Redistricting Simulation through Markov Chain Monte Carlo

Size: px
Start display at page:

Download "Redistricting Simulation through Markov Chain Monte Carlo"

Transcription

1 Redistricting Simulation through Markov Chain Monte Carlo Kosuke Imai Department of Government Department of Statistics Institute for Quantitative Social Science Harvard University SAMSI Quantifying Gerrymandering Workshop October 8, 2018 Joint work with Benjamin Fifield, Michael Higgins, Jun Kawahara, and Alexander Tarr Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 1 / 27

2 Motivation and Progress of Our Team s Efforts Redistricting simulation: detect gerrymandering assess impact of constraints (e.g., population, compactness, race) In 2013 when our team started working on the project, many optimization methods existed but there were surprisingly few simulation methods no theoretical justification for standard random seed and grow algorithms Need a simulation method that: 1 samples uniformly from a target population of redistricting maps 2 incorporates common constraints 3 scales to redistricting problems of moderate and large size Paper presented at the 2014 Political Methodology Summer Meeting Open-source R package redist first published at CRAN in May 2015 Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 2 / 27

3 Overview of the Talk 1 Markov chain Monte Carlo algorithms 2 Validation studies 3 Empirical studies Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 3 / 27

4 The Random Seed-and-Grow Algorithm Cirincione et. al (2000), Altman & McDonald (2011), Chen & Rodden (2013): 1 Randomly choose a precinct as a seed for each district 2 Identify precincts adjacent to each seed 3 Randomly select adjacent precinct to merge with the seed 4 Repeat steps 2 & 3 until all precincts are assigned 5 Swap precincts around borders to achieve population parity Modify Step 3 to incorporate compactness No theoretical properties known The resulting maps may not be representative of the population Local exploration is difficult Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 4 / 27

5 Redistricting as a Graph-Cut Problem Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 5 / 27

6 Step 1: Independently Turn On Each Edge with Prob. q Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 6 / 27

7 Step 2: Gather Connected Components on Boundaries Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 7 / 27

8 Step 3: Select Subsets of Components and Propose Swaps Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 8 / 27

9 Step 4: Accept or Reject the Proposal Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 9 / 27

10 Step 4: Accept or Reject the Proposal Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 10 / 27

11 The Theoretical Property of the Algorithm We prove that the algorithm samples uniformly from the population of all valid redistricting plans An extension of the Swendsen-Wang algorithm (Barbu & Zhu, 2005) Metropolis-Hastings move from plan v t 1 vt : ( ) α(v t 1 vt ) = min 1, π(v t v t 1 ) π(v t 1 vt ) min (1, ) (1 q) B(C,v) B(C,v ) where q is the edge cut probability and B(C, v) is # of edges between connected component and its assigned district in redistricting plan v Easy to calculate Exact Metropolis ratio is too costly to evaluate, but approximation appears to work well Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 11 / 27

12 Incorporating a Population Constraint Want to sample plans where ψ(v k ) = p k p 1 ɛ where p k is population of district k, p is average district population, ɛ is strength of constraint Strategy 1: Only propose valid swaps slow mixing Strategy 2: Oversample certain plans and then reweight 1 Sample from target distribution f rather than the uniform distribution: ( ) f (v) g(v) = exp β V k v ψ(v k ) where β 0 and ψ(v k ) is deviation from parity for district V k 2 (Approximate) Acceptance probability is still easy to calculate, ( α(v v g(v ) ) ) min 1, (1,v) B(C,v ) q) B(C g(v) 3 Discard invalid plans and reweight the rest by 1/g(v) Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 12 / 27

13 Additional Constraints 1 Compactness (Fryer and Holden 2011): ψ(v k ) i,j V k,i<j p i p j d 2 ij where d ij is the distance between precincts i, j 2 Similarity to the adapted plan: ψ(v k ) = r k 1 where r k (rk ) is the # of precincts in V k (V k of the adapted plan) 3 Any criteria where constraint can be evaluated at each district g(v) = exp β (w 1 ψ 1 (V k ) + w 2 ψ 2 (V k ) + + w L ψ L (V k )) V k v r k Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 13 / 27

