Linear Algebra and Dirac Notation, Pt. 1

Size: px
Start display at page:

Download "Linear Algebra and Dirac Notation, Pt. 1"

Transcription

1 Linear Algebra and Dirac Notation, Pt. 1 PHYS Southern Illinois University February 1, 2017 PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

2 Motivation In this lecture we develop the basic tools to study the mathematical theory of finite-dimensional quantum mechanics. We will be primarily focused on how this theory can be applied to quantum information processing. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

3 Hilbert Space Quantum mechanics describes physical systems in terms of Hilbert Spaces. When we refer to Hilbert space in this course, we mean some d-dimensional complex vector space H with a defined inner product. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

4 Hilbert Space Quantum mechanics describes physical systems in terms of Hilbert Spaces. When we refer to Hilbert space in this course, we mean some d-dimensional complex vector space H with a defined inner product. Definition (Inner Product) A function, : H H C is an inner product on vector space H if for all v, w i H and λ i C: 1 Linearity in the second argument: v, i λ iw i = i λ i v, w i ; 2 Conjugate-commutativity: v, w = w, v ; 3 Non-negativity: v, v 0 with equality iff v = 0. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

5 Hilbert Space Quantum mechanics describes physical systems in terms of Hilbert Spaces. When we refer to Hilbert space in this course, we mean some d-dimensional complex vector space H with a defined inner product. Definition (Inner Product) A function, : H H C is an inner product on vector space H if for all v, w i H and λ i C: 1 Linearity in the second argument: v, i λ iw i = i λ i v, w i ; 2 Conjugate-commutativity: v, w = w, v ; 3 Non-negativity: v, v 0 with equality iff v = 0. Two vectors v, w H are orthogonal if v, w = 0. A vector v is normalized if v := v, v = 1. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

6 Dirac Notation - Kets In 1939, P.M. Dirac published a paper that introduced a notation for linear algebra that is commonly referred to today as Dirac Notation. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

7 Dirac Notation - Kets In 1939, P.M. Dirac published a paper that introduced a notation for linear algebra that is commonly referred to today as Dirac Notation. For a Hilbert space H, every vector ψ H is written as a ket ψ. If ψ, ϕ H, then their inner product is denoted by ψ ϕ := ψ, ϕ. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

8 Dirac Notation - Kets In 1939, P.M. Dirac published a paper that introduced a notation for linear algebra that is commonly referred to today as Dirac Notation. For a Hilbert space H, every vector ψ H is written as a ket ψ. If ψ, ϕ H, then their inner product is denoted by Notation ψ ϕ := ψ, ϕ. We will be primarily interested in noramlized vectors. We write ψ for an arbitrary ψ H and ψ (without the tilde ) if ψ is normalized and parallel to ψ : ψ = 1 ψ. ψ PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

9 Orthonormal Bases For a d-dimensional Hilbert space H, we can always construct an orthonormal basis { b 1, b 2, b d } with b i H and b i b j = δ ij. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

10 Orthonormal Bases For a d-dimensional Hilbert space H, we can always construct an orthonormal basis { b 1, b 2, b d } with b i H and b i b j = δ ij. Every element ψ H can be written as a linear combination of basis vectors: d ψ = x i b i. i=1 Normalization requires 1 = ψ ψ = d i=1 x i 2. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

11 Orthonormal Bases For a d-dimensional Hilbert space H, we can always construct an orthonormal basis { b 1, b 2, b d } with b i H and b i b j = δ ij. Every element ψ H can be written as a linear combination of basis vectors: d ψ = x i b i. i=1 Normalization requires 1 = ψ ψ = d i=1 x i 2. Every vector space has an infinite number of orthonormal bases. In practice, one identifies some particular basis that is easier to work with and calls it the computational basis. Computational basis vectors are denoted by 0, 1,, d 1. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

12 Orthonormal Bases Proposition The inner product between any two vectors ψ, φ H is given by ψ φ = d i=1 y i x i, where φ = d i=1 x i b i, ψ = d i=1 y i b i, and { b 1, b 2,, b d } is any orthonormal basis for H. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

13 Orthonormal Bases Proposition The inner product between any two vectors ψ, φ H is given by ψ φ = d i=1 y i x i, where φ = d i=1 x i b i, ψ = d i=1 y i b i, and { b 1, b 2,, b d } is any orthonormal basis for H. Proof PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

14 Dual Space and Bras Definition (Dual Space) For a Hilbert space H, its dual space H is the vector space consisting of all linear functions acting on H. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

15 Dual Space and Bras Definition (Dual Space) For a Hilbert space H, its dual space H is the vector space consisting of all linear functions acting on H. For every f H, there exists a unique η H such that f ( ψ ) = η ψ ψ H. The function f is called the dual vector of η and it is sometimes denoted by the bra η := f. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

16 Dual Space and Bras Definition (Dual Space) For a Hilbert space H, its dual space H is the vector space consisting of all linear functions acting on H. For every f H, there exists a unique η H such that f ( ψ ) = η ψ ψ H. The function f is called the dual vector of η and it is sometimes denoted by the bra η := f. If { b 1, b 2,, b d } is an arbitrary orthonormal basis and ψ = d i=1 x i b i, then the bra of ψ is given by ψ = d i=1 x i b i. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

