L8. Basic concepts of stress and equilibrium

Size: px
Start display at page:

Download "L8. Basic concepts of stress and equilibrium"

Transcription

1 L8. Basic concepts of stress and equilibrium Duggafrågor 1) Show that the stress (considered as a second order tensor) can be represented in terms of the eigenbases m i n i n i. Make the geometrical representation of the stress in the principal stress base and consider the stress subdivided in terms of the mean stress and the stress deviator. Additional issue 6) Formulate the equivalence between the weak and strong representations of equilibrium for a solid subjected to quasistatic forces. Basic concept of stress Stress considered as second order tensor Consider the stress representation: ij e i e conv. j ij e i e j j 1 sum. Note the introduction of the dyadic product, e.g. e i e j. It is defined by A a b (where A is a second order tensor) and the contraction (or projection) is defined as A c a b c Α a where the scalar Α is defined by the scalar Α b c. Consequences: Traction w.r.t arbitrary orientation obtained via contraction! t n t i ij n j Holds for Cartesian basis; "Normally" taken as e i,2, e x, e y, e z t t i e i n ij e i e j n n n k e k ij n k e i e j e k ij n j e i t i ij n j jk Follows from "equilibrium" considerations of stress state. Consider 2D-stress state in e x e y -system:

2 2 L8.nb Considerations: Equilibrium A x t x A y t y A t Geometry n x 1 A x A ; n y 1 A y A A x A n x, A y A n y t n x t x n y t y Representation on matrixform t x n t x x y Τ xy t x n y y t y x y stress matrix n x n y t i ij n j stress matrix for a 2D plane stress state Principal stress state Consider the traction vector w.r.t. a given surface (defined by the orientation vector n):

3 L8.nb t Τ n n Τ t n n From the Cauchy stress theorem: t n Τ t n n n n n n 1 n 1= second order identity tensor Define the principal stresses: Consider "shear stress free" orientations: Τ! Τ n 1 n Egenvalueproblem det n 1 A Coeff. matrix (1) deta x Τ xz y Τ yz Τ xz Τ yz z n n n... n I 1 2 n I 2 n I Secular ekvation (2) The invariants: I 1 x y z I 2 x y x z y z Τ 2 xy Τ 2 2 xz Τ yz I Det x y z z Τ 2 xy y Τ 2 2 xz 2 Τ xz Τ yz x Τ yz (2) principal stresses: i,2, (ordered as 1 2 ) (1) principal orientations: n i,2, from i 1 n i with i given! Principal orientations: n i,2, orthogonal! Orthogonality of principal stress orientations Reconsider eigenvalue problem: i 1 n i,2, Orientations have "unit length" n i n i : 1 Consider: 1) n j i 1 n i

4 4 L8.nb 2) n i j 1 n j Assume distinct eigenvalues: i j when i j i n j n i n j n i j n i n j n i n j i n j n i j n i n j i j n i n j Orthogonality properties of principal orientations if i j : i j, n i n j 1 if i j : i j, n i n j om i j om i j Representation of stress state in eigenbases Properties of Cartesian basis: Consider 2nd order unit tensor 1 in Cartesian basis m ij e i e j : 1 ij m ij m ii m i Note! m i n i n i,2, are the eigenbases of the stress state 1 ij! Consider stress representation in Cartesian basis and in the eigenbases as ij m ij i m i where it was used that the shear stress components take on zero values in the principal coordinates. Hence, it suffices to consider the summation of stress components with respect to the eigenbases m i (as done in the last equality). Please note that the principal stresses i as well as the eigenbases m i are functions of the stress state itself, i.e. i,2, principal stresses Geometric interpretation of stress state - eigenbases 1 How about the scalar product, e.g ! How to formulate? Consider geometry! 2 : i j m i : m j j 1 Scalar product formulated in terms of double contraction m i : m j

5 L8.nb 5 m i : m j n i n i : n j n j def. orto. 1 n j n i n i n j om i j om i j 2 i 2 OK Consider the generalization to the Cartesian basis m ij : 2 ij ij This follows directly from j 1 2 sum conv. : ij m ij : kl m kl ij kl m ij : m kl k 1 l 1 ij kl e i e j : e k e l ij kl e i e k e j e l ij kl ik jl ij ij Mean stress m Def. mean stress: "the projection of the stress onto the mean stress axis 1" m 1 1 : 1 i 1 : m i 1 i n i 1 n i 1 i 1 I 1 1 Tr Geometric interpretation of unit tensor 1 m i mean stress axis! Consider the generalization to the Cartesian basis m ij : 1 : ij 1 : m ij ij e i 1 e j ij ij ii j 1 Consider also single contraction: j 1 1 ij kl m ij m kl il m il