14 Improving the Mixing of the Algorithm Single iteration of the proposed algorithm runs very quickly But, like any MCMC algorithm, convergence may take a long time 1 Swapping multiple connected components more effective than increasing q but still leads to low acceptance ratio 2 Simulated tempering (Geyer and Thompson, 1995) Lower and raise the temperature parameter β as part of MCMC Explores low temperature space before visiting high temperature space 3 Parallel tempering (Geyer 1991) Run multiple chains of the algorithm with different temperatures Use the Metropolis criterion to swap temperatures with adjacent chains Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 14 / 27

15 Validation Studies based on Florida Data Evaluate algorithms when all valid plans can be enumerated # of precincts: 25 and 50 # of districts: 2 and 3 for the 25 set, and 2 for the 50 set With and without a population constraint of 20% within parity Also, consider simulated and parallel tempering Comparison with the standard random seed-and-grow algorithm via the BARD package (Altman & McDonald 2011) 10,000 draws for each algorithm Republican Dissimilarity Index for each simulated plan: D = 1 2 n w i R i R i=1 R(1 R) Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 15 / 27

16 Our Algorithm vs. Standard Algorithm Unconstrained Simulations Constrained Simulations 25 Precinct Set Density True Distribution Our Algorithm Standard Algorithm Density Republican Dissimilarity Index Republican Dissimilarity Index 50 Precinct Set Density Density Republican Dissimilarity Index Republican Dissimilarity Index Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 16 / 27

17 Simulated and Parallel Tempering Unconstrained Simulations Constrained Simulations (20%) Constrained Simulations (10%) Without Tempering (Algorithm 1) Density True Distribution Our Algorithm (Hard Constraint) Standard Algorithm Density Density Republican Dissimilarity Index Republican Dissimilarity Index Republican Dissimilarity Index With Tempering (Algorithms 2 & 3) Density True Distribution Simulated Tempering Parallel Tempering Density Republican Dissimilarity Index Republican Dissimilarity Index Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 17 / 27

18 More Validation Studies based on Florida Data 26.7 Fully Enumerated Validation Maps for Redistricting Simulation 25 Precinct Validation Subset 70 Precinct Validation Subset Population Latitude Longitude Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 18 / 27

19 enumpart (Kawahara et al. 2017) Quickly Computes the Total Number of Solutions 1e+09 How Solutions Change with Map Size and Constraints 2 Districts 3 Districts 4 Districts Number of Solutions 1e e+09 1e e+09 1e+06 No Constraint 5% 1% Number of Precincts Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 19 / 27

20 Total Number of Solutions and Population Parity # < 1% Parity: 8 # < 5% Parity: 192 # < 10% Parity: 927 Distribution of Population Parity for Fully Enumerated Maps 25 Precinct Validation Subset 9e+05 # < 1% Parity: # < 5% Parity: # < 10% Parity: Precinct Validation Subset Number of Plans e+05 3e e Distance from Population Parity Total number of solutions without population constraint 1 25 precinct (3 districts) example: 117, precinct (2 districts) example: 44,082,156 Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 20 / 27

21 Validation Results 1 Divide 70-precincts into 2 districts: no constraint, 5%, 1% 2 4 MCMC chains for 50,000 iterations each: with and without simulated tempering 3 Run 200,000 iterations of random seed-and-grow algorithm Validation Exercises on 70 Precinct Validation Map No Constraint 5% Parity 1% Parity Density Truth MCMC MCMC (Simulated Tempering) RSG Republican Dissimilarity Index Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 21 / 27

22 Empirical Studies Apply algorithm to state election data: New Hampshire: 2 congressional districts, 327 precincts Mississippi: 4 congressional districts, 1,969 precincts 1% (NH) and 5% (MS) deviation from population parity Convergence diagnostics: Autocorrelation Trace plot Gelman-Rubin multiple chain diagnostic New Hampshire Kosuke Imai (Harvard) Mississippi Redistricting through MCMC SAMSI (Oct. 8, 2018) 22 / 27

23 New Hampshire: Tempering Works Better Autocorrelation of a Chain Trace of a Chain Gelman Rubin Diagnostic Hard Population Constraint (Algorithm 1) Autocorrelation Lag Republican Dissimilarity (logit transformed) Iterations shrink factor last iteration in chain Parallel Tempering (Algorithm 2) Autocorrelation Lag Republican Dissimilarity (logit transformed) Iterations shrink factor last iteration in chain Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 23 / 27 median 97.5%