17 Dual Space and Bras Remark Think of the inner product between two vectors ψ and φ as multiplication of a bra onto a ket. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

18 Dual Space and Bras Remark Think of the inner product between two vectors ψ and φ as multiplication of a bra onto a ket. For φ = d i=1 x i b i and ψ = d i=1 y i b i, their inner product is ψ φ = = = ( d i=1 d i=1 j=1 d i=1 ) yi b i d y i x i. d x j b j j=1 y i x j ( b i )( b j ) = d d i=1 j=1 y i x j b i b j PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

19 Dual Space and Bras In the basis { b i }, kets are represented by column vectors and bras are represented by row vectors as: x 1 φ =. x 2. x d ψ. = ( y 1 y 2 y d ). PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

20 Dual Space and Bras In the basis { b i }, kets are represented by column vectors and bras are represented by row vectors as: x 1 φ =. x 2. x d ψ. = ( y 1 y 2 y d ). Their inner product is given by standard matrix multiplication: x 1 ψ φ = ( y1 y2 yd ) x 2. = x d d i=1 y i x i. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

21 The Outer Product and Linear Operators Definition (Linear Operator) A linear operator on H is a linear transformation T : H H. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

22 The Outer Product and Linear Operators Definition (Linear Operator) A linear operator on H is a linear transformation T : H H. Definition (Outer Product) For two vectors ψ and φ their outer product is the linear operator denoted by ψ φ and has the action ψ φ : η ψ φ η = φ η ψ. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

23 The Outer Product and Linear Operators Definition (Linear Operator) A linear operator on H is a linear transformation T : H H. Definition (Outer Product) For two vectors ψ and φ their outer product is the linear operator denoted by ψ φ and has the action ψ φ : η ψ φ η = φ η ψ. Remark Think of the outer product between two vectors ψ and φ as multiplication of a ket onto a bra. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

24 The Outer Product and Linear Operators An arbitrary linear operator on H can be written as T = i,j t ij b i b j, where { b 1, b 2,, b d } is an arbitrary orthonormal basis. The numbers t ij are called the components of T with respect to the basis {b i }. The matrix representation of T in this basis is given by matrix T b : t 11 t 12 t 1d T =. t 21 t 22 t 2d T b =., where t ij = b i T b j. t d1 t d2 t dd PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

25 The Outer Product and Linear Operators An arbitrary linear operator on H can be written as T = i,j t ij b i b j, where { b 1, b 2,, b d } is an arbitrary orthonormal basis. The numbers t ij are called the components of T with respect to the basis {b i }. The matrix representation of T in this basis is given by matrix T b : t 11 t 12 t 1d T =. t 21 t 22 t 2d T b =., where t ij = b i T b j. t d1 t d2 t dd The components are also denoted by [[T b ]] ij := t ij = b i T b j. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

26 The Outer Product and Linear Operators Example Consider the operator T = What is the matrix representation of T in (a) The computation basis { 0, 1 }, (b) The Hadamard basis { +, }, where + = 1/2( ) and = 1/2( 0 1 )? (c) What is the action of T on the vector ψ = cos θ + + sin θ? PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

27 The Adjoint Operator Definition (Adjoint) For a linear operator T on H, the adjoint of T, denoted by T, is the unique operator satisfying ψ T φ = φ T ψ ψ, φ H. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

28 The Adjoint Operator Definition (Adjoint) For a linear operator T on H, the adjoint of T, denoted by T, is the unique operator satisfying ψ T φ = φ T ψ ψ, φ H. For an orthonormal basis { b i } d i=1, the matrix components of T are related to the matrix components of T by [[T b ]] ij = b i T b j = b j T b i = [[T b ]] ji. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

29 The Adjoint Operator Definition (Adjoint) For a linear operator T on H, the adjoint of T, denoted by T, is the unique operator satisfying ψ T φ = φ T ψ ψ, φ H. For an orthonormal basis { b i } d i=1, the matrix components of T are related to the matrix components of T by [[T b ]] ij = b i T b j = b j T b i = [[T b ]] ji. The matrix representation for T is obtained by taking the conjugate transpose of the matrix representation for T. PHYS Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, / 13

Linear Algebra using Dirac Notation: Pt. 2

Linear Algebra using Dirac Notation: Pt. 2 Linear Algebra using Dirac Notation: Pt. 2 PHYS 476Q - Southern Illinois University February 6, 2018 PHYS 476Q - Southern Illinois University Linear Algebra using Dirac Notation: Pt. 2 February 6, 2018

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

Linear Algebra and Dirac Notation, Pt. 3

Linear Algebra and Dirac Notation, Pt. 3 Linear Algebra and Dirac Notation, Pt. 3 PHYS 500 - Southern Illinois University February 1, 2017 PHYS 500 - Southern Illinois University Linear Algebra and Dirac Notation, Pt. 3 February 1, 2017 1 / 16