6 6 L8.nb Stress deviator dev Consider the stress subdivided, cf. Fig. above, We have Consider dev m 1 stress deviator dev m 1 dev m 1 dev dev,i m i dev : dev dev dev,1 dev,2 dev, 1 : dev i m OK 1 and dev are orthogonal! Momentum balance - Strong and weak formats Consider equilibrated solid: t f t t n t f strong form of equilibrium t f x

7 L8.nb 7 Momentum balance in terms of virtual work W W u t u f u t u f W virtual work produced by virtual displacement field u. u t t : u u t virtual work W t : u u t u f along with equilibrium satisfied in "weak" sense, i.e. u t f Link between strong and weak forms of equilibrium W considered w.r.t. "all virtual displacements fields" u t f f t if taken u U Strong form of the equilibrium formulated as balance of internal - external virtual work W t : u u t u f u U irtual work W = work rate W if u u W t : u Displacement rate gradient u named the "spatial velocity gradient" l d u l dx with l u x u Compact notation, introduce the notation l l u W t : l, W t : l

Properties of the stress tensor

Properties of the stress tensor Appendix C Properties of the stress tensor Some of the basic properties of the stress tensor and traction vector are reviewed in the following. C.1 The traction vector Let us assume that the state of stress

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information

CONTINUUM MECHANICS. lecture notes 2003 jp dr.-ing. habil. ellen kuhl technical university of kaiserslautern

CONTINUUM MECHANICS. lecture notes 2003 jp dr.-ing. habil. ellen kuhl technical university of kaiserslautern CONTINUUM MECHANICS lecture notes 2003 jp dr.-ing. habil. ellen kuhl technical university of kaiserslautern Contents Tensor calculus. Tensor algebra.................................... Vector algebra.................................

More information

Engineering Sciences 241 Advanced Elasticity, Spring Distributed Thursday 8 February.

Engineering Sciences 241 Advanced Elasticity, Spring Distributed Thursday 8 February. Engineering Sciences 241 Advanced Elasticity, Spring 2001 J. R. Rice Homework Problems / Class Notes Mechanics of finite deformation (list of references at end) Distributed Thursday 8 February. Problems

More information

Mechanics of materials Lecture 4 Strain and deformation

Mechanics of materials Lecture 4 Strain and deformation Mechanics of materials Lecture 4 Strain and deformation Reijo Kouhia Tampere University of Technology Department of Mechanical Engineering and Industrial Design Wednesday 3 rd February, 206 of a continuum

More information

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components Cartesian Tensors Reference: Jeffreys Cartesian Tensors 1 Coordinates and Vectors z x 3 e 3 y x 2 e 2 e 1 x x 1 Coordinates x i, i 123,, Unit vectors: e i, i 123,, General vector (formal definition to

More information

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Somnath Bhowmick Materials Science and Engineering, IIT Kanpur April 6, 2018 Tensile test and Hooke s Law Upto certain strain (0.75),

More information

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso MECH 5312 Solid Mechanics II Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso Table of Contents Preliminary Math Concept of Stress Stress Components Equilibrium

More information

Assignment 11 (C + C ) = (C + C ) = (C + C) i(c C ) ] = i(c C) (AB) = (AB) = B A = BA 0 = [A, B] = [A, B] = (AB BA) = (AB) AB

Assignment 11 (C + C ) = (C + C ) = (C + C) i(c C ) ] = i(c C) (AB) = (AB) = B A = BA 0 = [A, B] = [A, B] = (AB BA) = (AB) AB Arfken 3.4.6 Matrix C is not Hermition. But which is Hermitian. Likewise, Assignment 11 (C + C ) = (C + C ) = (C + C) [ i(c C ) ] = i(c C ) = i(c C) = i ( C C ) Arfken 3.4.9 The matrices A and B are both