24 Mississippi: Parallel Tempering, More Challenging Case Autocorrelation of a Chain Trace of a Chain Gelman Rubin Diagnostic Republican Dissmilarity Autocorrelation Lag Republican Dissimilarity (logit transformed) Iterations shrink factor median 97.5% last iteration in chain African American Dissimilarity Autocorrelation Lag African American Dissimilarity (logit transformed) Iterations shrink factor last iteration in chain Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 24 / median 97.5%

25 Redistricting Plans that are Similar to the Adapted Plan Question: How does the partisan bias of the adapted plan compare with that of similar plans? Local exploration Fraction of Precincts Switched Partisan Bias towards Republicans Partisan Bias New Hampshire Fraction of Precincts Switched Absolute Deviation Absolute Deviation from Partisan Symmetry Fraction of Precincts Switched Republican Seats Number of Republican Seats Fraction of Precincts Switched Partisan Bias towards Republicans Mississippi Fraction of Precincts Switched Absolute Deviation Fraction of Precincts Switched Republican Seats Fraction of Precincts Switched Partisan Bias towards Republicans Partisan Bias New Hampshire Fraction of Precincts Switched Absolute Deviation Absolute Deviation from Partisan Symmetry Fraction of Precincts Switched Republican Seats Number of Republican Seats Fraction of Precincts Switched Partisan Bias towards Republicans Mississippi Fraction of Precincts Switched Absolute Deviation Fraction of Precincts Switched Republican Seats Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 25 / 27

26 Concluding Remarks Scholars use simulations to characterize the distribution of redistricting plans Commonly used algorithms lack theoretical properties and speed Our MCMC algorithm has: better theoretical properties superior speed better performance in validation studies can do global exploration for small states and local exploration for other states Future research: more validation studies more diffused starting maps larger states with more districts and precincts apply the method to historical redistricting data Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 26 / 27

27 References 1 Paper at 2 R package at 3 Comments and suggestions: Imai@Harvard.Edu Kosuke Imai (Harvard) Redistricting through MCMC SAMSI (Oct. 8, 2018) 27 / 27

A New Automated Redistricting Simulator Using Markov Chain Monte Carlo

A New Automated Redistricting Simulator Using Markov Chain Monte Carlo A New Automated Redistricting Simulator Using Markov Chain Monte Carlo Benjamin Fifield Michael Higgins Kosuke Imai Alexander Tarr First draft: July 20, 2014 This draft: January 20, 2018 Abstract Legislative

More information

ST 740: Markov Chain Monte Carlo

ST 740: Markov Chain Monte Carlo ST 740: Markov Chain Monte Carlo Alyson Wilson Department of Statistics North Carolina State University October 14, 2012 A. Wilson (NCSU Stsatistics) MCMC October 14, 2012 1 / 20 Convergence Diagnostics:

More information

STAT 425: Introduction to Bayesian Analysis

STAT 425: Introduction to Bayesian Analysis STAT 425: Introduction to Bayesian Analysis Marina Vannucci Rice University, USA Fall 2017 Marina Vannucci (Rice University, USA) Bayesian Analysis (Part 2) Fall 2017 1 / 19 Part 2: Markov chain Monte

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Markov chain Monte Carlo (MCMC) Gibbs and Metropolis Hastings Slice sampling Practical details Iain Murray http://iainmurray.net/ Reminder Need to sample large, non-standard distributions:

More information

17 : Markov Chain Monte Carlo

17 : Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models, Spring 2015 17 : Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Heran Lin, Bin Deng, Yun Huang 1 Review of Monte Carlo Methods 1.1 Overview Monte Carlo

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling Professor Erik Sudderth Brown University Computer Science October 27, 2016 Some figures and materials courtesy

More information

Monte Carlo Inference Methods

Monte Carlo Inference Methods Monte Carlo Inference Methods Iain Murray University of Edinburgh http://iainmurray.net Monte Carlo and Insomnia Enrico Fermi (1901 1954) took great delight in astonishing his colleagues with his remarkably

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling. Christopher Jennison. Adriana Ibrahim. Seminar at University of Kuwait

A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling. Christopher Jennison. Adriana Ibrahim. Seminar at University of Kuwait A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Adriana Ibrahim Institute

More information

Bayesian Networks in Educational Assessment

Bayesian Networks in Educational Assessment Bayesian Networks in Educational Assessment Estimating Parameters with MCMC Bayesian Inference: Expanding Our Context Roy Levy Arizona State University Roy.Levy@asu.edu 2017 Roy Levy MCMC 1 MCMC 2 Posterior

More information

Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Causal Interaction in Factorial Experiments: Application to Conjoint Analysis Causal Interaction in Factorial Experiments: Application to Conjoint Analysis Kosuke Imai Department of Government Department of Statistics Harvard University Talk at the Harvard Data Science Initiative

More information

Assessing significance in a Markov chain without mixing

Assessing significance in a Markov chain without mixing Assessing significance in a Markov chain without mixing Maria Chikina Department of Computational and Systems Biology University of Pittsburgh 3078 Biomedical Science Tower 3 Pittsburgh, PA 15213 U.S.A.

