Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5

6

7

8

9 K(ζ) = 4ζ 2

10 x = 20

11

12

13

14

15

16

17

18

19

20

21

22

23 Θ = {θ i } Θ i=1 M = {m i} M i=1 A = {a i } A i=1 M A π = (π i ) n i=1 (Θ) n := Θ

24 Θ (a, θ) u(a, θ) E γq [ E π m [u(a, θ)] ] C(π, Q) Q γ Q π m m Q m π m a Π = (π) U M A Θ (R) u i,j := u(a i, θ j ) i j U Q Θ M D M A C : (Θ) Q R Q (Θ) (x) x R := R {, } π Q C( π, Q) = Q π Q ˆ C(π, Q) Q Q ˆ Q ˆ

25 (QDUΠ) C(π, Q) Q Q,D D Q q i,j = Pr(m j θ i ) m j θ i D d i,j = Pr(a j m i ) a j m i Q γ Q ( (Θ)) i Q θ i Q D (π, U) π U {U i } θ i a i {(U i, θ i, a i )} C(, ) (X) X

26 Q Q,D D n i=1 π i A j=1 u j,i M q i,k d k,j C(π, Q) k=1 (i, j) j=1 M k=1 q i,k d k,j = Pr(a j θ i ) j i [ A M u j,i q i,k d k,j ] i k=1 [ [ n A M π i u j,i q i,k d k,j ]] i {1,..., n} j {1,..., A } π i u j,i i {1..., n}, j {1,..., A } k {1,..., M } q i,k d k,j q i,k d k,j q i,k d k,j i=1 j=1 k=1

27 π C(π, Q 1 ) = C(π, Q 2 ) Q 1 Q 2 {(U i, θ i, a i )} C(π, Q) Q γq γ Q C(π, Q) := C(π, R) R Q γq C

28 π U 0, U 1,..., U J 1 Q 0, Q,..., Q J 1 D 0, D 1,..., D J 1 D j i U i Q j J 1 J 1 ( (Q j D j U j Π) Q (j+1) mod J D j=0 j=0 (j+1) mod J j ) U j Π π U Q D k {1,..., A } k

29 D d,k l {1,..., A } u k, ΠQ d,k u l, ΠQ d,k u k, u l, k l U U = {U 1, U 2,... U J } U, Ũ U i {1,... n} τ i u i,j i {1,... n} ũ i,j u i,j j = τ i ũ i,j u i,j j τ i j {1,..., A }

30 ( Pr ) Pr ( a u(z, θ) z A a z A ) ũ(z, θ) > C(π, Q) R C R

31 π (Θ), λ (0, 1), Q 1, Q 2 Q C(π, λq 1 + (1 λ)q 2 ) λc(π, Q 1 ) + (1 λ)c(π, Q 2 ) π (Θ), λ (0, 1), Q 1, Q 2 Q C(π, λq 1 + (1 λ)q 2 ) λc(π, Q 1 ) + (1 λ)c(π, Q 2 ) Q 1 Q Q 1 = Q 3 = 0.5Q Q 2 = Q 2 =

32 Q 3 Q 1 Q 2 Q 1 Q 2 Q 3 Q 1 Q 2 R M M π (Θ) Q Q C(π, Q) C(π, QR) Q R Q QR QR Q Q QR Q QR Q 1 Q 2 R Q 1 R = Q 2 Q 2 R = Q 1

33 C C R M M Q Q, C(π, Q) = C(π, QR) π C U

34 {c i,j (, )} i {1,..., n}, j {1,..., M } (Θ) [0, 1] π c i,j (π, ) R 2 c i,j (π, ) q 2 > 0 q (0, 1), i {1,..., n}, j {1,..., M } C(π, Q) := i,j c i,j(π, q i,j ) n r

35 r r n Pr(a = x θ = x) C(π, Q) x θ a C(π, Q) Q C(π, Q)

36 A = Θ U = ri n r > 0 r(qdπ) P := (QDΠ) = 1 (QD) n r Q D P (r) P (r) Q D D Q D P (r) = 1 n M q i,j i {1,...,n} j=1 P (r) P (r)

37 x A, y Θ, Pr(θ = x a = x) Pr(θ = y a = x)

38 C P (r) rp (r) Θ = {1, 2, 3, 4, 5} θ = 2 Θ

39 ρ Θ x, y, z Θ, ρ(x, y) > ρ(x, z) = Pr(a = y θ = x) < Pr(a = z θ = x) ρ Θ Θ ρ(x, y) = x y C : (Θ) Q R

40 I H I(π, Q) := α(h(π) E[H(π Q)]) n = α π i ln π i n π i M i=1 i=1 j=1 ( ) π i q i,j q i,j ln n k=1 p kq k,j α > 0 0 ln 0 = 0 0 ln 0 0 = 0 π i = 1 i {1,..., n} Θ n C(π, Q) = I(π, Q) := α(h(p) E[H(π Q)]) α > 0 C P (r) = exp ( α) r n 1+exp( α) r 1 n 1+exp( r α) Q 1 = Q 2 = Q λ := λq 1 + (1 λ)q 2, λ [0, 1] I(π, Q λ ) = λi(π, Q 1 + (1 λ)i(π, Q 2 )

41 α θ Q, Q Q = QR R Q Q C(Q) = 0, Q = Q κ, Q = Q, Q

42 κ = 30 q = 0.3 q = 0.8 κ Q Q Q q q κ q κ r q κ rq r κ q q q r > κ q q q

43 Θ R θ 1 < θ 2 <... < θ n ˆm N(θ, σ 2 ) θ ζ 2 := σ 2 K(ζ) K ˆm θ Pr(θ ˆm) = ϕ ( ) ˆm θ σ σ ϕ ( ) ˆm θ i = σ σ 1 1 n n 1 1 i=1 n n i=1 1 ϕ ( ) ˆm θ σ σ 1 ϕ ( ) ˆm θ i σ σ ϕ( ) q q Q Q Θ θ 1 θ n K

44 ˆm θ θ θ 1 ˆm 1 2 (θ 1 + θ 2 ) θ i ˆm [ 1 2 (θ i 1 + θ i ), 1 2 (θ i + θ i+1 ) ] i {2, 3,..., n 1} θ n ˆm 1 2 (θ n 1 + θ n ) i j = Pr(a = θ i θ = θ j ) Pr ( ˆm 1 2 (θ 1 + θ 2 ) θ = θj ), i = 1 Pr ( ˆm [ 1 2 (θ i 1 + θ i ), 1 2 (θ i + θ i+1 ) ] θ = θj ), i {2, 3,..., n 1} Pr ( ˆm 1 2 (θ n 1 + θ n ) θ = θ j ), i = n = Pr(a = θ i θ = θ j ) Φ ( ζ ( 1 2 (θ 1 + θ 2 ) θ j )), i = 1 Φ ( ζ ( 1 2 (θ i+1 + θ i ) θ j )) Φ ( ζ ( 1 2 (θ i + θ i 1 ) θ j )), i {2, 3,..., n 1} Φ ( ζ ( 1 2 (θ n 1 + θ n ) θ j )), i = n Φ

45 ζ [0, ) [ r Φ n ( ) 1 2 ζ(θ n 1 1 θ 2 ) + +1 Φ i=2 ( ( 1 Φ ( )] 1 2 ζ(θ n 1 θ n ) ) 2 ζ(θ i+1 θ i ) K(ζ) ( )) 1 Φ 2 ζ(θ i 1 θ i ) δ θ i θ i 1 = 2δ i 2 ζ [0, ) r [2Φ (ζδ) + (n 2) (2Φ (ζδ) 1)] K(ζ) n θ 1 ˆm 1(θ θ 2 ) Pr ( ˆm 1(θ θ 2 ) ) ( [ θ = θj > Pr ˆm 1 (θ θ 2 ), 1(θ θ 3 ) ] ) θ = θj j 2 θ 2 θ n 1

46 K(ζ) = 4ζ 2 x Θ, y, z Θ \ {θ 1, θ n }, x y > x z = Pr(a = y θ = x) < Pr(a = z θ = x) K( ) {m 1, m 2,..., m n } K

47 Q q i,j = Pr(m = m i θ = θ j ) = Φ ( ζ ( 1 2 (θ 1 + θ 2 ) θ j )), i = 1 Φ ( ζ ( 1 2 (θ i+1 + θ i ) θ j )) Φ ( ζ ( 1 2 (θ i + θ i 1 ) θ j )), i {2, 3,..., n 1} Φ ( ζ ( 1 2 (θ n 1 + θ n ) θ j )), i = n C(π, Q) = K(ζ) Q r(qdπ) (QDΠ) K : [0, 1] R C(π, Q) = K ( M j=1 i {1,...,n} π i q i,j ) Q q i,i = q i {1,..., n} q [ 1 n, 1] q K K ( 1 n) < r < K (1) q r = K (q) q i,j = 0 j > n q = P (r) Q D