More information

19. Principal Stresses

19. Principal Stresses 19. Principal Stresses I Main Topics A Cauchy s formula B Principal stresses (eigenvectors and eigenvalues) C Example 10/24/18 GG303 1 19. Principal Stresses hkp://hvo.wr.usgs.gov/kilauea/update/images.html

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139 MASSACHUSETTS NSTTUTE OF TECHNOLOGY DEPARTMENT OF MATERALS SCENCE AND ENGNEERNG CAMBRDGE, MASSACHUSETTS 39 3. MECHANCAL PROPERTES OF MATERALS PROBLEM SET SOLUTONS Reading Ashby, M.F., 98, Tensors: Notes

More information

Professor George C. Johnson. ME185 - Introduction to Continuum Mechanics. Midterm Exam II. ) (1) x

Professor George C. Johnson. ME185 - Introduction to Continuum Mechanics. Midterm Exam II. ) (1) x Spring, 997 ME85 - Introduction to Continuum Mechanics Midterm Exam II roblem. (+ points) (a) Let ρ be the mass density, v be the velocity vector, be the Cauchy stress tensor, and b be the body force per

More information

Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

More information

Mechanics PhD Preliminary Spring 2017

Mechanics PhD Preliminary Spring 2017 Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n

More information

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004 Elements of Continuum Elasticity David M. Parks Mechanics and Materials II 2.002 February 25, 2004 Solid Mechanics in 3 Dimensions: stress/equilibrium, strain/displacement, and intro to linear elastic

More information

Useful Formulae ( )

Useful Formulae ( ) Appendix A Useful Formulae (985-989-993-) 34 Jeremić et al. A.. CHAPTER SUMMARY AND HIGHLIGHTS page: 35 of 536 A. Chapter Summary and Highlights A. Stress and Strain This section reviews small deformation

More information

Vector and tensor calculus

Vector and tensor calculus 1 Vector and tensor calculus 1.1 Examples Example 1.1 Consider three vectors a = 2 e 1 +5 e 2 b = 3 e1 +4 e 3 c = e 1 given with respect to an orthonormal Cartesian basis { e 1, e 2, e 3 }. a. Compute

More information

CH.4. STRESS. Continuum Mechanics Course (MMC)

CH.4. STRESS. Continuum Mechanics Course (MMC) CH.4. STRESS Continuum Mechanics Course (MMC) Overview Forces Acting on a Continuum Body Cauchy s Postulates Stress Tensor Stress Tensor Components Scientific Notation Engineering Notation Sign Criterion

More information

12. Stresses and Strains

12. Stresses and Strains 12. Stresses and Strains Finite Element Method Differential Equation Weak Formulation Approximating Functions Weighted Residuals FEM - Formulation Classification of Problems Scalar Vector 1-D T(x) u(x)

More information

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components Cartesian Tensors Reference: Jeffreys Cartesian Tensors 1 Coordinates and Vectors z x 3 e 3 y x 2 e 2 e 1 x x 1 Coordinates x i, i 123,, Unit vectors: e i, i 123,, General vector (formal definition to

More information

The Matrix Representation of a Three-Dimensional Rotation Revisited

The Matrix Representation of a Three-Dimensional Rotation Revisited Physics 116A Winter 2010 The Matrix Representation of a Three-Dimensional Rotation Revisited In a handout entitled The Matrix Representation of a Three-Dimensional Rotation, I provided a derivation of

More information

16.20 Techniques of Structural Analysis and Design Spring Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T

16.20 Techniques of Structural Analysis and Design Spring Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T 16.20 Techniques of Structural Analysis and Design Spring 2013 Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T February 15, 2013 2 Contents 1 Stress and equilibrium 5 1.1 Internal forces and

More information

Math Review: Vectors and Tensors for Rheological Applications

Math Review: Vectors and Tensors for Rheological Applications Math Review: Vectors and Tensors for Rheological Applications Presented by Randy H. Ewoldt University of Illinois at Urbana-Champaign U. of Minnesota Rheological Measurements Short Course June 2016 MathReview-1

More information

Physics 6303 Lecture 2 August 22, 2018

Physics 6303 Lecture 2 August 22, 2018 Physics 6303 Lecture 2 August 22, 2018 LAST TIME: Coordinate system construction, covariant and contravariant vector components, basics vector review, gradient, divergence, curl, and Laplacian operators

More information

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms Continuum mechanics office Math 0.107 ales.janka@unifr.ch http://perso.unifr.ch/ales.janka/mechanics Mars 16, 2011, Université de Fribourg 1. Constitutive equation: definition and basic axioms Constitutive

More information

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review 1 PHYS 705: Classical Mechanics Rigid Body Motion Introduction + Math Review 2 How to describe a rigid body? Rigid Body - a system of point particles fixed in space i r ij j subject to a holonomic constraint:

More information

1. Basic Operations Consider two vectors a (1, 4, 6) and b (2, 0, 4), where the components have been expressed in a given orthonormal basis.