More information

Kazuhiko Kakamu Department of Economics Finance, Institute for Advanced Studies. Abstract

Kazuhiko Kakamu Department of Economics Finance, Institute for Advanced Studies. Abstract Bayesian Estimation of A Distance Functional Weight Matrix Model Kazuhiko Kakamu Department of Economics Finance, Institute for Advanced Studies Abstract This paper considers the distance functional weight

More information

Eco517 Fall 2013 C. Sims MCMC. October 8, 2013

Eco517 Fall 2013 C. Sims MCMC. October 8, 2013 Eco517 Fall 2013 C. Sims MCMC October 8, 2013 c 2013 by Christopher A. Sims. This document may be reproduced for educational and research purposes, so long as the copies contain this notice and are retained

More information

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 EPSY 905: Intro to Bayesian and MCMC Today s Class An

More information

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 18, 2015 1 / 45 Resources and Attribution Image credits,

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

Brief introduction to Markov Chain Monte Carlo

Brief introduction to Markov Chain Monte Carlo Brief introduction to Department of Probability and Mathematical Statistics seminar Stochastic modeling in economics and finance November 7, 2011 Brief introduction to Content 1 and motivation Classical

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Peter Beerli October 10, 2005 [this chapter is highly influenced by chapter 1 in Markov chain Monte Carlo in Practice, eds Gilks W. R. et al. Chapman and Hall/CRC, 1996] 1 Short

More information

SAMSI Astrostatistics Tutorial. More Markov chain Monte Carlo & Demo of Mathematica software

SAMSI Astrostatistics Tutorial. More Markov chain Monte Carlo & Demo of Mathematica software SAMSI Astrostatistics Tutorial More Markov chain Monte Carlo & Demo of Mathematica software Phil Gregory University of British Columbia 26 Bayesian Logical Data Analysis for the Physical Sciences Contents:

More information

A Comparison of Two MCMC Algorithms for Hierarchical Mixture Models

A Comparison of Two MCMC Algorithms for Hierarchical Mixture Models A Comparison of Two MCMC Algorithms for Hierarchical Mixture Models Russell Almond Florida State University College of Education Educational Psychology and Learning Systems ralmond@fsu.edu BMAW 2014 1

More information

Exact Goodness-of-Fit Testing for the Ising Model

Exact Goodness-of-Fit Testing for the Ising Model Exact Goodness-of-Fit Testing for the Ising Model The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher

More information

Application of new Monte Carlo method for inversion of prestack seismic data. Yang Xue Advisor: Dr. Mrinal K. Sen

Application of new Monte Carlo method for inversion of prestack seismic data. Yang Xue Advisor: Dr. Mrinal K. Sen Application of new Monte Carlo method for inversion of prestack seismic data Yang Xue Advisor: Dr. Mrinal K. Sen Overview Motivation Introduction Bayes theorem Stochastic inference methods Methodology

More information

Unpacking the Black-Box: Learning about Causal Mechanisms from Experimental and Observational Studies

Unpacking the Black-Box: Learning about Causal Mechanisms from Experimental and Observational Studies Unpacking the Black-Box: Learning about Causal Mechanisms from Experimental and Observational Studies Kosuke Imai Princeton University Joint work with Keele (Ohio State), Tingley (Harvard), Yamamoto (Princeton)

More information

Stochastic optimization Markov Chain Monte Carlo

Stochastic optimization Markov Chain Monte Carlo Stochastic optimization Markov Chain Monte Carlo Ethan Fetaya Weizmann Institute of Science 1 Motivation Markov chains Stationary distribution Mixing time 2 Algorithms Metropolis-Hastings Simulated Annealing

More information

Parallel Tempering I

Parallel Tempering I Parallel Tempering I this is a fancy (M)etropolis-(H)astings algorithm it is also called (M)etropolis (C)oupled MCMC i.e. MCMCMC! (as the name suggests,) it consists of running multiple MH chains in parallel

More information

Who was Bayes? Bayesian Phylogenetics. What is Bayes Theorem?