More information

Vector spaces and operators

Vector spaces and operators Vector spaces and operators Sourendu Gupta TIFR, Mumbai, India Quantum Mechanics 1 2013 22 August, 2013 1 Outline 2 Setting up 3 Exploring 4 Keywords and References Quantum states are vectors We saw that

More information

Linear Algebra and Dirac Notation, Pt. 2

Linear Algebra and Dirac Notation, Pt. 2 Linear Algebra and Dirac Notation, Pt. 2 PHYS 500 - Southern Illinois University February 1, 2017 PHYS 500 - Southern Illinois University Linear Algebra and Dirac Notation, Pt. 2 February 1, 2017 1 / 14

More information

Lecture 3: Hilbert spaces, tensor products

Lecture 3: Hilbert spaces, tensor products CS903: Quantum computation and Information theory (Special Topics In TCS) Lecture 3: Hilbert spaces, tensor products This lecture will formalize many of the notions introduced informally in the second

More information

Hilbert Spaces: Infinite-Dimensional Vector Spaces

Hilbert Spaces: Infinite-Dimensional Vector Spaces Hilbert Spaces: Infinite-Dimensional Vector Spaces PHYS 500 - Southern Illinois University October 27, 2016 PHYS 500 - Southern Illinois University Hilbert Spaces: Infinite-Dimensional Vector Spaces October

More information

The quantum state as a vector

The quantum state as a vector The quantum state as a vector February 6, 27 Wave mechanics In our review of the development of wave mechanics, we have established several basic properties of the quantum description of nature:. A particle

More information

Mathematical Methods wk 1: Vectors

Mathematical Methods wk 1: Vectors Mathematical Methods wk : Vectors John Magorrian, magog@thphysoxacuk These are work-in-progress notes for the second-year course on mathematical methods The most up-to-date version is available from http://www-thphysphysicsoxacuk/people/johnmagorrian/mm

More information

Mathematical Methods wk 1: Vectors

Mathematical Methods wk 1: Vectors Mathematical Methods wk : Vectors John Magorrian, magog@thphysoxacuk These are work-in-progress notes for the second-year course on mathematical methods The most up-to-date version is available from http://www-thphysphysicsoxacuk/people/johnmagorrian/mm

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Fall Semester 2006 Christopher J. Cramer. Lecture 5, January 27, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Fall Semester 2006 Christopher J. Cramer. Lecture 5, January 27, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Fall Semester 2006 Christopher J. Cramer Lecture 5, January 27, 2006 Solved Homework (Homework for grading is also due today) We are told

More information

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I Physics 342 Lecture 2 Linear Algebra I Lecture 2 Physics 342 Quantum Mechanics I Wednesday, January 27th, 21 From separation of variables, we move to linear algebra Roughly speaking, this is the study

More information

Short Course in Quantum Information Lecture 2

Short Course in Quantum Information Lecture 2 Short Course in Quantum Information Lecture Formal Structure of Quantum Mechanics Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture

More information

Linear Algebra in Hilbert Space

Linear Algebra in Hilbert Space Physics 342 Lecture 16 Linear Algebra in Hilbert Space Lecture 16 Physics 342 Quantum Mechanics I Monday, March 1st, 2010 We have seen the importance of the plane wave solutions to the potentialfree Schrödinger

More information

LECTURE 6: LINEAR VECTOR SPACES, BASIS VECTORS AND LINEAR INDEPENDENCE. Prof. N. Harnew University of Oxford MT 2012

LECTURE 6: LINEAR VECTOR SPACES, BASIS VECTORS AND LINEAR INDEPENDENCE. Prof. N. Harnew University of Oxford MT 2012 LECTURE 6: LINEAR VECTOR SPACES, BASIS VECTORS AND LINEAR INDEPENDENCE Prof. N. Harnew University of Oxford MT 2012 1 Outline: 6. LINEAR VECTOR SPACES, BASIS VECTORS AND LINEAR INDEPENDENCE 6.1 Linear

More information

Categories and Quantum Informatics: Hilbert spaces

Categories and Quantum Informatics: Hilbert spaces Categories and Quantum Informatics: Hilbert spaces Chris Heunen Spring 2018 We introduce our main example category Hilb by recalling in some detail the mathematical formalism that underlies quantum theory:

More information

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I Physics 342 Lecture 2 Linear Algebra I Lecture 2 Physics 342 Quantum Mechanics I Wednesday, January 3th, 28 From separation of variables, we move to linear algebra Roughly speaking, this is the study of

More information

Outline 1. Real and complex p orbitals (and for any l > 0 orbital) 2. Dirac Notation :Symbolic vs shorthand Hilbert Space Vectors,

Outline 1. Real and complex p orbitals (and for any l > 0 orbital) 2. Dirac Notation :Symbolic vs shorthand Hilbert Space Vectors, chmy564-19 Fri 18jan19 Outline 1. Real and complex p orbitals (and for any l > 0 orbital) 2. Dirac Notation :Symbolic vs shorthand Hilbert Space Vectors, 3. Theorems vs. Postulates Scalar (inner) prod.