1. Basic Operations Consider two vectors a (1, 4, 6) and b (2, 0, 4), where the components have been expressed in a given orthonormal basis. Questions on Vectors and Tensors 1. Basic Operations Consider two vectors a (1, 4, 6) and b (2, 0, 4), where the components have been expressed in a given orthonormal basis. Compute 1. a. 2. The angle

More information

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS I Main Topics A Why deal with tensors? B Order of scalars, vectors, and tensors C Linear transformation of scalars and vectors (and tensors) II Why

More information

Numerical Modelling in Geosciences. Lecture 6 Deformation

Numerical Modelling in Geosciences. Lecture 6 Deformation Numerical Modelling in Geosciences Lecture 6 Deformation Tensor Second-rank tensor stress ), strain ), strain rate ) Invariants quantities independent of the coordinate system): - First invariant trace:!!

More information

Applications of Eigenvalues & Eigenvectors

Applications of Eigenvalues & Eigenvectors Applications of Eigenvalues & Eigenvectors Louie L. Yaw Walla Walla University Engineering Department For Linear Algebra Class November 17, 214 Outline 1 The eigenvalue/eigenvector problem 2 Principal

More information

CH.11. VARIATIONAL PRINCIPLES. Continuum Mechanics Course (MMC)

CH.11. VARIATIONAL PRINCIPLES. Continuum Mechanics Course (MMC) CH.11. ARIATIONAL PRINCIPLES Continuum Mechanics Course (MMC) Overview Introduction Functionals Gâteaux Derivative Extreme of a Functional ariational Principle ariational Form of a Continuum Mechanics

More information

A.1 Appendix on Cartesian tensors

A.1 Appendix on Cartesian tensors 1 Lecture Notes on Fluid Dynamics (1.63J/2.21J) by Chiang C. Mei, February 6, 2007 A.1 Appendix on Cartesian tensors [Ref 1] : H Jeffreys, Cartesian Tensors; [Ref 2] : Y. C. Fung, Foundations of Solid

More information

16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity

16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity 6.20 HANDOUT #2 Fall, 2002 Review of General Elasticity NOTATION REVIEW (e.g., for strain) Engineering Contracted Engineering Tensor Tensor ε x = ε = ε xx = ε ε y = ε 2 = ε yy = ε 22 ε z = ε 3 = ε zz =

More information

Unit IV State of stress in Three Dimensions

Unit IV State of stress in Three Dimensions Unit IV State of stress in Three Dimensions State of stress in Three Dimensions References Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength

More information

Mathematical Background

Mathematical Background CHAPTER ONE Mathematical Background This book assumes a background in the fundamentals of solid mechanics and the mechanical behavior of materials, including elasticity, plasticity, and friction. A previous

More information

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a two-dimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e

More information

Solutions for Fundamentals of Continuum Mechanics. John W. Rudnicki

Solutions for Fundamentals of Continuum Mechanics. John W. Rudnicki Solutions for Fundamentals of Continuum Mechanics John W. Rudnicki December, 015 ii Contents I Mathematical Preliminaries 1 1 Vectors 3 Tensors 7 3 Cartesian Coordinates 9 4 Vector (Cross) Product 13 5

More information

Basic concepts to start Mechanics of Materials

Basic concepts to start Mechanics of Materials Basic concepts to start Mechanics of Materials Georges Cailletaud Centre des Matériaux Ecole des Mines de Paris/CNRS Notations Notations (maths) (1/2) A vector v (element of a vectorial space) can be seen

More information

Strain Transformation equations

Strain Transformation equations Strain Transformation equations R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Stress transformation

More information

Strain analysis.