Who was Bayes? Bayesian Phylogenetics. What is Bayes Theorem? Who was Bayes? Bayesian Phylogenetics Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison October 6, 2011 The Reverand Thomas Bayes was born in London in 1702. He was the

More information

Bayesian Phylogenetics

Bayesian Phylogenetics Bayesian Phylogenetics Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison October 6, 2011 Bayesian Phylogenetics 1 / 27 Who was Bayes? The Reverand Thomas Bayes was born

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Simulated Annealing Barnabás Póczos & Ryan Tibshirani Andrey Markov Markov Chains 2 Markov Chains Markov chain: Homogen Markov chain: 3 Markov Chains Assume that the state

More information

SAMPLING ALGORITHMS. In general. Inference in Bayesian models

SAMPLING ALGORITHMS. In general. Inference in Bayesian models SAMPLING ALGORITHMS SAMPLING ALGORITHMS In general A sampling algorithm is an algorithm that outputs samples x 1, x 2,... from a given distribution P or density p. Sampling algorithms can for example be

More information

Statistical Analysis of List Experiments

Statistical Analysis of List Experiments Statistical Analysis of List Experiments Graeme Blair Kosuke Imai Princeton University December 17, 2010 Blair and Imai (Princeton) List Experiments Political Methodology Seminar 1 / 32 Motivation Surveys

More information

A = {(x, u) : 0 u f(x)},

A = {(x, u) : 0 u f(x)}, Draw x uniformly from the region {x : f(x) u }. Markov Chain Monte Carlo Lecture 5 Slice sampler: Suppose that one is interested in sampling from a density f(x), x X. Recall that sampling x f(x) is equivalent

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 3 More Markov Chain Monte Carlo Methods The Metropolis algorithm isn t the only way to do MCMC. We ll

More information

0.1 factor.bayes: Bayesian Factor Analysis

0.1 factor.bayes: Bayesian Factor Analysis 0.1 factor.bayes: Bayesian Factor Analysis Given some unobserved explanatory variables and observed dependent variables, the Normal theory factor analysis model estimates the latent factors. The model

More information

Bayesian Phylogenetics:

Bayesian Phylogenetics: Bayesian Phylogenetics: an introduction Marc A. Suchard msuchard@ucla.edu UCLA Who is this man? How sure are you? The one true tree? Methods we ve learned so far try to find a single tree that best describes

More information

Bayesian phylogenetics. the one true tree? Bayesian phylogenetics

Bayesian phylogenetics. the one true tree? Bayesian phylogenetics Bayesian phylogenetics the one true tree? the methods we ve learned so far try to get a single tree that best describes the data however, they admit that they don t search everywhere, and that it is difficult

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet Stat 535 C - Statistical Computing & Monte Carlo Methods Lecture 13-28 February 2006 Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Limitations of Gibbs sampling. Metropolis-Hastings algorithm. Proof

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

MH I. Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution

MH I. Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution MH I Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution a lot of Bayesian mehods rely on the use of MH algorithm and it s famous

More information

Theory of Stochastic Processes 8. Markov chain Monte Carlo

Theory of Stochastic Processes 8. Markov chain Monte Carlo Theory of Stochastic Processes 8. Markov chain Monte Carlo Tomonari Sei sei@mist.i.u-tokyo.ac.jp Department of Mathematical Informatics, University of Tokyo June 8, 2017 http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

More information

Introduction to MCMC. DB Breakfast 09/30/2011 Guozhang Wang

Introduction to MCMC. DB Breakfast 09/30/2011 Guozhang Wang Introduction to MCMC DB Breakfast 09/30/2011 Guozhang Wang Motivation: Statistical Inference Joint Distribution Sleeps Well Playground Sunny Bike Ride Pleasant dinner Productive day Posterior Estimation

More information

General Construction of Irreversible Kernel in Markov Chain Monte Carlo

General Construction of Irreversible Kernel in Markov Chain Monte Carlo General Construction of Irreversible Kernel in Markov Chain Monte Carlo Metropolis heat bath Suwa Todo Department of Applied Physics, The University of Tokyo Department of Physics, Boston University (from