48 A q q K(q) K r = K (q) P (r) = (K ) 1 (r)

49

50

51

52

53 n = 81 n = 80 n = 80 n = 81 n = 80 p = t r t θ t a t y t := {θt} (a t ) y t t

54 Monotone Nonparametric Regression: Subject 3 Correct Incentive Level P t := Pr(y t = 1 r t ) = Pr(a t = θ t r t ) t

55

56 2 < < <

57

58 (r 1, r 2 ) r 1 > r 2 P (r 1 ) P (r 2 ) r 1 r 2

59 Rejects NIAC (Lab Subject 1) Fails to reject NIAC (Lab Subject 19) Correct Correct Incentive Level Incentive Level

60 Pr(θ a)

61 Fails to Reject Non Responsiveness (Lab Subject 32) Rejects Non Responsiveness (Online Subject 26) Correct Correct Incentive Level Incentive Level >

62 r

63 P t = β 0 + β 1 1 δ (r t ) β 0 β 1 δ P t = β exp( λ(r t δ)) + β 0 λ λ = β 1

64 {38,..., 42} t ρ(a t, θ t ) = a t θ t {1, 2, 3, 4}

65

66 P t = β 0 + β 1 1 δ (r t )

67 P t = β 0 + β 1 1 δ (r t ) + β 2 r t + β 3 r t 1 δ (r t ) δ q = ˆβ 0 q = ˆβ 0 + ˆβ 1 δ κ κ = ˆδ( ˆβ q q 1 ˆβ 0 ) K r 1 r 2

68 r 2P K(P ) r1p P P t = β 0 + β 1 r t

69 K(P ) K(P ) = 1 2 ˆβ 1 (P ) ˆβ 0 ˆβ 1 (P 0.2) K ( 1 n) = 0 P t = 1 4 exp ( r t α ) + 1 ( ( ) ) 4P K(P ) = ˆα P ln + ln(1 P ) + ln(1.25) 1 P ζ 2 K(ζ) = αζ 2 α

70 P t = 8 ( ) ζ 5 Φ (r t ) ζ αζ = 2 ( ) ζ 5 r tϕ 2

71 Dots: subject 6 Binary in red Correct Incentive Level

72 Dots: subject 14 Logistic in red Correct Incentive Level

73 Dots: subject 66 Concave (Normal) in red Correct Incentive Level

74

75 < < <

76 < < <

77

78 2 < < < 2 < < <

79

80

81

82 n x

83 r r (x r)p (r) r [0,x] P (r) x r

84 κ r κ r κn r n n 1 x < κn n 1 x κn n 1 r = κn n 1 x x κn x κn2 n n 1 x x < x κn2 (n 1) 2 κn < (n 1) 2 n 1 κn2 (n 1) 2 κn2 (n 1) 2 κn2 (n 1) 2 κn n 1 x κ = 40 α r

85 x r (n 1) exp ( r α ) + 1 x r x r (x) n = 5 α = 10 x [5, 100] r

86 x = 20 r (x) r x

87 r (x)

88 κ = 40 α = 10

89

90

91

92

93

94

95

96

97 k

98

99

100 µ ν λ ρ l r λ ρ m λ m ρ

101 m s s m s y s y

102 S λ ρ R R l r l r S: R: N λ (0.5) ρ (0.5) R R l r l r S: R:

103 S: R: N µ (0.5) ν (0.5) S N λ ρ λ (0.5) ρ (0.5) S S S S mλ mρ mλ mρ mλ mρ mλ mρ R R R R R R R R l r l r l r l r l r l r l r l r

104 l r m λ Pr(l m λ ) > Pr(r m λ ) Pr(l m ρ ) [Pr(r m λ ), Pr(l m λ )] ρ m λ m λ ρ m ρ λ r m λ l m ρ λ ρ Pr(λ µ) > Pr(ρ µ) Pr(λ) > Pr(ρ) m x Pr(λ m x ) > Pr(ρ m x ) m λ m λ l Pr(λ m ρ ) Pr(ρ m ρ ) m ρ l ρ m λ Pr(λ m ρ ) < Pr(ρ m ρ ) m ρ r ρ l m λ

105 Pr(λ µ) = Pr(ρ µ) = 1 2 Pr(λ) = Pr(ρ) = 1 2 Pr(λ m λ ) = Pr(λ m ρ ) = 1 Pr(λ) = Pr(ρ) = = Pr(λ m λ ) = Pr(m λ λ) Pr(λ) Pr(m λ λ) Pr(λ) + Pr(m λ ρ) Pr(ρ) Pr(m λ λ) Pr(m λ λ) + Pr(m λ ρ) Pr(m λ λ) = Pr(m λ ρ) Pr(m ρ λ) = Pr(m ρ ρ) Pr(λ) Pr(m λ λ)+pr(ρ) Pr(m ρ ρ) Pr(λ) Pr(m ρ λ)+ Pr(ρ) Pr(m λ ρ) Pr(m λ λ) = Pr(m λ ρ) Pr(m ρ λ) = Pr(m ρ ρ) m ρ Pr(λ m ρ ) = 1 2 m ρ ρ 1 2 m ρ λ 1 2

106 c m x y x y f(x) f(λ) := l f(ρ) := r Pr (y m x ) y m x Pr (λ m λ ) = Pr (ρ m ρ ) =: α

107 10α 10(1 α) α 1 2 β := Pr S ( α 1 2) α β c 10β 5 c 10β 5 β 15β + 10(1 β) c 10β + 15(1 β) c 10β 5 (15 c)β + 10(1 β) 10β + 15(1 β) c 10β 5 β

108 u i i {R, S} (π, π ) u S (π, π ) = π + γπ, γ > 0 u A := u(15, 0) u B := u(10, 10) u A u B β 1 u 2 A u B β 1 2 u A β + u B (1 β) u A (1 β) + u B β

109 u A u B β 1 2 u A u B β 1 2 u = π θ max{0, E α [π ] π } u π π α

110 θ (1 β) + (15 10θβ)β 10β + (15 10θ(1 β))(1 β) θ 1 2 c < 5 c > 5

111 ζ := Pr(l m λ ) = Pr(r m ρ ) Pr(λ µ) = Pr(ρ µ) = 1 2 ϕ := Pr(m λ λ, c = 0) = Pr(m ρ ρ, c = 0) ξ = Pr(c = ) ξ 1 2 ζ = 1 ϕ = 0 ξ 1 2

112 ζ = 1 1 2ξ ϕ = 2 2 2ξ 15ζ + 10(1 ζ) 10ζ + 15(1 ζ) ζ ξ + 10(1 ξ)ϕ 10(1 ξ)(1 ϕ) ξ ξϕ + ϕ 1 2 ϕ [0, 1] ξ 1 2 ϕ = 0 ξ 1 ϕ ϕ = 0 2 ξ = 1 2 ζ = 1 2 ϕ = 1 2ξ 2 2ξ

113 ξ < ξ 1 ξ µ ν

114

115 S knows order; R does not S knows order; R does not Round 1 Round 2 Scenario 1 Scenario 2 OR Scenario 2 Scenario 1 Scenario 1 Scenario 2 OR Scenario 2 Scenario 1 match rematch rematch switch roles rematch

116

117 n = % 47.2% 52.8% 13.0% 34.3% 14.8% p = 0.630

118 χ 2 = 91.9 p < p = D = p = 0.029

119 < < <

120 χ 2 = 78.5 p < p = % p = D = p < 0.001

121 < < <

122 < < <

123

124 p < 0.001

125 R 2 R 2 < < <

126

127

128

129

130

131 I i = 1,..., I J j = 1,..., J a i,j j i A I J a i := (a i,j ) J j=1

132 i i u i := u( a i ) := J j=1 a i,j F i,j f i,j F i,j j f i,j = f k,j f f i u i E[(u i û i ) 2 ] û i u i J E[(a i,j â i,j ) 2 ] j=1 â i,j a i,j

133 r i,j g i ( r i a i ) r = ((r i,j ) J j=1 C(f i, g i ) f g [ C(f i, g i ) = κ + r i f i ( a i ) ln(f i ( a i ))d a i a i ( g i ( r i a i )f i ( a i ) ln a i g i ( r i a i )f i ( a i ) bi g i ( r i b i )f i ( b i )d b i ) d r i d a i ] κ > 0 C(f i, g i ) [ J = κ f i,j (a i,j ) ln(f i,j (a i,j ))da i,j j=1 a i,j ( ) ] g i,j (r i,j a i,j )f i,j (a i,j ) + g i,j (r i,j a i,j )f i,j (a i,j ) ln dr i,j da i,j r i,j a i,j b i,j g i,j (r i,j b i,j )f i,j (b i,j )db i,j g i,j r i,j

134 g i E[(u i û i ) 2 ] + C(f i, g i ) â i,j h i,j (a i,j, r i,j ) := g i,j (r i,j a i,j )f i,j (a i,j ) b i,j g i,j (r i,j b i,j )f i,j (b i,j )db i,j a i,j r i,j â i,j u i û i = J j=1 â i,j û i â i,j α i,j := σ2 f i,j σ 2 h i,j σ 2 f i,j j i σ 2 q q