Strain analysis. Strain analysis ecalais@purdue.edu Plates vs. continuum Gordon and Stein, 1991 Most plates are rigid at the until know we have studied a purely discontinuous approach where plates are

More information

Continuum mechanism: Stress and strain

Continuum mechanism: Stress and strain Continuum mechanics deals with the relation between forces (stress, σ) and deformation (strain, ε), or deformation rate (strain rate, ε). Solid materials, rigid, usually deform elastically, that is the

More information

06 - concept of stress concept of stress concept of stress concept of stress. me338 - syllabus. definition of stress

06 - concept of stress concept of stress concept of stress concept of stress. me338 - syllabus. definition of stress holzapfel nonlinear solid mechanics [2000], chapter 3, pages 109-129 holzapfel nonlinear solid mechanics [2000], chapter 3, pages 109-129 1 2 me338 - syllabus definition of stress stress [ stres] is a

More information

Exercise Sheet 1.

Exercise Sheet 1. Exercise Sheet 1 You can download my lecture and exercise sheets at the address http://sami.hust.edu.vn/giang-vien/?name=huynt 1) Let A, B be sets. What does the statement "A is not a subset of B " mean?

More information

Lecture Notes 3

Lecture Notes 3 12.005 Lecture Notes 3 Tensors Most physical quantities that are important in continuum mechanics like temperature, force, and stress can be represented by a tensor. Temperature can be specified by stating

More information

CVEN 7511 Computational Mechanics of Solids and Structures

CVEN 7511 Computational Mechanics of Solids and Structures CVEN 7511 Computational Mechanics of Solids and Structures Instructor: Kaspar J. Willam Original Version of Class Notes Chishen T. Lin Fall 1990 Chapter 1 Fundamentals of Continuum Mechanics Abstract In

More information

CVEN 5161 Advanced Mechanics of Materials I

CVEN 5161 Advanced Mechanics of Materials I CVEN 5161 Advanced Mechanics of Materials I Instructor: Kaspar J. Willam Revised Version of Class Notes Fall 2003 Chapter 1 Preliminaries The mathematical tools behind stress and strain are housed in Linear

More information

Computational Fluid Dynamics Prof. Dr. Suman Chakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Computational Fluid Dynamics Prof. Dr. Suman Chakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Computational Fluid Dynamics Prof. Dr. Suman Chakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. # 02 Conservation of Mass and Momentum: Continuity and

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS. Multimedia Course on Continuum Mechanics

CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS. Multimedia Course on Continuum Mechanics CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS Multimedia Course on Continuum Mechanics Overview Introduction Fluid Mechanics What is a Fluid? Pressure and Pascal s Law Constitutive Equations in Fluids Fluid Models

More information

Chapter 3 Stress, Strain, Virtual Power and Conservation Principles

Chapter 3 Stress, Strain, Virtual Power and Conservation Principles Chapter 3 Stress, Strain, irtual Power and Conservation Principles 1 Introduction Stress and strain are key concepts in the analytical characterization of the mechanical state of a solid body. While stress

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

Linear Algebra. Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems.

Linear Algebra. Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems. Linear Algebra Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems May 1, 2018 () Linear Algebra May 1, 2018 1 / 8 Table of contents 1

More information

Constitutive Relations

Constitutive Relations Constitutive Relations Andri Andriyana, Ph.D. Centre de Mise en Forme des Matériaux, CEMEF UMR CNRS 7635 École des Mines de Paris, 06904 Sophia Antipolis, France Spring, 2008 Outline Outline 1 Review of

More information

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Continuum Mechanics. Continuum Mechanics and Constitutive Equations Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Overview Milestones in continuum mechanics Concepts of modulus and stiffness. Stress-strain relations Elasticity Surface and body

More information

Constitutive Equations

Constitutive Equations Constitutive quations David Roylance Department of Materials Science and ngineering Massachusetts Institute of Technology Cambridge, MA 0239 October 4, 2000 Introduction The modules on kinematics (Module

More information

03 - introduction to vectors and tensors. me338 - syllabus. introduction tensor calculus. tensor calculus. tensor calculus.