More information

Quantifying Uncertainty

Quantifying Uncertainty Sai Ravela M. I. T Last Updated: Spring 2013 1 Markov Chain Monte Carlo Monte Carlo sampling made for large scale problems via Markov Chains Monte Carlo Sampling Rejection Sampling Importance Sampling

More information

Chapter 12 PAWL-Forced Simulated Tempering

Chapter 12 PAWL-Forced Simulated Tempering Chapter 12 PAWL-Forced Simulated Tempering Luke Bornn Abstract In this short note, we show how the parallel adaptive Wang Landau (PAWL) algorithm of Bornn et al. (J Comput Graph Stat, to appear) can be

More information

Departamento de Economía Universidad de Chile

Departamento de Economía Universidad de Chile Departamento de Economía Universidad de Chile GRADUATE COURSE SPATIAL ECONOMETRICS November 14, 16, 17, 20 and 21, 2017 Prof. Henk Folmer University of Groningen Objectives The main objective of the course

More information

The XY-Model. David-Alexander Robinson Sch th January 2012

The XY-Model. David-Alexander Robinson Sch th January 2012 The XY-Model David-Alexander Robinson Sch. 08332461 17th January 2012 Contents 1 Introduction & Theory 2 1.1 The XY-Model............................... 2 1.2 Markov Chains...............................

More information

Regression Discontinuity Designs

Regression Discontinuity Designs Regression Discontinuity Designs Kosuke Imai Harvard University STAT186/GOV2002 CAUSAL INFERENCE Fall 2018 Kosuke Imai (Harvard) Regression Discontinuity Design Stat186/Gov2002 Fall 2018 1 / 1 Observational

More information

Lognormal Measurement Error in Air Pollution Health Effect Studies

Lognormal Measurement Error in Air Pollution Health Effect Studies Lognormal Measurement Error in Air Pollution Health Effect Studies Richard L. Smith Department of Statistics and Operations Research University of North Carolina, Chapel Hill rls@email.unc.edu Presentation

More information

Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods

More information

Bayesian Inference Technique for Data mining for Yield Enhancement in Semiconductor Manufacturing Data

Bayesian Inference Technique for Data mining for Yield Enhancement in Semiconductor Manufacturing Data Bayesian Inference Technique for Data mining for Yield Enhancement in Semiconductor Manufacturing Data Presenter: M. Khakifirooz Co-authors: C-F Chien, Y-J Chen National Tsing Hua University ISMI 2015,

More information

The Ising model and Markov chain Monte Carlo

The Ising model and Markov chain Monte Carlo The Ising model and Markov chain Monte Carlo Ramesh Sridharan These notes give a short description of the Ising model for images and an introduction to Metropolis-Hastings and Gibbs Markov Chain Monte

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements

Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements Jeffrey N. Rouder Francis Tuerlinckx Paul L. Speckman Jun Lu & Pablo Gomez May 4 008 1 The Weibull regression model

More information

Web Appendix for The Dynamics of Reciprocity, Accountability, and Credibility

Web Appendix for The Dynamics of Reciprocity, Accountability, and Credibility Web Appendix for The Dynamics of Reciprocity, Accountability, and Credibility Patrick T. Brandt School of Economic, Political and Policy Sciences University of Texas at Dallas E-mail: pbrandt@utdallas.edu

More information

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC Stat 451 Lecture Notes 07 12 Markov Chain Monte Carlo Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapters 8 9 in Givens & Hoeting, Chapters 25 27 in Lange 2 Updated: April 4, 2016 1 / 42 Outline

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Finite Population Estimators in Stochastic Search Variable Selection

Finite Population Estimators in Stochastic Search Variable Selection 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Biometrika (2011), xx, x, pp. 1 8 C 2007 Biometrika Trust Printed

More information

Statistical Analysis of the Item Count Technique

Statistical Analysis of the Item Count Technique Statistical Analysis of the Item Count Technique Kosuke Imai Department of Politics Princeton University Joint work with Graeme Blair May 4, 2011 Kosuke Imai (Princeton) Item Count Technique UCI (Statistics)

More information

Minicourse on: Markov Chain Monte Carlo: Simulation Techniques in Statistics

Minicourse on: Markov Chain Monte Carlo: Simulation Techniques in Statistics Minicourse on: Markov Chain Monte Carlo: Simulation Techniques in Statistics Eric Slud, Statistics Program Lecture 1: Metropolis-Hastings Algorithm, plus background in Simulation and Markov Chains. Lecture

More information

0.1 factor.ord: Ordinal Data Factor Analysis

0.1 factor.ord: Ordinal Data Factor Analysis 0.1 factor.ord: Ordinal Data Factor Analysis Given some unobserved explanatory variables and observed ordinal dependent variables, this model estimates latent factors using a Gibbs sampler with data augmentation.