135 ] σh 2 i,j [0, σ 2fi,j α i,j i u( a i ) = J j=1 a i,j u( a i, A) = J γ j ( j (A))a i,j j=1 γ j j (A) := max j a i,j min j a i,j j

136 Φ ϕ ( h i,j = f i,j h i,j (a i,j r i,j ) = 1 ϕ a µhi,j ) µ σ hi,j σ = κ 2 σ σ hi,j = min { κ 2, σ f i,j }

137 α i,j = 1 σf 2 2 i,j κ h a i,j N(µ j, σj 2 ) σ j > κ 2 i â i,j = 2σ2 j κ r 2σj 2 i,j + κ µ 2σj 2 j r i,j µ j σj 2 û i = J γ(σ j 2 )r i,j j=1 γ(x) := 2x κ 2x γ(σ2 j ) γ j ( j (A))

138 i u( a i ) = J j=1 a i,j u( a i, A) = J ω i,j a i,j j=1 ω i,j a i,j ā j s(, ) ϵ, η 0 a i,j > ā j s(a i,j + ϵ, ā j η) > s(a i,j, ā j ) a i,j < ā j s(a i,j ϵ, ā j + η) > s(a i,j, ā j ) a i,j, ā j 0 ϵ > 0 s(a i,j + ϵ, ā j + ϵ) > s(a i,j, ā j )

139 s(a i,j, ā j ) ρ i,j J ω i,j ω i,j = δ r i,j J l=1 δr i,l δ (0, 1)

140 j a d 1 j (1),j <... < a d 1 j (I),j d j I j f ) ad i,j (a i,j ) := f i,j (a i,j 1 j (1),j <... < a d 1 (I),j (i, j) I = 3 j f i,j d j

141 N(µ j, τj 2 ) τ j > κ 2 τ j = τ j V E,j j V M,j j ( V E,j = τ ( ) V 4π M,j = τ 2 1 ) 3 V π M,j < V E,j V E,j V M,j j

142 γ j

143

144

145

146

147

148

149

150

151 {(U i, θ i, a i )} C(π, Q) C Q γq γ Q C(π, Q) := C(π, R) R Q γq γ Q Q γq C C C b : Q ( (Θ)) b ( (Θ)) {( ) n πsq (b(q)) = s,k n l=1 π lq l,k k {1,... M }, } n l=1 π lq l,k > 0 s=1 ζ (b(q)) n k Q ζ l=1 π lq l,k Q ζ Q ζ Q 1, Q 2,... Q Q lim b(q j ) = b(q) j lim b(q j )(X) = j b(q)(x) X σ (Θ) X X (b(q)) = X (b(q)) = (X) (b(q)) X (b(q)) = J N b(q j )(X) = 0 j > J lim b(q j )(X) = b(q)(x) = 0 J N, j > J j X (b(q j )) lim b(q j )(X) 0 j X X

152 ε > 0 J N, j > (( J ) b(q j )(X) > ε n ) πsq Q jh s,k n l=1 π lq l,k k s=1 j h (X) b(q)(x) = 0 X b(q)( X) > 0 X lim b(q j )(X) = b(q)(x) j (X) (b(q)) (Q j ) (Q j ) ((z k ) j ) := (( n ( l=1 π lq l,k ) j ) z k ((y k ) j ) := (( ) n ) ) πs q s,k n l=1 π lq l,k y k z k > 0 s=1 j z k = 0 ( ) π πs q (Q j ) (Q j ) y k = s,k n l=1 π lq l,k z k = n l=1 π lq l,k q l,k Q K {1,..., M} {((y k ) j ) k K} (X) (X) ε > 0 k K, N k j > N k, (y k ) j (X) N = N k j > N, b(q j )(X) ( k K ( n l=1 π lq l,k )) j k K b(q j )(X) k K ( n l=1 π lq l,k ) j j J N j > J (Q jh ) b(q jh )(X) k K ( n l=1 π lq l,k ) jh > 0 j h j h k K (y k ) jh (b(q jh )) M k ((y k ) jh ) (X) y k (X) k K y k X [ X ((y k ) jh ) z k = 0 lim b(qjh )(X) k K ( n l=1 π ] h lq l,k ) jh = 0 b γ ( (Θ)) b 1 ({γ}) b 1 ({γ}) Q Q R n R M b 1 ({γ}) Q γq C π Q γq C k Q jh k (y k ) j k j (z k ) j = 0 j (Q j ) j j (z k ) j (Q j ) (z k ) j 0 j, k (z k ) j

153 D I A D := I A A A D ( M A ) A Q Q D (QDUΠ) D δ : {1,..., M } {1,..., A } δ(j) j D j Q a δ(j) Q Q δ k {1,..., A } k Q j δ 1 (k) q,j q,j j Q k > A Q (Q, D) (Q, D) Pr(a θ) a A, θ Θ (i, j) Q D q i,j = k δ 1 (j) q i,k j A q i,j = Pr(a j θ i ) D j j j A k δ 1 (j) q i,k = Pr(a j θ i ) D j δ 1 (j) (QDUΠ) = (Q DUΠ) (Q, D) (Q, D) M M P p i,j p i,δ(i) = 1 i P i δ(i) Q = QP P C(π, Q ) C(π, Q) Q π Q Q Q Q D Q Q Q D Q Q (Q DUΠ) C(π, Q)

154 F (Q) F (Q) Q U Q Q (U) U F (Q) F (Q) U Q (U) Q 1, Q 2 Q (U) F (Q 1) = F (Q 2) Q 1 Q 2 λ (0, 1), F (λq 1+(1 λ)q 2) λf (Q 1)+(1 λ)f (Q 2) = F (Q 1) Q 1 Q 2 Q 1 Q 2 λ (0, 1) F (λq 1 + (1 λ)q 2) = λf (Q 1) + (1 λ)f (Q 2) λ Q λ Q (U) Q λ Q 1 Q 2 (Q λ DUΠ) = (Q 1 DUΠ) = (Q 2 DUΠ) (Q (U) DUΠ) U C c i,j C(π, Q) n M n M 2 c i,j (π, ) qi,j 2 C π r 1 r 2 Q i r i i = 1, 2 D j i Q i r j i, j = 1, 2 D i := Di i = D i i i = 1, 2

155 r 1 (Q 1 D 1 Π) + r 2 (Q 2 D 2 Π) r 2 (Q 1 D 1 Π) + r 1 (Q 2 D 2 Π) = r 1 P (r 1 ) + r 2 P (r 2 ) r 2 P (r 1 ) + r 1 P (r 2 ) = (r 1 r 2 )[P (r 1 ) P (r 2 )] 0 r 1 r 2 P (r 1 ) P (r 2 ) r 1 r 2... r N P 1 P 2... P N P i := P (r i ) P (r i, P σ1 (i)) N i=1 σ 1 σ 2 1, i = 1 σ 2 (i) := σ 1 (1), i = σ 1 1 (1) σ 1 (i), σ 2 σ 1 N r j P σ2 (i) j=1 N r j P σ1 (i) j=1 = r 1 P 1 + r σ1 1 (i)p σ1 (1) ( ) r 1 P σ1 (1) + r σ1 1 (i)p 1 = ( ( ) r 1 r σ1 (i)) 1 P1 P σ1 (1) 0, r 1 r σ1 1 (i) P 1 P σ1 (1) j 2 σ j+1 j, i = j σ j+1 (i) := σ j (j), i = σ 1 j (j) σ j (i), N N 1 σ N (i) = i (r i, P σ1 (i)) N i=1

156 x A y Θ Pr(θ = x a = x) Pr(θ = y a = x) r Pr(θ = x a = x) + 0 Pr(θ = z a = x) z x r Pr(θ = y a = x) + 0 Pr(θ = z a = x) z y u(x, z) Pr(θ = z a = x) u(y, z) Pr(θ = z a = x) z Θ z Θ Pr(a = x θ = z) Pr(θ = z) u(x, z) z Θ Pr(a = x) Pr(a = x θ = z) Pr(θ = z) u(y, z) z Θ Pr(a = x) u k, ΠQ d,k u l, ΠQ d,k, x y k l Θ (i, j) Q D Pr(a j θ i ) x y E[H(π Q)]) = γ Q (ˆπ)H(ˆπ) ˆπ (γ Q ) γ Q γ Q Q I(π, Q) = α(h(π) E[H(π Q)]) Q P P π Q QP I(π, Q) I(π, QP ) I x ln y = 0 lim x ln y (x,y,z) (0,0,0) z = 0 lim (x,y) (0,0)