03 - introduction to vectors and tensors. me338 - syllabus. introduction tensor calculus. tensor calculus. tensor calculus. 03 - introduction to vectors and tensors me338 - syllabus holzapfel nonlinear solid mechanics [2000], chapter 1.6-1.9, pages 32-55 03-1 introduction 2 tensor the word tensor was introduced in 1846 by william

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.510 Introduction to Seismology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Stress and Strain

More information

Introduction to Continuum Mechanics. David J. Raymond Physics Department New Mexico Tech Socorro, NM

Introduction to Continuum Mechanics. David J. Raymond Physics Department New Mexico Tech Socorro, NM Introduction to Continuum Mechanics David J. Raymond Physics Department New Mexico Tech Socorro, NM Copyright C David J. Raymond 1994, 1999 -2- Table of Contents Chapter 1 -- Introduction.......................

More information

Chapter 0. Preliminaries. 0.1 Things you should already know

Chapter 0. Preliminaries. 0.1 Things you should already know Chapter 0 Preliminaries These notes cover the course MATH45061 (Continuum Mechanics) and are intended to supplement the lectures. The course does not follow any particular text, so you do not need to buy

More information

Brief introduction to continuum mechanics

Brief introduction to continuum mechanics Brief introduction to continuum mechanics Lecture notes to the course Mechanics of materials Reijo Kouhia February 6, 016 I am very pleased to have a note of any error and any kind of idea on improving

More information

L2. Bending of beams: Normal stresses, PNA: , CCSM: chap 9.1-2

L2. Bending of beams: Normal stresses, PNA: , CCSM: chap 9.1-2 L2. Bending of beams: ormal stresses, P: 233-239, CCSM: chap 9.1-2 àcoordinate system üship coordinate system übeam coordinate system üstress resultats - Section forces üstress - strain tensors (recall

More information

ASSIGNMENT-1 GURU JAMBHESHWARUNIVERSITY OF SCIENCE & TECHNOLOGY, HISAR DIRECTORATE OF DISTANCE EDUCATION

ASSIGNMENT-1 GURU JAMBHESHWARUNIVERSITY OF SCIENCE & TECHNOLOGY, HISAR DIRECTORATE OF DISTANCE EDUCATION ASSIGNMENT-1 GURU JAMBHESHWARUNIVERSITY OF SCIENCE & TECHNOLOGY, HISAR Paper Code: MAL-631 Nomenclature of Paper:TOPOLOGY Q.1 Prove that in a topological space, E E d E E X. Q.2Characterize topology in

More information

Mechanics of solids and fluids -Introduction to continuum mechanics

Mechanics of solids and fluids -Introduction to continuum mechanics Mechanics of solids and fluids -Introduction to continuum mechanics by Magnus Ekh August 12, 2016 Introduction to continuum mechanics 1 Tensors............................. 3 1.1 Index notation 1.2 Vectors

More information

Constitutive Relations

Constitutive Relations Constitutive Relations Dr. Andri Andriyana Centre de Mise en Forme des Matériaux, CEMEF UMR CNRS 7635 École des Mines de Paris, 06904 Sophia Antipolis, France Spring, 2008 Outline Outline 1 Review of field

More information

Fundamentals of Linear Elasticity

Fundamentals of Linear Elasticity Fundamentals of Linear Elasticity Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

Module #3. Transformation of stresses in 3-D READING LIST. DIETER: Ch. 2, pp Ch. 3 in Roesler Ch. 2 in McClintock and Argon Ch.

Module #3. Transformation of stresses in 3-D READING LIST. DIETER: Ch. 2, pp Ch. 3 in Roesler Ch. 2 in McClintock and Argon Ch. HOMEWORK From Dieter -3, -4, 3-7 Module #3 Transformation of stresses in 3-D READING LIST DIETER: Ch., pp. 7-36 Ch. 3 in Roesler Ch. in McClintock and Argon Ch. 7 in Edelglass The Stress Tensor z z x O

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

We are already familiar with the concept of a scalar and vector. are unit vectors in the x and y directions respectively with

We are already familiar with the concept of a scalar and vector. are unit vectors in the x and y directions respectively with Math Review We are already familiar with the concept of a scalar and vector. Example: Position (x, y) in two dimensions 1 2 2 2 s ( x y ) where s is the length of x ( xy, ) xi yj And i, j ii 1 j j 1 i