More information

Rare Event Sampling using Multicanonical Monte Carlo

Rare Event Sampling using Multicanonical Monte Carlo Rare Event Sampling using Multicanonical Monte Carlo Yukito IBA The Institute of Statistical Mathematics This is my 3rd oversea trip; two of the three is to Australia. Now I (almost) overcome airplane

More information

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Anthony Trubiano April 11th, 2018 1 Introduction Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a probability

More information

On Bayesian Computation

On Bayesian Computation On Bayesian Computation Michael I. Jordan with Elaine Angelino, Maxim Rabinovich, Martin Wainwright and Yun Yang Previous Work: Information Constraints on Inference Minimize the minimax risk under constraints

More information

16 : Markov Chain Monte Carlo (MCMC)

16 : Markov Chain Monte Carlo (MCMC) 10-708: Probabilistic Graphical Models 10-708, Spring 2014 16 : Markov Chain Monte Carlo MCMC Lecturer: Matthew Gormley Scribes: Yining Wang, Renato Negrinho 1 Sampling from low-dimensional distributions

More information

A quick introduction to Markov chains and Markov chain Monte Carlo (revised version)

A quick introduction to Markov chains and Markov chain Monte Carlo (revised version) A quick introduction to Markov chains and Markov chain Monte Carlo (revised version) Rasmus Waagepetersen Institute of Mathematical Sciences Aalborg University 1 Introduction These notes are intended to

More information

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017 Markov Chain Monte Carlo (MCMC) and Model Evaluation August 15, 2017 Frequentist Linking Frequentist and Bayesian Statistics How can we estimate model parameters and what does it imply? Want to find the

More information

Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Causal Interaction in Factorial Experiments: Application to Conjoint Analysis Causal Interaction in Factorial Experiments: Application to Conjoint Analysis Naoki Egami Kosuke Imai Princeton University Talk at the University of Macau June 16, 2017 Egami and Imai (Princeton) Causal

More information

Monte Carlo Dynamically Weighted Importance Sampling for Spatial Models with Intractable Normalizing Constants

Monte Carlo Dynamically Weighted Importance Sampling for Spatial Models with Intractable Normalizing Constants Monte Carlo Dynamically Weighted Importance Sampling for Spatial Models with Intractable Normalizing Constants Faming Liang Texas A& University Sooyoung Cheon Korea University Spatial Model Introduction

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo Hamiltonian Monte Carlo within Stan Daniel Lee Columbia University, Statistics Department bearlee@alum.mit.edu BayesComp mc-stan.org Why MCMC? Have data. Have a rich statistical model. No analytic solution.

More information

Multimodal Nested Sampling

Multimodal Nested Sampling Multimodal Nested Sampling Farhan Feroz Astrophysics Group, Cavendish Lab, Cambridge Inverse Problems & Cosmology Most obvious example: standard CMB data analysis pipeline But many others: object detection,

More information

Bayesian Estimation of Input Output Tables for Russia

Bayesian Estimation of Input Output Tables for Russia Bayesian Estimation of Input Output Tables for Russia Oleg Lugovoy (EDF, RANE) Andrey Polbin (RANE) Vladimir Potashnikov (RANE) WIOD Conference April 24, 2012 Groningen Outline Motivation Objectives Bayesian

More information

Monte Carlo and cold gases. Lode Pollet.

Monte Carlo and cold gases. Lode Pollet. Monte Carlo and cold gases Lode Pollet lpollet@physics.harvard.edu 1 Outline Classical Monte Carlo The Monte Carlo trick Markov chains Metropolis algorithm Ising model critical slowing down Quantum Monte

More information

Statistical Methods in Particle Physics Lecture 1: Bayesian methods

Statistical Methods in Particle Physics Lecture 1: Bayesian methods Statistical Methods in Particle Physics Lecture 1: Bayesian methods SUSSP65 St Andrews 16 29 August 2009 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

1. Capitalize all surnames and attempt to match with Census list. 3. Split double-barreled names apart, and attempt to match first half of name.