More information

. Here we are using the standard inner-product over C k to define orthogonality. Recall that the inner-product of two vectors φ = i α i.

. Here we are using the standard inner-product over C k to define orthogonality. Recall that the inner-product of two vectors φ = i α i. CS 94- Hilbert Spaces, Tensor Products, Quantum Gates, Bell States 1//07 Spring 007 Lecture 01 Hilbert Spaces Consider a discrete quantum system that has k distinguishable states (eg k distinct energy

More information

Quantum Computation. Alessandra Di Pierro Computational models (Circuits, QTM) Algorithms (QFT, Quantum search)

Quantum Computation. Alessandra Di Pierro Computational models (Circuits, QTM) Algorithms (QFT, Quantum search) Quantum Computation Alessandra Di Pierro alessandra.dipierro@univr.it 21 Info + Programme Info: http://profs.sci.univr.it/~dipierro/infquant/ InfQuant1.html Preliminary Programme: Introduction and Background

More information

Page 52. Lecture 3: Inner Product Spaces Dual Spaces, Dirac Notation, and Adjoints Date Revised: 2008/10/03 Date Given: 2008/10/03

Page 52. Lecture 3: Inner Product Spaces Dual Spaces, Dirac Notation, and Adjoints Date Revised: 2008/10/03 Date Given: 2008/10/03 Page 5 Lecture : Inner Product Spaces Dual Spaces, Dirac Notation, and Adjoints Date Revised: 008/10/0 Date Given: 008/10/0 Inner Product Spaces: Definitions Section. Mathematical Preliminaries: Inner

More information

A Brief Introduction to Functional Analysis

A Brief Introduction to Functional Analysis A Brief Introduction to Functional Analysis Sungwook Lee Department of Mathematics University of Southern Mississippi sunglee@usm.edu July 5, 2007 Definition 1. An algebra A is a vector space over C with

More information

Chapter III. Quantum Computation. Mathematical preliminaries. A.1 Complex numbers. A.2 Linear algebra review

Chapter III. Quantum Computation. Mathematical preliminaries. A.1 Complex numbers. A.2 Linear algebra review Chapter III Quantum Computation These lecture notes are exclusively for the use of students in Prof. MacLennan s Unconventional Computation course. c 2017, B. J. MacLennan, EECS, University of Tennessee,

More information

II. The Machinery of Quantum Mechanics

II. The Machinery of Quantum Mechanics II. The Machinery of Quantum Mechanics Based on the results of the experiments described in the previous section, we recognize that real experiments do not behave quite as we expect. This section presents

More information

1 The Dirac notation for vectors in Quantum Mechanics

1 The Dirac notation for vectors in Quantum Mechanics This module aims at developing the mathematical foundation of Quantum Mechanics, starting from linear vector space and covering topics such as inner product space, Hilbert space, operators in Quantum Mechanics

More information

Chapter 2. Linear Algebra. rather simple and learning them will eventually allow us to explain the strange results of

Chapter 2. Linear Algebra. rather simple and learning them will eventually allow us to explain the strange results of Chapter 2 Linear Algebra In this chapter, we study the formal structure that provides the background for quantum mechanics. The basic ideas of the mathematical machinery, linear algebra, are rather simple

More information

Lecture notes on Quantum Computing. Chapter 1 Mathematical Background

Lecture notes on Quantum Computing. Chapter 1 Mathematical Background Lecture notes on Quantum Computing Chapter 1 Mathematical Background Vector states of a quantum system with n physical states are represented by unique vectors in C n, the set of n 1 column vectors 1 For

More information

Chapter 10. Quantum algorithms

Chapter 10. Quantum algorithms Chapter 10. Quantum algorithms Complex numbers: a quick review Definition: C = { a + b i : a, b R } where i = 1. Polar form of z = a + b i is z = re iθ, where r = z = a 2 + b 2 and θ = tan 1 y x Alternatively,

More information

Vectors Coordinate frames 2D implicit curves 2D parametric curves. Graphics 2008/2009, period 1. Lecture 2: vectors, curves, and surfaces

Vectors Coordinate frames 2D implicit curves 2D parametric curves. Graphics 2008/2009, period 1. Lecture 2: vectors, curves, and surfaces Graphics 2008/2009, period 1 Lecture 2 Vectors, curves, and surfaces Computer graphics example: Pixar (source: http://www.pixar.com) Computer graphics example: Pixar (source: http://www.pixar.com) Computer

More information

Formalism of Quantum Mechanics

Formalism of Quantum Mechanics Dirac Notation Formalism of Quantum Mechanics We can use a shorthand notation for the normalization integral I = "! (r,t) 2 dr = "! * (r,t)! (r,t) dr =!! The state! is called a ket. The complex conjugate

More information

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding.