157 Q( ) D j {1,..., M } π i qi,j i {1,...,n} d,j (Q D Π) = M j=1 i {1,...,n} π i q i,j n j, j {1,..., M }, G j,j := π i qi,j π i qi,j i {1,...,n} i {1,...,n} Q Q Q Q j j q q,j + q,j q j π i qi,j = G j,j π i q i {1,...,n} i {1,...,n},j = i,j = π i qi,j + π i qi,j Q i {1,...,n} i {1,...,n} Q M j=1 i {1,...,n} π i q i,j = M j=1 i {1,...,n} π i q i,j Q Q j > n q,j j n q,j = { M } q k π i qi,j =j,k i {1,...,n} M j=1 i {1,...,n} π i q i,j = j=1 i {1,...,n} π i q i,j D D (Q D Π) = (Q D Π) (Q D Π) = M π i q i,j = n π i q i,i j=1 i {1,...,n} i=1 ( n C(π, Q ) = K Q Q r π i q i,i i=1 ) ( n n π i q i,i K π i q i,i i=1 i=1 ) π i q i,i = k π k q k,i i n q rq K(q) q i,i q i n q 1 q 1 n K q i,i r = K ( n i=1 π i q i,i )

158 K Q (q i,i) n i=1 Q q i,i = q i n q := (K ) 1 (r) q i,j = 1 q j i, i n n 1 P (r) = n π i q i,i = q n π i = q = (K ) 1 (r) i=1 r K i=1 β ζ δ Φ((ξ + β)ζδ) Φ(ξζδ) ξ ξ ξ ξ ζδ[ϕ((ξ + β)ζδ) ϕ(ξζδ)] ξ ξ ξ = 2k + 1 β = 2 k 1 ξ = 2k+3 θ n 1 θ n θ n 1 θ n Φ(ζδ) Φ(0) > Φ(2ζδ) Φ(ζδ) Φ(ζδ) Φ(0) > Φ(3ζδ) Φ(2ζδ) = 2[Φ(ζδ) Φ(0)] > Φ(3ζδ) Φ(ζδ) = Φ(ζδ) Φ( ζδ) > Φ(3ζδ) Φ(ζδ) Φ(ζδ) Φ( ζδ) ζ [0, ) r [2Φ (ζδ) + (n 2) (2Φ (ζδ) 1)] K(ζ) n

159 ζ [0, ) r [(2n 2)Φ (ζδ) (n 2)] K(ζ) n F (r, ζ) (2n 2)rδ ϕ(ζδ) K (ζ) = 0 n (2n 2)rδ3 ζϕ(ζδ) K (ζ) < 0, n ζ P (r) = 1 [(2n 2)Φ(ζ(r)δ) (n 2)] n P (r) d 2 P = dp [ (2n 2)δ ϕ(ζδ) dζ ] dr 2 dr n dr (2n 2)δ3 = ζϕ(ζδ) dζ (2n 2)δ + ϕ(ζδ) d2 ζ n dr n dr 2 dζ d2 ζ dr dr 2 dζ dr = F r F = > 0 ζ (2n 2)δ n (2n 2)rδ 3 n ϕ(ζδ) ζϕ(ζδ) + K (ζ)

160 r [ ] d 2 ζ (2n 2)rδ 3 2 dr = ζϕ(ζδ) + K (ζ) 2 n (2n 2)δ3 { ζϕ(ζδ) dζ ( ) (2n 2)rδ 3 ζϕ(ζδ) + K (ζ) n dr n [( (2n 2)δ 3 (2n 2)rδ3 dζ ζϕ(ζδ) + n n dr ϕ(ζδ) (2n 2)rδ5 ζ 2 dζ ) n dr ϕ(ζδ) + K (ζ) ( )]} (2n 2)δ ϕ(ζδ) n [ ] (2n 2)rδ 3 2 = ζϕ(ζδ) + K (2n 2)δ3 (ζ) { ζϕ(ζδ) dζ n n dr K (ζ) [( ) (2n 2)δ 3 (2n 2)rδ3 dζ ζϕ(ζδ) + n n dr ϕ(ζδ) + K (ζ) ( )]} (2n 2)δ ϕ(ζδ) n < 0 d 2 ζ dr 2 d2 P dr 2 < 0 < 0 dζ dr > 0 x r (n 1) exp ( r α ) + 1 r x x r r (x) r ) ( (n 1) exp r ( x r α α ( (n 1) exp ( r α α) 1 ) ) 2 + 1

161 ( ) x r α ( (n 1) exp r ) > (<)1 α α ( ) x r α ( r (n 1) > (<) exp α α) r r r r r (n 1) ( ) ( x r α α = exp r ) α d 2 dr 2 [(x r)p (r)] = d dr [ P (r) + (x r) d dr P (r)] = 2 d dr P (r) + (x r) d2 dr 2 P (r) P (r) x > r r r x r (x)

162 < < <

163

164 n = 118 n = 117 n = 118 n = 118 p < p = p < p = 0.009

165

166

167 j i E[(a i,j â i,j ) 2 ] + C(f i,j, g i,j ) g r i,j(r i,j )dr i,j = 1 a R i j [ ( ) ] 2 L = r + r a 2 a a g(r a)f(a) b g(r b)f(b)dbda a g(r a)f(a) b g(r b)f(b)dbda g(r b)f(b)db dr b ( ) g(r a)f(a) κg(r a)f(a) ln g(r b)f(b)db da dr + λ(a)g(r a)f(a)da dr b r a λ(a) = ν(a)/f(a) ν(a) η(r, a) lim r η(r, a) = lim r η(r, a) = lim a η(r, a) = lim a η(r, a) = 0 λ(a)

168 J(ε) := r [ + + r r a 2 (g(r a) + εη(r, a))f(a)da ( a a a a a((g(r a) + εη(r, a))f(a))2 g(r a)f(a)da a ( (g(r a) + εη(r, a))f(a) κ(g(r a) + εη(r, a))f(a) ln (g(r b) + εη(r, b))f(b)db b ] λ(a)(g(r a) + εη(r, a))f(a)da dr ) da J ε ε=0 [ ( ( ) g(r a)f(a) 0 = η(r, a)f(a) a 2 + κ ln r a g(r b)f(b)db b ) ( a + η(r, a)f(a)da (ag(r a)f(a)da)2 a a ( (g(r a)f(a)da)2 2 aη(r, a)f(a)da ag(r a)f(a)da ) a a g(r a)f(a)da a ] g(r a)f(a) + κη(r, b)f(b)db b g(r b)f(b)dbda dr a b ) + κ + λ(a) da η eta ln h(a r) = λ(a) κ (a µ h) 2 κ h µ h ( h(a r) = 1 σ 2π exp 1 ( ) ) 2 a µh 2 σ σ = κ λ(a) = κ ln( κπ) 2 µ h κ 2 h κ < 2 σ2 f σ2 f a i,j r i,j a i,j a i,j r i,j a N(µ, σ 2 f ) r N(a, σ2 g)

169 a r N ( σ 2 f r+σ 2 g µ σ 2 f +σ2 g ), σ2 f σ2 g σf 2+σ2 g σh 2 κ 2 κ = σ2 f σ2 g 2 σf 2+σ2 g σ 2 g = κσ2 f 2σ 2 f κ µ h := σ2 f r+σ2 gµ σ 2 f +σ2 g 2σf 2 κ r + 2σ 2 f κ 2σ 2 f µ x y z x > y > z x, y, z N(µ, σ 2 ) ϕ Φ x f(x x > y > z) f(x x > y > z) = Pr(x > y > z) x y f(x, y, z)dz dy = 1, x y z 6 x y ( ) ( ) ( ) 1 x µ y µ z µ = 6 σ ϕ ϕ ϕ dz dy 3 σ σ σ x ( ) ( ) ( ) 1 x µ y µ y µ = 6 σ ϕ ϕ Φ dy 2 σ σ σ = 6 1 ( ) x µ Φ ( x µ σ ϕ σ ) t dt, 2 σ = 3 ( ) ( ) x µ x µ σ ϕ Φ 2 σ σ

170 y f(x x > y > z) y ( ) ( ) ( ) 1 x µ y µ z µ = 6 y σ ϕ ϕ ϕ dz dx 3 σ σ σ = 6 1 ( ) ( ) [ ( )] y µ y µ y µ σ ϕ Φ 1 Φ σ σ σ = 6 ( ) [ ( ) ( )] y µ y µ y µ σ ϕ Φ Φ 2 σ σ σ z f(z x > y > z) ( ) ( ) ( ) 1 x µ y µ z µ = 6 x y σ ϕ ϕ ϕ dy dx 3 σ σ σ = 3 ( ) [ ( )] 2 z µ z µ σ ϕ 1 Φ σ σ µ = 0 x 3 = 3σ = 3σ [ ϕ = 3σ π x ( x ) ( x ) σ ϕ Φ 2 dx σ σ x ( x ) ( x ) σ ϕ Φ 2 dx 2 σ σ ( x ) ( x ) Φ 2 +2 σ σ ( ) 2 2x σ ϕ Φ σ ( x σ ) dx 1 ( x ) ( x ) ] σ ϕ2 Φ dx σ σ = 3σ 2, π z 3σ 2 π y

