matrices Yang Zhang

Computing Moore-Penrose Inverses of Ore Polynomial Matrices Yang Zhang Computing Moore-Penrose Inverses of Ore Polynomial Matrices Yang Zhang Department of Mathematics University of Manitoba, Canada Outline History and motivation. Theorems and algorithms for quaternion polynomials

More information