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding. CS 94- Bell States Bell Inequalities 9//04 Fall 004 Lecture Hilbert Space Entanglement Quantum Gates Bell States Superdense Coding 1 One qubit: Recall that the state of a single qubit can be written as

More information

Angular Momentum in Quantum Mechanics

Angular Momentum in Quantum Mechanics Angular Momentum in Quantum Mechanics In classical mechanics the angular momentum L = r p of any particle moving in a central field of force is conserved. For the reduced two-body problem this is the content

More information

The Principles of Quantum Mechanics: Pt. 1

The Principles of Quantum Mechanics: Pt. 1 The Principles of Quantum Mechanics: Pt. 1 PHYS 476Q - Southern Illinois University February 15, 2018 PHYS 476Q - Southern Illinois University The Principles of Quantum Mechanics: Pt. 1 February 15, 2018

More information

Complex numbers: a quick review. Chapter 10. Quantum algorithms. Definition: where i = 1. Polar form of z = a + b i is z = re iθ, where

Complex numbers: a quick review. Chapter 10. Quantum algorithms. Definition: where i = 1. Polar form of z = a + b i is z = re iθ, where Chapter 0 Quantum algorithms Complex numbers: a quick review / 4 / 4 Definition: C = { a + b i : a, b R } where i = Polar form of z = a + b i is z = re iθ, where r = z = a + b and θ = tan y x Alternatively,

More information

1 Dirac Notation for Vector Spaces

1 Dirac Notation for Vector Spaces Theoretical Physics Notes 2: Dirac Notation This installment of the notes covers Dirac notation, which proves to be very useful in many ways. For example, it gives a convenient way of expressing amplitudes

More information

Principles of Quantum Mechanics Pt. 2

Principles of Quantum Mechanics Pt. 2 Principles of Quantum Mechanics Pt. 2 PHYS 500 - Southern Illinois University February 9, 2017 PHYS 500 - Southern Illinois University Principles of Quantum Mechanics Pt. 2 February 9, 2017 1 / 13 The

More information

1 Fundamental physical postulates. C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12

1 Fundamental physical postulates. C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12 C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12 In this and the next lecture we summarize the essential physical and mathematical aspects of quantum mechanics relevant to

More information

Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics. EE270 Fall 2017

Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics. EE270 Fall 2017 Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics Properties of Vector Spaces Unit vectors ~xi form a basis which spans the space and which are orthonormal ( if i = j ~xi

More information

Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 21 Square-Integrable Functions

Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 21 Square-Integrable Functions Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 21 Square-Integrable Functions (Refer Slide Time: 00:06) (Refer Slide Time: 00:14) We

More information

Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 Lecture 1 (2017) Jon Yard QNC 3126 jyard@uwaterloo.ca TAs Nitica Sakharwade nsakharwade@perimeterinstitute.ca

More information

1 Algebra of State Vectors

1 Algebra of State Vectors J. Rothberg October 6, Introduction to Quantum Mechanics: Part Algebra of State Vectors What does the State Vector mean? A state vector is not a property of a physical system, but rather represents an

More information

Some Introductory Notes on Quantum Computing

Some Introductory Notes on Quantum Computing Some Introductory Notes on Quantum Computing Markus G. Kuhn http://www.cl.cam.ac.uk/~mgk25/ Computer Laboratory University of Cambridge 2000-04-07 1 Quantum Computing Notation Quantum Computing is best

More information

Mathematical Formulation of the Superposition Principle

Mathematical Formulation of the Superposition Principle Mathematical Formulation of the Superposition Principle Superposition add states together, get new states. Math quantity associated with states must also have this property. Vectors have this property.

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

Mathematical Introduction

Mathematical Introduction Chapter 1 Mathematical Introduction HW #1: 164, 165, 166, 181, 182, 183, 1811, 1812, 114 11 Linear Vector Spaces: Basics 111 Field A collection F of elements a,b etc (also called numbers or scalars) with

More information

Lecture 3: Matrix and Matrix Operations

Lecture 3: Matrix and Matrix Operations Lecture 3: Matrix and Matrix Operations Representation, row vector, column vector, element of a matrix. Examples of matrix representations Tables and spreadsheets Scalar-Matrix operation: Scaling a matrix

More information

Math 108b: Notes on the Spectral Theorem

Math 108b: Notes on the Spectral Theorem Math 108b: Notes on the Spectral Theorem From section 6.3, we know that every linear operator T on a finite dimensional inner product space V has an adjoint. (T is defined as the unique linear operator

More information

Lecture 10: Eigenvectors and eigenvalues (Numerical Recipes, Chapter 11)

Lecture 10: Eigenvectors and eigenvalues (Numerical Recipes, Chapter 11) Lecture 1: Eigenvectors and eigenvalues (Numerical Recipes, Chapter 11) The eigenvalue problem, Ax= λ x, occurs in many, many contexts: classical mechanics, quantum mechanics, optics 22 Eigenvectors and

More information

ECS130 Scientific Computing. Lecture 1: Introduction. Monday, January 7, 10:00 10:50 am

ECS130 Scientific Computing. Lecture 1: Introduction. Monday, January 7, 10:00 10:50 am ECS130 Scientific Computing Lecture 1: Introduction Monday, January 7, 10:00 10:50 am About Course: ECS130 Scientific Computing Professor: Zhaojun Bai Webpage: http://web.cs.ucdavis.edu/~bai/ecs130/ Today