171 x x 2 ( x ) ( x ) 3 σ ϕ Φ 2 dx σ σ ( x = 3σ 4 2 ( x ) σ ϕ 1 ( x ) ) ( x ) 5 σ σ ϕ Φ 2 dx + 3σ 4 3 σ σ [ = 3σ 4 x ( x ) ( x ) σ ϕ Φ 2 2x ( x ) ( x ) + 3 σ σ σ 4 ϕ2 Φ dx σ σ ( ) = [ ϕ 3σ2 2x ( x ) Φ + 2π σ σ 3σ = σ 2 2 ( ) 3 2x + 2π σ ϕ dx σ ) 3 = σ ( π 1 σ ϕ ( ) 2x σ 1 ( x σ ϕ 3 σ ] + σ 2 ( x ) ϕ dx σ ] ) ( x ) Φ 2 dx σ + σ 2 z x z ) 3 V (x) = V (z) = σ ( π 9 4π y V (y) y 2 ( y = 6 σ ϕ σ ( y = 6σ 4 2 ) [ ( y ) ( y )] Φ Φ 2 dy σ σ σ 5 ϕ ( y σ 2σ 2 (1 + ) 3 2π 1 ( y ) ) ( y ) σ ϕ Φ dy + 6σ 4 3 σ σ ), [ = 6σ 4 y ( y ) ( y ) σ ϕ y ( y Φ + 3 σ σ σ 4 ϕ2 σ = 3σ ( ) ( 2 2y y π σ ϕ dy + 3σ 2 2σ 2 σ = σ 2 (1 ) 3 π ( y ) ( y ) σ ϕ Φ dy 3 σ σ ) ] ( dy + 3σ 2 2σ ) 3 2π ) 3 2π V (y) < V (x) = V (z)

172 V (x) V (y) V (z)

[ zd z zdz dψ + 2i. 2 e i ψ 2 dz. (σ 2 ) 2 +(σ 3 ) 2 = (1+ z 2 ) 2

[ zd z zdz dψ + 2i. 2 e i ψ 2 dz. (σ 2 ) 2 +(σ 3 ) 2 = (1+ z 2 ) 2 2 S 2 2 2 2 2 M M 4 S 2 S 2 z, w : C S 2 z = 1/w e iψ S 1 S 2 σ 1 = 1 ( ) [ zd z zdz dψ + 2i 2 1 + z 2, σ 2 = Re 2 e i ψ 2 dz 1 + z 2 ], σ 3 = Im [ 2 e i ψ 2 dz 1 + z 2 σ 2 σ 3 (σ 2 ) 2 (σ 3 ) 2 σ 2 σ

More information

Some lecture notes for Math 6050E: PDEs, Fall 2016

Some lecture notes for Math 6050E: PDEs, Fall 2016 Some lecture notes for Math 65E: PDEs, Fall 216 Tianling Jin December 1, 216 1 Variational methods We discuss an example of the use of variational methods in obtaining existence of solutions. Theorem 1.1.

More information

1 r. Published on 28 January Abstract. will be discussed period Recently frequency jumps

1 r. Published on 28 January Abstract. will be discussed period Recently frequency jumps L R R 6 L L R R 6 R ˆ R - - ˆ 6 ˆ ˆ ˆ q q R R G P S G P S N A 4 N A D P U D C P U C B CO 89 -z 9 B CO 89 z9 U S R A q q q G q P q S U S A N A N A @ N A W W A 8 J A D 8 J P U C P 8 J P 8 J A A B CO 89 z

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

Estimating Information Cost Functions in Models of Rational Inattention

Estimating Information Cost Functions in Models of Rational Inattention Estimating Information Cost Functions in Models of Rational Inattention Ambuj Dewan and Nathaniel Neligh November 7, 2017 Abstract In models of rational inattention, information costs are usually modeled

More information

I. Relationship with previous work

I. Relationship with previous work x x i t j J t = {0, 1,...J t } j t (p jt, x jt, ξ jt ) p jt R + x jt R k k ξ jt R ξ t T j = 0 t (z i, ζ i, G i ), ζ i z i R m G i G i (p j, x j ) i j U(z i, ζ i, x j, p j, ξ j ; G i ) = u(ζ i, x j,

More information

A geometric solution of the Kervaire Invariant One problem

A geometric solution of the Kervaire Invariant One problem A geometric solution of the Kervaire Invariant One problem Petr M. Akhmet ev 19 May 2009 Let f : M n 1 R n, n = 4k + 2, n 2 be a smooth generic immersion of a closed manifold of codimension 1. Let g :

More information

Robust Inference. Bruce E. Hansen University of Wisconsin. This draft: September 2014 Preliminary. Do not cite. Abstract

Robust Inference. Bruce E. Hansen University of Wisconsin. This draft: September 2014 Preliminary. Do not cite. Abstract Robust Inference Bruce E. Hansen University of Wisconsin This draft: September 2014 Preliminary. Do not cite. Abstract This paper examines inference in sieve nonparametric regression allowing for asymptotic

More information

5 n N := {1, 2,...} N 0 := {0} N R ++ := (0, ) R + := [0, ) a, b R a b := max{a, b} f g (f g)(x) := f(x) g(x) (Z, Z ) bz Z Z R f := sup z Z f(z) κ: Z R ++ κ f : Z R f(z) f κ := sup z Z κ(z). f κ < f κ

More information

Carleson measures and elliptic boundary value problems Abstract. Mathematics Subject Classification (2010). Keywords. 1.

Carleson measures and elliptic boundary value problems Abstract. Mathematics Subject Classification (2010). Keywords. 1. 2 3 4 5 6 7 8 9 0 A 2 3 4 5 6 7 8 9 20 2 22 23 24 25 26 27 28 29 30 3 32 33 34 BMO BMO R n R n+ + BMO Q R n l(q) T Q = {(x, t) R n+ + : x I, 0 < t < l(q)} Q T Q dµ R n+ + C Q R n µ(t (Q)) < C Q Q 35 36

More information

Cosmology. April 13, 2015

Cosmology. April 13, 2015 Cosmology April 3, 205 The cosmological principle Cosmology is based on the principle that on large scales, space (not spacetime) is homogeneous and isotropic that there is no preferred location or direction

More information

Matrix Differentiation

Matrix Differentiation Matrix Differentiation CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Matrix Differentiation

More information

Strong Markov property of determinatal processes

Strong Markov property of determinatal processes Strong Markov property of determinatal processes Hideki Tanemura Chiba university (Chiba, Japan) (August 2, 2013) Hideki Tanemura (Chiba univ.) () Markov process (August 2, 2013) 1 / 27 Introduction The

More information

Sobolev embeddings and interpolations

Sobolev embeddings and interpolations embed2.tex, January, 2007 Sobolev embeddings and interpolations Pavel Krejčí This is a second iteration of a text, which is intended to be an introduction into Sobolev embeddings and interpolations. The

More information

Hyperbolic Geometric Flow

Hyperbolic Geometric Flow Hyperbolic Geometric Flow Kefeng Liu CMS and UCLA August 20, 2007, Dong Conference Page 1 of 51 Outline: Joint works with D. Kong and W. Dai Motivation Hyperbolic geometric flow Local existence and nonlinear

More information

MATH45061: SOLUTION SHEET 1 V

MATH45061: SOLUTION SHEET 1 V 1 MATH4561: SOLUTION SHEET 1 V 1.) a.) The faces of the cube remain aligned with the same coordinate planes. We assign Cartesian coordinates aligned with the original cube (x, y, z), where x, y, z 1. The

More information

Gaussian Elimination for Linear Systems

Gaussian Elimination for Linear Systems Gaussian Elimination for Linear Systems Tsung-Ming Huang Department of Mathematics National Taiwan Normal University October 3, 2011 1/56 Outline 1 Elementary matrices 2 LR-factorization 3 Gaussian elimination

More information

Math 715 Homework 1 Solutions

Math 715 Homework 1 Solutions . [arrier, Krook and Pearson Section 2- Exercise ] Show that no purely real function can be analytic, unless it is a constant. onsider a function f(z) = u(x, y) + iv(x, y) where z = x + iy and where u

More information

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D.