More information

CH.11. VARIATIONAL PRINCIPLES. Multimedia Course on Continuum Mechanics

CH.11. VARIATIONAL PRINCIPLES. Multimedia Course on Continuum Mechanics CH.11. ARIATIONAL PRINCIPLES Multimedia Course on Continuum Mechanics Overview Introduction Functionals Gâteaux Derivative Extreme of a Functional ariational Principle ariational Form of a Continuum Mechanics

More information

1. Tensor of Rank 2 If Φ ij (x, y) satisfies: (a) having four components (9 for 3-D). (b) when the coordinate system is changed from x i to x i,

1. Tensor of Rank 2 If Φ ij (x, y) satisfies: (a) having four components (9 for 3-D). (b) when the coordinate system is changed from x i to x i, 1. Tensor of Rank 2 If Φ ij (x, y satisfies: (a having four components (9 for 3-D. Φ i j (x 1, x 2 = β i iβ j jφ ij (x 1, x 2. Example 1: ( 1 0 0 1 Φ i j = ( 1 0 0 1 To prove whether this is a tensor or

More information

Tensor Visualization. CSC 7443: Scientific Information Visualization

Tensor Visualization. CSC 7443: Scientific Information Visualization Tensor Visualization Tensor data A tensor is a multivariate quantity Scalar is a tensor of rank zero s = s(x,y,z) Vector is a tensor of rank one v = (v x,v y,v z ) For a symmetric tensor of rank 2, its

More information

DIAGONALIZATION OF THE STRESS TENSOR

DIAGONALIZATION OF THE STRESS TENSOR DIAGONALIZATION OF THE STRESS TENSOR INTRODUCTION By the use of Cauchy s theorem we are able to reduce the number of stress components in the stress tensor to only nine values. An additional simplification

More information

Lecture 3 The Concept of Stress, Generalized Stresses and Equilibrium

Lecture 3 The Concept of Stress, Generalized Stresses and Equilibrium Lecture 3 The Concept of Stress, Generalized Stresses and Equilibrium Problem 3-1: Cauchy s Stress Theorem Cauchy s stress theorem states that in a stress tensor field there is a traction vector t that

More information

Solution of Matrix Eigenvalue Problem

Solution of Matrix Eigenvalue Problem Outlines October 12, 2004 Outlines Part I: Review of Previous Lecture Part II: Review of Previous Lecture Outlines Part I: Review of Previous Lecture Part II: Standard Matrix Eigenvalue Problem Other Forms

More information

3D Elasticity Theory

3D Elasticity Theory 3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.

More information

NIELINIOWA OPTYKA MOLEKULARNA

NIELINIOWA OPTYKA MOLEKULARNA NIELINIOWA OPTYKA MOLEKULARNA chapter 1 by Stanisław Kielich translated by:tadeusz Bancewicz http://zon8.physd.amu.edu.pl/~tbancewi Poznan,luty 2008 ELEMENTS OF THE VECTOR AND TENSOR ANALYSIS Reference

More information

Nonlinear Theory of Elasticity. Dr.-Ing. Martin Ruess

Nonlinear Theory of Elasticity. Dr.-Ing. Martin Ruess Nonlinear Theory of Elasticity Dr.-Ing. Martin Ruess geometry description Cartesian global coordinate system with base vectors of the Euclidian space orthonormal basis origin O point P domain of a deformable

More information

TENSOR TRANSFORMATION OF STRESSES

TENSOR TRANSFORMATION OF STRESSES GG303 Lecture 18 9/4/01 1 TENSOR TRANSFORMATION OF STRESSES Transformation of stresses between planes of arbitrar orientation In the 2-D eample of lecture 16, the normal and shear stresses (tractions)

More information

Linear Ordinary Differential Equations

Linear Ordinary Differential Equations MTH.B402; Sect. 1 20180703) 2 Linear Ordinary Differential Equations Preliminaries: Matrix Norms. Denote by M n R) the set of n n matrix with real components, which can be identified the vector space R

More information

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ.