More information

Statistical Interpretation

Statistical Interpretation Physics 342 Lecture 15 Statistical Interpretation Lecture 15 Physics 342 Quantum Mechanics I Friday, February 29th, 2008 Quantum mechanics is a theory of probability densities given that we now have an

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=

More information

Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras

Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 4 Postulates of Quantum Mechanics I In today s lecture I will essentially be talking

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechanics for Scientists and Engineers David Miller Vector spaces, operators and matrices Vector spaces, operators and matrices Vector space Vector space We need a space in which our vectors exist

More information

Basic Quantum Mechanics Prof. Ajoy Ghatak Department of Physics Indian Institute of Technology, Delhi

Basic Quantum Mechanics Prof. Ajoy Ghatak Department of Physics Indian Institute of Technology, Delhi Basic Quantum Mechanics Prof. Ajoy Ghatak Department of Physics Indian Institute of Technology, Delhi Module No. # 07 Bra-Ket Algebra and Linear Harmonic Oscillator - II Lecture No. # 01 Dirac s Bra and

More information

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2011/2012, 4th quarter. Lecture 2: vectors, curves, and surfaces

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2011/2012, 4th quarter. Lecture 2: vectors, curves, and surfaces Lecture 2, curves, and surfaces Organizational remarks Tutorials: Tutorial 1 will be online later today TA sessions for questions start next week Practicals: Exams: Make sure to find a team partner very

More information

C/CS/Phys C191 Quantum Mechanics in a Nutshell 10/06/07 Fall 2009 Lecture 12

C/CS/Phys C191 Quantum Mechanics in a Nutshell 10/06/07 Fall 2009 Lecture 12 C/CS/Phys C191 Quantum Mechanics in a Nutshell 10/06/07 Fall 2009 Lecture 12 In this lecture we summarize the essential physical and mathematical aspects of quantum mechanics relevant to this course. Topics

More information

Quantum Information & Quantum Computing

Quantum Information & Quantum Computing Math 478, Phys 478, CS4803, February 9, 006 1 Georgia Tech Math, Physics & Computing Math 478, Phys 478, CS4803 Quantum Information & Quantum Computing Problems Set 1 Due February 9, 006 Part I : 1. Read

More information

Lecture 5: Vector Spaces I - Definitions

Lecture 5: Vector Spaces I - Definitions Lecture 5: Vector Spaces I - Definitions 1 Key points Many mathematical objects used in physics are elements of a Hilbert space Definition of vector spaces Definition of inner products Basis sets and expansion

More information

Mathematical Foundations of Quantum Mechanics

Mathematical Foundations of Quantum Mechanics Mathematical Foundations of Quantum Mechanics 2016-17 Dr Judith A. McGovern Maths of Vector Spaces This section is designed to be read in conjunction with chapter 1 of Shankar s Principles of Quantum Mechanics,

More information

Contravariant and Covariant as Transforms

Contravariant and Covariant as Transforms Contravariant and Covariant as Transforms There is a lot more behind the concepts of contravariant and covariant tensors (of any rank) than the fact that their basis vectors are mutually orthogonal to

More information

Introduction to Quantum Mechanics Physics Thursday February 21, Problem # 1 (10pts) We are given the operator U(m, n) defined by

Introduction to Quantum Mechanics Physics Thursday February 21, Problem # 1 (10pts) We are given the operator U(m, n) defined by Department of Physics Introduction to Quantum Mechanics Physics 5701 Temple University Z.-E. Meziani Thursday February 1, 017 Problem # 1 10pts We are given the operator Um, n defined by Ûm, n φ m >< φ

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Einar Pius University of Edinburgh Why this Course To raise interest in quantum computing To show how quantum computers could be useful To talk about concepts not found

More information

Lecture If two operators A, B commute then they have same set of eigenkets.

Lecture If two operators A, B commute then they have same set of eigenkets. Lecture 14 Matrix representing of Operators While representing operators in terms of matrices, we use the basis kets to compute the matrix elements of the operator as shown below < Φ 1 x Φ 1 >< Φ 1 x Φ

More information

Linear Operators, Eigenvalues, and Green s Operator

Linear Operators, Eigenvalues, and Green s Operator Chapter 10 Linear Operators, Eigenvalues, and Green s Operator We begin with a reminder of facts which should be known from previous courses. 10.1 Inner Product Space A vector space is a collection of

More information

Linear algebra. 1.1 Numbers. d n x = 10 n (1.1) n=m x

Linear algebra. 1.1 Numbers. d n x = 10 n (1.1) n=m x 1 Linear algebra 1.1 Numbers The natural numbers are the positive integers and zero. Rational numbers are ratios of integers. Irrational numbers have decimal digits d n d n x = 10 n (1.1 n=m x that do

More information

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar Quantum Computing Lecture 3 Principles of Quantum Mechanics Anuj Dawar What is Quantum Mechanics? Quantum Mechanics is a framework for the development of physical theories. It is not itself a physical

More information

DECAY OF SINGLET CONVERSION PROBABILITY IN ONE DIMENSIONAL QUANTUM NETWORKS

DECAY OF SINGLET CONVERSION PROBABILITY IN ONE DIMENSIONAL QUANTUM NETWORKS DECAY OF SINGLET CONVERSION PROBABILITY IN ONE DIMENSIONAL QUANTUM NETWORKS SCOTT HOTTOVY Abstract. Quantum networks are used to transmit and process information by using the phenomena of quantum mechanics.