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Ruppert A. EMPIRICAL ESTIMATE OF THE KERNEL MIXTURE Here we

More information

X-MA2C01-1: Partial Worked Solutions

X-MA2C01-1: Partial Worked Solutions X-MAC01-1: Partial Worked Solutions David R. Wilkins May 013 1. (a) Let A, B and C be sets. Prove that (A \ (B C)) (B \ C) = (A B) \ C. [Venn Diagrams, by themselves without an accompanying logical argument,

More information

Confidence regions for stochastic variational inequalities

Confidence regions for stochastic variational inequalities Confidence regions for stochastic variational inequalities Shu Lu Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, 355 Hanes Building, CB#326, Chapel Hill,

More information

e sinϑ dθ dt θ ˆ,!!!!!!!!!!!!(10.1)! dt! ˆk + x dt dt dt ˆk = ( u r , v r , w r )!!!!!!!!!!!!(10.5)!

e sinϑ dθ dt θ ˆ,!!!!!!!!!!!!(10.1)! dt! ˆk + x dt dt dt ˆk = ( u r , v r , w r )!!!!!!!!!!!!(10.5)! Chapter(10.((The(Effect(of(the(Earth s(rotation( Inthischapter,wewilldeveloptheequationofmotionandvorticity equationinarotatingframeofreference. 10.1.MotioninaRotatingFrameofReference Letusconsiderafixedvector

More information

sin(α + θ) = sin α cos θ + cos α sin θ cos(α + θ) = cos α cos θ sin α sin θ

sin(α + θ) = sin α cos θ + cos α sin θ cos(α + θ) = cos α cos θ sin α sin θ Rotations in the 2D Plane Trigonometric addition formulas: sin(α + θ) = sin α cos θ + cos α sin θ cos(α + θ) = cos α cos θ sin α sin θ Rotate coordinates by angle θ: 1. Start with x = r cos α y = r sin

More information

and in each case give the range of values of x for which the expansion is valid.

and in each case give the range of values of x for which the expansion is valid. α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ τ υ ϕ χ ψ ω Mathematics is indeed dangerous in that it absorbs students to such a degree that it dulls their senses to everything else P Kraft Further Maths A (MFPD)

More information

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics Jiti Gao Department of Statistics School of Mathematics and Statistics The University of Western Australia Crawley

More information

XMA2C011, Annual Examination 2012: Worked Solutions

XMA2C011, Annual Examination 2012: Worked Solutions XMA2C011, Annual Examination 2012: Worked Solutions David R. Wilkins 1. (a) Let A, B and C be sets. Prove that A (B \ C) = (A B) \ (A C). We show that every element of A (B \ C) is an element of (A B)

More information

The Calderon-Vaillancourt Theorem

The Calderon-Vaillancourt Theorem The Calderon-Vaillancourt Theorem What follows is a completely self contained proof of the Calderon-Vaillancourt Theorem on the L 2 boundedness of pseudo-differential operators. 1 The result Definition

More information

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant,

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant, FYST5 Quantum Mechanics II 9..212 1. intermediate eam (1. välikoe): 4 problems, 4 hours 1. As you remember, the Hamilton operator for a charged particle interacting with an electromagentic field can be

More information

Partial Differentiation

Partial Differentiation CHAPTER 7 Partial Differentiation From the previous two chapters we know how to differentiate functions of one variable But many functions in economics depend on several variables: output depends on both

More information

PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH

PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH 1. Differential Forms To start our discussion, we will define a special class of type (0,r) tensors: Definition 1.1. A differential form of order

More information

Dynamical Domain Wall and Localization

Dynamical Domain Wall and Localization Dynamical Domain Wall and Localization Shin ichi Nojiri Department of Physics & Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya Univ. Typeset by FoilTEX 1 Based on

More information

REVIEW OF MAIN CONCEPTS AND FORMULAS A B = Ā B. Pr(A B C) = Pr(A) Pr(A B C) =Pr(A) Pr(B A) Pr(C A B)

REVIEW OF MAIN CONCEPTS AND FORMULAS A B = Ā B. Pr(A B C) = Pr(A) Pr(A B C) =Pr(A) Pr(B A) Pr(C A B) REVIEW OF MAIN CONCEPTS AND FORMULAS Boolean algebra of events (subsets of a sample space) DeMorgan s formula: A B = Ā B A B = Ā B The notion of conditional probability, and of mutual independence of two

More information

Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½

Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½ University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 1998 Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½ Lawrence D. Brown University

More information

The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models

The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models John M. Neuhaus Charles E. McCulloch Division of Biostatistics University of California, San

More information

3% 5% 1% 2% d t = 1,, T d i j J i,d,t J i,d,t+ = J i,d,t j j a i,d,t j i t d γ i > 0 i j t d U i,j,d,t = μ i,j,d + β i,j,d,t γ i + ε i,j,d,t ε i,j,d,t t ε i,,d,t μ β μ μ i,j,d d t d, t j μ i,j,d i j d

More information

Sobolev Spaces. Chapter 10

Sobolev Spaces. Chapter 10 Chapter 1 Sobolev Spaces We now define spaces H 1,p (R n ), known as Sobolev spaces. For u to belong to H 1,p (R n ), we require that u L p (R n ) and that u have weak derivatives of first order in L p

More information

2.20 Fall 2018 Math Review

2.20 Fall 2018 Math Review 2.20 Fall 2018 Math Review September 10, 2018 These notes are to help you through the math used in this class. This is just a refresher, so if you never learned one of these topics you should look more

More information

CONVEXIFICATION OF COEFFICIENT INVERSE PROBLEMS

CONVEXIFICATION OF COEFFICIENT INVERSE PROBLEMS CONVEXIFICATION OF COEFFICIENT INVERSE PROBLEMS Michael V. Klibanov Department of Mathematics and Statistics University of North Carolina at Charlotte Charlotte, NC 28223, USA THE MOST RECENT RESULT PDE-based

More information

Homework #6 : final examination Due on March 22nd : individual work

Homework #6 : final examination Due on March 22nd : individual work Université de ennes Année 28-29 Master 2ème Mathématiques Modèles stochastiques continus ou à sauts Homework #6 : final examination Due on March 22nd : individual work Exercise Warm-up : behaviour of characteristic

More information

Alexander Invariant of Tangles

Alexander Invariant of Tangles The.nb (source) file is at http://www.math.toronto.edu/vohuan/, based on the original program at http://- drorbn.net/academicpensieve/2015-07/polypoly/. 1. Γ-Calculus Alexander Invariant of Tangles The

More information

K e sub x e sub n s i sub o o f K.. w ich i sub s.. u ra to the power of m i sub fi ed.. a sub t to the power of a

K e sub x e sub n s i sub o o f K.. w ich i sub s.. u ra to the power of m i sub fi ed.. a sub t to the power of a - ; ; ˆ ; q x ; j [ ; ; ˆ ˆ [ ˆ ˆ ˆ - x - - ; x j - - - - - ˆ x j ˆ ˆ ; x ; j κ ˆ - - - ; - - - ; ˆ σ x j ; ˆ [ ; ] q x σ; x - ˆ - ; J -- F - - ; x - -x - - x - - ; ; 9 S j P R S 3 q 47 q F x j x ; [ ]

More information

Regularity of flat level sets in phase transitions

Regularity of flat level sets in phase transitions Annals of Mathematics, 69 (2009), 4 78 Regularity of flat level sets in phase transitions By Ovidiu Savin Abstract We consider local minimizers of the Ginzburg-Landau energy functional 2 u 2 + 4 ( u2 )

More information

PHASE TRANSITIONS: REGULARITY OF FLAT LEVEL SETS

PHASE TRANSITIONS: REGULARITY OF FLAT LEVEL SETS PHASE TRANSITIONS: REGULARITY OF FLAT LEVEL SETS OVIDIU SAVIN Abstract. We consider local minimizers of the Ginzburg-Landau energy functional 2 u 2 + 4 ( u2 ) 2 dx and prove that, if the level set is included

More information

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5 MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5.. The Arzela-Ascoli Theorem.. The Riemann mapping theorem Let X be a metric space, and let F be a family of continuous complex-valued functions on X. We have

More information

. Then Φ is a diffeomorphism from (0, ) onto (0, 1)

. Then Φ is a diffeomorphism from (0, ) onto (0, 1) 1 + 5..0: uv i Set F s, t s α 1 t β 1 e s+t and Φu, v. Then Φ is a u1 v diffeomorphism from 0, 0, 1 onto 0,, and JΦu, v u. Hence, ΓαΓβ F s, t dsdt F Φu, vjφu, v dudv 0, 0, 0,1 u α+β 1 e u v α 1 1 v β 1

More information

Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations

Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations C. David Levermore Department of Mathematics and Institute for Physical Science and Technology

More information

Formalism of the Tersoff potential

Formalism of the Tersoff potential Originally written in December 000 Translated to English in June 014 Formalism of the Tersoff potential 1 The original version (PRB 38 p.990, PRB 37 p.6991) Potential energy Φ = 1 u ij i (1) u ij = f ij

More information

j j 0 , j 0 A k Y k,0 = Q k k A k+(m 1)d, λ k (n) 1 n Y k+(m 1)d j,j Q k+(m 1)d = 1 n Y k+(m 1)d,j, j 0, Ȳ k,j (n) 1 n j=0 j=0 Y k j,j = k

j j 0 , j 0 A k Y k,0 = Q k k A k+(m 1)d, λ k (n) 1 n Y k+(m 1)d j,j Q k+(m 1)d = 1 n Y k+(m 1)d,j, j 0, Ȳ k,j (n) 1 n j=0 j=0 Y k j,j = k L = λw L = λw L λ W 25 l 1 R l 1 l 1 k j j 0 X {X k,j : k 0; j 0} X k,j k j 0 Y k,j i=j X k,i k j j 0 A k Y k,0 = X k,j k Q k k Y k j,j = k, j 0 A k j Y k j,j A k j k 0 0/0 1 0 n λ k (n) 1 n Q k (n) 1

More information

) ) = γ. and P ( X. B(a, b) = Γ(a)Γ(b) Γ(a + b) ; (x + y, ) I J}. Then, (rx) a 1 (ry) b 1 e (x+y)r r 2 dxdy Γ(a)Γ(b) D

) ) = γ. and P ( X. B(a, b) = Γ(a)Γ(b) Γ(a + b) ; (x + y, ) I J}. Then, (rx) a 1 (ry) b 1 e (x+y)r r 2 dxdy Γ(a)Γ(b) D 3 Independent Random Variables II: Examples 3.1 Some functions of independent r.v. s. Let X 1, X 2,... be independent r.v. s with the known distributions. Then, one can compute the distribution of a r.v.