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ. Mohr s Circle By drawing Mohr s circle, the stress transformation in -D can be done graphically. σ = σ x + σ y τ = σ x σ y + σ x σ y cos θ + τ xy sin θ, 1 sin θ + τ xy cos θ. Note that the angle of rotation,

More information

A Primer on Three Vectors

A Primer on Three Vectors Michael Dine Department of Physics University of California, Santa Cruz September 2010 What makes E&M hard, more than anything else, is the problem that the electric and magnetic fields are vectors, and

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

4.3 Momentum Balance Principles

4.3 Momentum Balance Principles 4.3 Momentum Balance Principles 4.3.1 Balance of linear angular momentum in spatial material description Consider a continuum body B with a set of particles occupying an arbitrary region Ω with boundary

More information

Introduction to Tensor Notation

Introduction to Tensor Notation MCEN 5021: Introduction to Fluid Dynamics Fall 2015, T.S. Lund Introduction to Tensor Notation Tensor notation provides a convenient and unified system for describing physical quantities. Scalars, vectors,

More information

Multivariate Gaussian Analysis

Multivariate Gaussian Analysis BS2 Statistical Inference, Lecture 7, Hilary Term 2009 February 13, 2009 Marginal and conditional distributions For a positive definite covariance matrix Σ, the multivariate Gaussian distribution has density

More information

Homework 7-8 Solutions. Problems

Homework 7-8 Solutions. Problems Homework 7-8 Solutions Problems 26 A rhombus is a parallelogram with opposite sides of equal length Let us form a rhombus using vectors v 1 and v 2 as two adjacent sides, with v 1 = v 2 The diagonals of

More information

Attempt THREE questions. You will not be penalised if you attempt additional questions.

Attempt THREE questions. You will not be penalised if you attempt additional questions. UNIVERITY OF EAT ANGLIA chool of Mathematics Main eries UG Examination 07 8 MATHEMATIC FOR CIENTIT C MTHB5007B Time allowed: Hours Attempt THREE questions. You will not be penalised if you attempt additional

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

3.2 Hooke s law anisotropic elasticity Robert Hooke ( ) Most general relationship

3.2 Hooke s law anisotropic elasticity Robert Hooke ( ) Most general relationship 3.2 Hooke s law anisotropic elasticity Robert Hooke (1635-1703) Most general relationship σ = C ε + C ε + C ε + C γ + C γ + C γ 11 12 yy 13 zz 14 xy 15 xz 16 yz σ = C ε + C ε + C ε + C γ + C γ + C γ yy

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

A short review of continuum mechanics

A short review of continuum mechanics A short review of continuum mechanics Professor Anette M. Karlsson, Department of Mechanical ngineering, UD September, 006 This is a short and arbitrary review of continuum mechanics. Most of this material

More information

Chemnitz Scientific Computing Preprints

Chemnitz Scientific Computing Preprints Arnd Meyer The Koiter shell equation in a coordinate free description CSC/1-0 Chemnitz Scientific Computing Preprints ISSN 1864-0087 Chemnitz Scientific Computing Preprints Impressum: Chemnitz Scientific

More information

Conservation of mass. Continuum Mechanics. Conservation of Momentum. Cauchy s Fundamental Postulate. # f body

Conservation of mass. Continuum Mechanics. Conservation of Momentum. Cauchy s Fundamental Postulate. # f body Continuum Mechanics We ll stick with the Lagrangian viewpoint for now Let s look at a deformable object World space: points x in the object as we see it Object space (or rest pose): points p in some reference

More information

FINAL EXAMINATION. (CE130-2 Mechanics of Materials)

FINAL EXAMINATION. (CE130-2 Mechanics of Materials) UNIVERSITY OF CLIFORNI, ERKELEY FLL SEMESTER 001 FINL EXMINTION (CE130- Mechanics of Materials) Problem 1: (15 points) pinned -bar structure is shown in Figure 1. There is an external force, W = 5000N,

More information

Classification of Prostate Cancer Grades and T-Stages based on Tissue Elasticity Using Medical Image Analysis. Supplementary Document

Classification of Prostate Cancer Grades and T-Stages based on Tissue Elasticity Using Medical Image Analysis. Supplementary Document Classification of Prostate Cancer Grades and T-Stages based on Tissue Elasticity Using Medical Image Analysis Supplementary Document Shan Yang, Vladimir Jojic, Jun Lian, Ronald Chen, Hongtu Zhu, Ming C.

More information

202 Index. failure, 26 field equation, 122 force, 1

202 Index. failure, 26 field equation, 122 force, 1 Index acceleration, 12, 161 admissible function, 155 admissible stress, 32 Airy's stress function, 122, 124 d'alembert's principle, 165, 167, 177 amplitude, 171 analogy, 76 anisotropic material, 20 aperiodic

More information