More information

Spectral Theorem for Self-adjoint Linear Operators

Spectral Theorem for Self-adjoint Linear Operators Notes for the undergraduate lecture by David Adams. (These are the notes I would write if I was teaching a course on this topic. I have included more material than I will cover in the 45 minute lecture;

More information

Consistent Histories. Chapter Chain Operators and Weights

Consistent Histories. Chapter Chain Operators and Weights Chapter 10 Consistent Histories 10.1 Chain Operators and Weights The previous chapter showed how the Born rule can be used to assign probabilities to a sample space of histories based upon an initial state

More information

Introduction to Quantum Information Processing

Introduction to Quantum Information Processing Introdction to Qantm Information Processing Lectre 5 Richard Cleve Overview of Lectre 5 Review of some introdctory material: qantm states, operations, and simple qantm circits Commnication tasks: one qbit

More information

The following definition is fundamental.

The following definition is fundamental. 1. Some Basics from Linear Algebra With these notes, I will try and clarify certain topics that I only quickly mention in class. First and foremost, I will assume that you are familiar with many basic

More information

2. Introduction to quantum mechanics

2. Introduction to quantum mechanics 2. Introduction to quantum mechanics 2.1 Linear algebra Dirac notation Complex conjugate Vector/ket Dual vector/bra Inner product/bracket Tensor product Complex conj. matrix Transpose of matrix Hermitian

More information

1 Polarization of Light

1 Polarization of Light J. Rothberg April, 014 Outline: Introduction to Quantum Mechanics 1 Polarization of Light 1.1 Classical Description Light polarized in the x direction has an electric field vector E = E 0 ˆx cos(kz ωt)

More information

Lecture 6: Vector Spaces II - Matrix Representations

Lecture 6: Vector Spaces II - Matrix Representations 1 Key points Lecture 6: Vector Spaces II - Matrix Representations Linear Operators Matrix representation of vectors and operators Hermite conjugate (adjoint) operator Hermitian operator (self-adjoint)

More information

Linear Algebra. Min Yan

Linear Algebra. Min Yan Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

More information

Vector Spaces for Quantum Mechanics J. P. Leahy January 30, 2012

Vector Spaces for Quantum Mechanics J. P. Leahy January 30, 2012 PHYS 20602 Handout 1 Vector Spaces for Quantum Mechanics J. P. Leahy January 30, 2012 Handout Contents Examples Classes Examples for Lectures 1 to 4 (with hints at end) Definitions of groups and vector

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2012/2013, 4th quarter. Lecture 2: vectors, curves, and surfaces

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2012/2013, 4th quarter. Lecture 2: vectors, curves, and surfaces Lecture 2, curves, and surfaces Organizational remarks Tutorials: TA sessions for tutorial 1 start today Tutorial 2 will go online after lecture 3 Practicals: Make sure to find a team partner very soon

More information

1 Mathematical preliminaries

1 Mathematical preliminaries 1 Mathematical preliminaries The mathematical language of quantum mechanics is that of vector spaces and linear algebra. In this preliminary section, we will collect the various definitions and mathematical

More information

Introduction to Modern Quantum Field Theory

Introduction to Modern Quantum Field Theory Department of Mathematics University of Texas at Arlington Arlington, TX USA Febuary, 2016 Recall Einstein s famous equation, E 2 = (Mc 2 ) 2 + (c p) 2, where c is the speed of light, M is the classical

More information

Factoring on a Quantum Computer

Factoring on a Quantum Computer Factoring on a Quantum Computer The Essence Shor s Algorithm Wolfgang Polak wp@pocs.com Thanks to: Eleanor Rieffel Fuji Xerox Palo Alto Laboratory Wolfgang Polak San Jose State University, 4-14-010 - p.

More information

Assignment 2 Solutions. 1. The general state of a spin half particle with spin component S n = S ˆn = 1 2 can be shown to be given by

Assignment 2 Solutions. 1. The general state of a spin half particle with spin component S n = S ˆn = 1 2 can be shown to be given by PHYSICS 301 QUANTUM PHYSICS I (007) Assignment Solutions 1. The general state of a spin half particle with spin component S n = S ˆn = 1 can be shown to be given by S n = 1 = cos( 1 θ) S z = 1 + eiφ sin(

More information

Linear Algebra II. 7 Inner product spaces. Notes 7 16th December Inner products and orthonormal bases