More information

A2 Assignment lambda Cover Sheet. Ready. Done BP. Question. Aa C4 Integration 1 1. C4 Integration 3

A2 Assignment lambda Cover Sheet. Ready. Done BP. Question. Aa C4 Integration 1 1. C4 Integration 3 A Assignment lambda Cover Sheet Name: Question Done BP Ready Topic Comment Drill Mock Exam Aa C4 Integration sin x+ x+ c 4 Ab C4 Integration e x + c Ac C4 Integration ln x 5 + c Ba C Show root change of

More information

where r n = dn+1 x(t)

where r n = dn+1 x(t) Random Variables Overview Probability Random variables Transforms of pdfs Moments and cumulants Useful distributions Random vectors Linear transformations of random vectors The multivariate normal distribution

More information

Week 7: Integration: Special Coordinates

Week 7: Integration: Special Coordinates Week 7: Integration: Special Coordinates Introduction Many problems naturally involve symmetry. One should exploit it where possible and this often means using coordinate systems other than Cartesian coordinates.

More information

EN221 - Fall HW # 1 Solutions

EN221 - Fall HW # 1 Solutions EN221 - Fall2008 - HW # 1 Solutions Prof. Vivek Shenoy 1. Let A be an arbitrary tensor. i). Show that II A = 1 2 {(tr A)2 tr A 2 } ii). Using the Cayley-Hamilton theorem, deduce that Soln. i). Method-1

More information

Cold atoms in the presence of disorder and interactions

Cold atoms in the presence of disorder and interactions Cold atoms in the presence of disorder and interactions Collaboration: A. Minguzzi, S. Skipetrov, B. van-tiggelen (Grenoble), P. Henseler (Bonn), J. Chalker (Oxford), L. Beilin, E. Gurevich (Technion).

More information

We denote the derivative at x by DF (x) = L. With respect to the standard bases of R n and R m, DF (x) is simply the matrix of partial derivatives,

We denote the derivative at x by DF (x) = L. With respect to the standard bases of R n and R m, DF (x) is simply the matrix of partial derivatives, The derivative Let O be an open subset of R n, and F : O R m a continuous function We say F is differentiable at a point x O, with derivative L, if L : R n R m is a linear transformation such that, for

More information

arxiv: v1 [math.ca] 15 Dec 2016

arxiv: v1 [math.ca] 15 Dec 2016 L p MAPPING PROPERTIES FOR NONLOCAL SCHRÖDINGER OPERATORS WITH CERTAIN POTENTIAL arxiv:62.0744v [math.ca] 5 Dec 206 WOOCHEOL CHOI AND YONG-CHEOL KIM Abstract. In this paper, we consider nonlocal Schrödinger

More information

Lower Tail Probabilities and Normal Comparison Inequalities. In Memory of Wenbo V. Li s Contributions

Lower Tail Probabilities and Normal Comparison Inequalities. In Memory of Wenbo V. Li s Contributions Lower Tail Probabilities and Normal Comparison Inequalities In Memory of Wenbo V. Li s Contributions Qi-Man Shao The Chinese University of Hong Kong Lower Tail Probabilities and Normal Comparison Inequalities

More information

Nonparametric estimation using wavelet methods. Dominique Picard. Laboratoire Probabilités et Modèles Aléatoires Université Paris VII

Nonparametric estimation using wavelet methods. Dominique Picard. Laboratoire Probabilités et Modèles Aléatoires Université Paris VII Nonparametric estimation using wavelet methods Dominique Picard Laboratoire Probabilités et Modèles Aléatoires Université Paris VII http ://www.proba.jussieu.fr/mathdoc/preprints/index.html 1 Nonparametric

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

MATH642. COMPLEMENTS TO INTRODUCTION TO DYNAMICAL SYSTEMS BY M. BRIN AND G. STUCK

MATH642. COMPLEMENTS TO INTRODUCTION TO DYNAMICAL SYSTEMS BY M. BRIN AND G. STUCK MATH642 COMPLEMENTS TO INTRODUCTION TO DYNAMICAL SYSTEMS BY M BRIN AND G STUCK DMITRY DOLGOPYAT 13 Expanding Endomorphisms of the circle Let E 10 : S 1 S 1 be given by E 10 (x) = 10x mod 1 Exercise 1 Show

More information

ON SOME TWO-STEP DENSITY ESTIMATION METHOD

ON SOME TWO-STEP DENSITY ESTIMATION METHOD UNIVESITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLIII 2005 ON SOME TWO-STEP DENSITY ESTIMATION METHOD by Jolanta Jarnicka Abstract. We introduce a new two-step kernel density estimation method,

More information

Hyperbolic volumes and zeta values An introduction

Hyperbolic volumes and zeta values An introduction Hyperbolic volumes and zeta values An introduction Matilde N. Laĺın University of Alberta mlalin@math.ulberta.ca http://www.math.ualberta.ca/~mlalin Annual North/South Dialogue in Mathematics University

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

CUSUM TEST FOR PARAMETER CHANGE IN TIME SERIES MODELS. Sangyeol Lee

CUSUM TEST FOR PARAMETER CHANGE IN TIME SERIES MODELS. Sangyeol Lee CUSUM TEST FOR PARAMETER CHANGE IN TIME SERIES MODELS Sangyeol Lee 1 Contents 1. Introduction of the CUSUM test 2. Test for variance change in AR(p) model 3. Test for Parameter Change in Regression Models

More information

Hyperbolic Geometric Flow

Hyperbolic Geometric Flow Hyperbolic Geometric Flow Kefeng Liu Zhejiang University UCLA Page 1 of 41 Outline Introduction Hyperbolic geometric flow Local existence and nonlinear stability Wave character of metrics and curvatures

More information

A Probability Review

A Probability Review A Probability Review Outline: A probability review Shorthand notation: RV stands for random variable EE 527, Detection and Estimation Theory, # 0b 1 A Probability Review Reading: Go over handouts 2 5 in

More information

Change of Measure formula and the Hellinger Distance of two Lévy Processes

Change of Measure formula and the Hellinger Distance of two Lévy Processes Change of Measure formula and the Hellinger Distance of two Lévy Processes Erika Hausenblas University of Salzburg, Austria Change of Measure formula and the Hellinger Distance of two Lévy Processes p.1

More information

arxiv: v1 [math.gm] 2 Jun 2018

arxiv: v1 [math.gm] 2 Jun 2018 ON THE FACTORIZATION OF TWO ADJACENT NUMBERS IN MULTIPLICATIVELY CLOSED SETS GENERATED BY TWO ELEMENTS C.P. ANIL KUMAR arxiv:806.03344v [math.gm] 2 Jun 208 Abstract. For two natural numbers < p < p 2,

More information

Infinitely Imbalanced Logistic Regression

Infinitely Imbalanced Logistic Regression p. 1/1 Infinitely Imbalanced Logistic Regression Art B. Owen Journal of Machine Learning Research, April 2007 Presenter: Ivo D. Shterev p. 2/1 Outline Motivation Introduction Numerical Examples Notation

More information

I. Introduction. A New Method for Inverting Integrals Attenuated Radon Transform (SPECT) D to N map for Moving Boundary Value Problems

I. Introduction. A New Method for Inverting Integrals Attenuated Radon Transform (SPECT) D to N map for Moving Boundary Value Problems I. Introduction A New Method for Inverting Integrals Attenuated Radon Transform (SPECT) D to N map for Moving Boundary Value Problems F(k) = T 0 e k2 t+ikl(t) f (t)dt, k C. Integrable Nonlinear PDEs in

More information

Fundamental Constants

Fundamental Constants Fundamental Constants Atomic Mass Unit u 1.660 540 2 10 10 27 kg 931.434 32 28 MeV c 2 Avogadro s number N A 6.022 136 7 36 10 23 (g mol) 1 Bohr magneton μ B 9.274 015 4(31) 10-24 J/T Bohr radius a 0 0.529

More information

DIFFERENCE METHODS FOR FUZZY PARTIAL DIFFERENTIAL EQUATIONS

DIFFERENCE METHODS FOR FUZZY PARTIAL DIFFERENTIAL EQUATIONS COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, Vol.2(2002), No.3, pp.233 242 c Institute of Mathematics of the National Academy of Sciences of Belarus DIFFERENCE METHODS FOR FUZZY PARTIAL DIFFERENTIAL EQUATIONS

More information

Holonomic Gradient Method for Multivariate Normal Distribution Theory. Akimichi Takemura, Univ. of Tokyo August 2, 2013

Holonomic Gradient Method for Multivariate Normal Distribution Theory. Akimichi Takemura, Univ. of Tokyo August 2, 2013 Holonomic Gradient Method for Multivariate Normal Distribution Theory Akimichi Takemura, Univ. of Tokyo August 2, 2013 Items 1. First example (non-central t-distribution, by T.Sei) 2. Principles of HGM

More information

Stat 5101 Notes: Algorithms

Stat 5101 Notes: Algorithms Stat 5101 Notes: Algorithms Charles J. Geyer January 22, 2016 Contents 1 Calculating an Expectation or a Probability 3 1.1 From a PMF........................... 3 1.2 From a PDF...........................

More information

g(x) ḧ(ˆx) G(x) Ḧ(ˆx) ḡ(x) g(x) max E [φ(ϱ(x θ))], θ {1,2} x x G(x) θ {1, 2} ϱ(x θ) φ(ϱ) 1 2 g(x), h(x^) x, x^ g( ) h( ) g( ) x h( ) ˆx x supp(g) E(g(x)) := g(x i ) log g(x i ), i=1 supp(g) g(

More information

Necklace Flower Constellations

Necklace Flower Constellations 2018 26 David Arnas Martínez Necklace Flower Constellations Departamento Instituto Universitario de Investigación en Matemáticas y sus Aplicaciones Director/es Eva Tresaco Vidaller Antonio Elipe Sánchez

More information

Section 4: The Quantum Scalar Field

Section 4: The Quantum Scalar Field Physics 8.323 Section 4: The Quantum Scalar Field February 2012 c 2012 W. Taylor 8.323 Section 4: Quantum scalar field 1 / 19 4.1 Canonical Quantization Free scalar field equation (Klein-Gordon) ( µ µ

More information

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ.

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ. Mohr s Circle By drawing Mohr s circle, the stress transformation in -D can be done graphically. σ = σ x + σ y τ = σ x σ y + σ x σ y cos θ + τ xy sin θ, 1 sin θ + τ xy cos θ. Note that the angle of rotation,

More information

The Mysterious World of Normal Numbers

The Mysterious World of Normal Numbers University of Alberta May 3rd, 2012 1 2 3 4 5 6 7 Given an integer q 2, a q-normal number is an irrational number whose q-ary expansion is such that any preassigned sequence, of length k 1, of base q digits

More information

A Short Course in Basic Statistics

A Short Course in Basic Statistics A Short Course in Basic Statistics Ian Schindler November 5, 2017 Creative commons license share and share alike BY: C 1 Descriptive Statistics 1.1 Presenting statistical data Definition 1 A statistical

More information

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Jae-Kwang Kim Department of Statistics, Iowa State University Outline 1 Introduction 2 Observed likelihood 3 Mean Score

More information

Duality of multiparameter Hardy spaces H p on spaces of homogeneous type

Duality of multiparameter Hardy spaces H p on spaces of homogeneous type Duality of multiparameter Hardy spaces H p on spaces of homogeneous type Yongsheng Han, Ji Li, and Guozhen Lu Department of Mathematics Vanderbilt University Nashville, TN Internet Analysis Seminar 2012

More information

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3 Review of Fundamental Equations Supplementary notes on Section. and.3 Introduction of the velocity potential: irrotational motion: ω = u = identity in the vector analysis: ϕ u = ϕ Basic conservation principles:

More information

Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios

Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios Downloaded from orbit.dtu.dk on: Jan 22, 2019 Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios Nystrup, Peter Publication date: 2018 Document Version

More information

l t 1 2 2 2 2 2 B B m t t m 0 ṁ t = e ref a t m t B e ref a t t t x t a t δ a t0 = 0 ȧ t = x t δa t c(x t ) c x t, c (x t ) 0 c (x t ) 0 c(x t ) 0 c (x t ) c c (x t ) x t t

More information

Higher dimensional Kerr-Schild spacetimes 1

Higher dimensional Kerr-Schild spacetimes 1 Higher dimensional Kerr-Schild spacetimes 1 Marcello Ortaggio Institute of Mathematics Academy of Sciences of the Czech Republic Bremen August 2008 1 Joint work with V. Pravda and A. Pravdová, arxiv:0808.2165

More information

The Quadrupole Moment of Rotating Fluid Balls

The Quadrupole Moment of Rotating Fluid Balls The Quadrupole Moment of Rotating Fluid Balls Michael Bradley, Umeå University, Sweden Gyula Fodor, KFKI, Budapest, Hungary Current topics in Exact Solutions, Gent, 8- April 04 Phys. Rev. D 79, 04408 (009)

More information

Local Asymptotic Normality in Quantum Statistics

Local Asymptotic Normality in Quantum Statistics Local Asymptotic Normality in Quantum Statistics M!d!lin Gu"! School of Mathematical Sciences University of Nottingham Richard Gill (Leiden) Jonas Kahn (Paris XI) Bas Janssens (Utrecht) Anna Jencova (Bratislava)

More information

Assumptions for the theoretical properties of the

Assumptions for the theoretical properties of the Statistica Sinica: Supplement IMPUTED FACTOR REGRESSION FOR HIGH- DIMENSIONAL BLOCK-WISE MISSING DATA Yanqing Zhang, Niansheng Tang and Annie Qu Yunnan University and University of Illinois at Urbana-Champaign

More information

Sobolev Spaces. Chapter Hölder spaces

Sobolev Spaces. Chapter Hölder spaces Chapter 2 Sobolev Spaces Sobolev spaces turn out often to be the proper setting in which to apply ideas of functional analysis to get information concerning partial differential equations. Here, we collect

More information

3F1 Random Processes Examples Paper (for all 6 lectures)

3F1 Random Processes Examples Paper (for all 6 lectures) 3F Random Processes Examples Paper (for all 6 lectures). Three factories make the same electrical component. Factory A supplies half of the total number of components to the central depot, while factories

More information

a n+2 a n+1 M n a 2 a 1. (2)

a n+2 a n+1 M n a 2 a 1. (2) Rel Anlysis Fll 004 Tke Home Finl Key 1. Suppose tht f is uniformly continuous on set S R nd {x n } is Cuchy sequence in S. Prove tht {f(x n )} is Cuchy sequence. (f is not ssumed to be continuous outside

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Differentiable Functions

Differentiable Functions Differentiable Functions Let S R n be open and let f : R n R. We recall that, for x o = (x o 1, x o,, x o n S the partial derivative of f at the point x o with respect to the component x j is defined as

More information

Functions of a Complex Variable (S1) Lecture 11. VII. Integral Transforms. Integral transforms from application of complex calculus

Functions of a Complex Variable (S1) Lecture 11. VII. Integral Transforms. Integral transforms from application of complex calculus Functions of a Complex Variable (S1) Lecture 11 VII. Integral Transforms An introduction to Fourier and Laplace transformations Integral transforms from application of complex calculus Properties of Fourier

More information

CHAPTER 3 Further properties of splines and B-splines

CHAPTER 3 Further properties of splines and B-splines CHAPTER 3 Further properties of splines and B-splines In Chapter 2 we established some of the most elementary properties of B-splines. In this chapter our focus is on the question What kind of functions

More information

or E ( U(X) ) e zx = e ux e ivx = e ux( cos(vx) + i sin(vx) ), B X := { u R : M X (u) < } (4)

or E ( U(X) ) e zx = e ux e ivx = e ux( cos(vx) + i sin(vx) ), B X := { u R : M X (u) < } (4) :23 /4/2000 TOPIC Characteristic functions This lecture begins our study of the characteristic function φ X (t) := Ee itx = E cos(tx)+ie sin(tx) (t R) of a real random variable X Characteristic functions

More information

Section 2. Basic formulas and identities in Riemannian geometry

Section 2. Basic formulas and identities in Riemannian geometry Section 2. Basic formulas and identities in Riemannian geometry Weimin Sheng and 1. Bianchi identities The first and second Bianchi identities are R ijkl + R iklj + R iljk = 0 R ijkl,m + R ijlm,k + R ijmk,l

More information

INVERSE CURVATURE FLOWS IN HYPERBOLIC SPACE

INVERSE CURVATURE FLOWS IN HYPERBOLIC SPACE INVERSE CURVATURE FLOWS IN HYPERBOLIC SPACE CLAUS GERHARDT Dedicated to Stefan Hildebrandt on the occasion of his 75th birthday. Abstract. We consider inverse curvature flows in H n+1 with starshaped initial

More information