Linear Algebra II. 7 Inner product spaces. Notes 7 16th December Inner products and orthonormal bases MTH6140 Linear Algebra II Notes 7 16th December 2010 7 Inner product spaces Ordinary Euclidean space is a 3-dimensional vector space over R, but it is more than that: the extra geometric structure (lengths,

More information

Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras

Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 6 Postulates of Quantum Mechanics II (Refer Slide Time: 00:07) In my last lecture,

More information

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19 Page 404 Lecture : Simple Harmonic Oscillator: Energy Basis Date Given: 008/11/19 Date Revised: 008/11/19 Coordinate Basis Section 6. The One-Dimensional Simple Harmonic Oscillator: Coordinate Basis Page

More information

Recitation 1 (Sep. 15, 2017)

Recitation 1 (Sep. 15, 2017) Lecture 1 8.321 Quantum Theory I, Fall 2017 1 Recitation 1 (Sep. 15, 2017) 1.1 Simultaneous Diagonalization In the last lecture, we discussed the situations in which two operators can be simultaneously

More information

C/CS/Phys 191 Quantum Mechanics in a Nutshell I 10/04/05 Fall 2005 Lecture 11

C/CS/Phys 191 Quantum Mechanics in a Nutshell I 10/04/05 Fall 2005 Lecture 11 C/CS/Phys 191 Quantum Mechanics in a Nutshell I 10/04/05 Fall 2005 Lecture 11 In this and the next lecture we summarize the essential physical and mathematical aspects of quantum mechanics relevant to

More information

Chapter 11 Evolution by Permutation

Chapter 11 Evolution by Permutation Chapter 11 Evolution by Permutation In what follows a very brief account of reversible evolution and, in particular, reversible computation by permutation will be presented We shall follow Mermin s account

More information

Parseval Frame Construction

Parseval Frame Construction LSU, LSU, USA July 6, 2012 1 Introduction 1 Introduction 2 1 Introduction 2 3 1 Introduction 2 3 4 1 Introduction 2 3 4 5 Introduction A vector space, V, is a nonempty set with two operations: addition

More information

Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum Computing University of Waterloo

Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum Computing University of Waterloo CS 497 Frontiers of Computer Science Introduction to Quantum Computing Lecture of http://www.cs.uwaterloo.ca/~cleve/cs497-f7 Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum

More information

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent.

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent. Lecture Notes: Orthogonal and Symmetric Matrices Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Orthogonal Matrix Definition. Let u = [u

More information

Linear Algebra 2 Spectral Notes

Linear Algebra 2 Spectral Notes Linear Algebra 2 Spectral Notes In what follows, V is an inner product vector space over F, where F = R or C. We will use results seen so far; in particular that every linear operator T L(V ) has a complex

More information

QLang: Qubit Language

QLang: Qubit Language QLang: Qubit Language Christopher Campbell Clément Canonne Sankalpa Khadka Winnie Narang Jonathan Wong September 24, 24 Introduction In 965, Gordon Moore predicted that the number of transistors in integrated

More information

Quantum Nonlocality Pt. 4: More on the CHSH Inequality

Quantum Nonlocality Pt. 4: More on the CHSH Inequality Quantum Nonlocality Pt. 4: More on the CHSH Inequality PHYS 500 - Southern Illinois University May 4, 2017 PHYS 500 - Southern Illinois University Quantum Nonlocality Pt. 4: More on the CHSH Inequality

More information

Chapter 2. Basic Principles of Quantum mechanics

Chapter 2. Basic Principles of Quantum mechanics Chapter 2. Basic Principles of Quantum mechanics In this chapter we introduce basic principles of the quantum mechanics. Quantum computers are based on the principles of the quantum mechanics. In the classical

More information

SPECTRAL THEORY EVAN JENKINS

SPECTRAL THEORY EVAN JENKINS SPECTRAL THEORY EVAN JENKINS Abstract. These are notes from two lectures given in MATH 27200, Basic Functional Analysis, at the University of Chicago in March 2010. The proof of the spectral theorem for

More information

Lecture 19 (Nov. 15, 2017)

Lecture 19 (Nov. 15, 2017) Lecture 19 8.31 Quantum Theory I, Fall 017 8 Lecture 19 Nov. 15, 017) 19.1 Rotations Recall that rotations are transformations of the form x i R ij x j using Einstein summation notation), where R is an

More information

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces.

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces. Math 350 Fall 2011 Notes about inner product spaces In this notes we state and prove some important properties of inner product spaces. First, recall the dot product on R n : if x, y R n, say x = (x 1,...,

More information

Unitary evolution: this axiom governs how the state of the quantum system evolves in time.

Unitary evolution: this axiom governs how the state of the quantum system evolves in time. CS 94- Introduction Axioms Bell Inequalities /7/7 Spring 7 Lecture Why Quantum Computation? Quantum computers are the only model of computation that escape the limitations on computation imposed by the

More information

Vector Spaces in Quantum Mechanics

Vector Spaces in Quantum Mechanics Chapter 8 Vector Spaces in Quantum Mechanics We have seen in the previous Chapter that there is a sense in which the state of a quantum system can be thought of as being made up of other possible states.

More information