1. Capitalize all surnames and attempt to match with Census list. 3. Split double-barreled names apart, and attempt to match first half of name. Supplementary Appendix: Imai, Kosuke and Kabir Kahnna. (2016). Improving Ecological Inference by Predicting Individual Ethnicity from Voter Registration Records. Political Analysis doi: 10.1093/pan/mpw001

More information

Chris Fraley and Daniel Percival. August 22, 2008, revised May 14, 2010

Chris Fraley and Daniel Percival. August 22, 2008, revised May 14, 2010 Model-Averaged l 1 Regularization using Markov Chain Monte Carlo Model Composition Technical Report No. 541 Department of Statistics, University of Washington Chris Fraley and Daniel Percival August 22,

More information

Experimental Designs for Identifying Causal Mechanisms

Experimental Designs for Identifying Causal Mechanisms Experimental Designs for Identifying Causal Mechanisms Kosuke Imai Princeton University October 18, 2011 PSMG Meeting Kosuke Imai (Princeton) Causal Mechanisms October 18, 2011 1 / 25 Project Reference

More information

An introduction to Markov Chain Monte Carlo techniques

An introduction to Markov Chain Monte Carlo techniques An introduction to Markov Chain Monte Carlo techniques G. J. A. Harker University of Colorado ASTR5550, 19th March 2012 Outline Introduction Bayesian inference: recap MCMC: when to use it and why A simple

More information

Bayesian model selection in graphs by using BDgraph package

Bayesian model selection in graphs by using BDgraph package Bayesian model selection in graphs by using BDgraph package A. Mohammadi and E. Wit March 26, 2013 MOTIVATION Flow cytometry data with 11 proteins from Sachs et al. (2005) RESULT FOR CELL SIGNALING DATA

More information

Markov Networks.

Markov Networks. Markov Networks www.biostat.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts Markov network syntax Markov network semantics Potential functions Partition function

More information

Metropolis Hastings. Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601. Module 9

Metropolis Hastings. Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601. Module 9 Metropolis Hastings Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601 Module 9 1 The Metropolis-Hastings algorithm is a general term for a family of Markov chain simulation methods

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Advanced Statistical Modelling

Advanced Statistical Modelling Markov chain Monte Carlo (MCMC) Methods and Their Applications in Bayesian Statistics School of Technology and Business Studies/Statistics Dalarna University Borlänge, Sweden. Feb. 05, 2014. Outlines 1

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods By Oleg Makhnin 1 Introduction a b c M = d e f g h i 0 f(x)dx 1.1 Motivation 1.1.1 Just here Supresses numbering 1.1.2 After this 1.2 Literature 2 Method 2.1 New math As

More information

Lecture 8: Computer Simulations of Generalized Ensembles

Lecture 8: Computer Simulations of Generalized Ensembles Lecture 8: Computer Simulations of Generalized Ensembles Bernd A. Berg Florida State University November 6, 2008 Bernd A. Berg (FSU) Generalized Ensembles November 6, 2008 1 / 33 Overview 1. Reweighting

More information

Bayesian model selection: methodology, computation and applications

Bayesian model selection: methodology, computation and applications Bayesian model selection: methodology, computation and applications David Nott Department of Statistics and Applied Probability National University of Singapore Statistical Genomics Summer School Program

More information

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems John Bardsley, University of Montana Collaborators: H. Haario, J. Kaipio, M. Laine, Y. Marzouk, A. Seppänen, A. Solonen, Z.

More information

Unpacking the Black-Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies

Unpacking the Black-Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies Unpacking the Black-Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies Kosuke Imai Princeton University January 23, 2012 Joint work with L. Keele (Penn State)

More information

Manifold Monte Carlo Methods

Manifold Monte Carlo Methods Manifold Monte Carlo Methods Mark Girolami Department of Statistical Science University College London Joint work with Ben Calderhead Research Section Ordinary Meeting The Royal Statistical Society October

More information

Monte Carlo Methods. Leon Gu CSD, CMU

Monte Carlo Methods. Leon Gu CSD, CMU Monte Carlo Methods Leon Gu CSD, CMU Approximate Inference EM: y-observed variables; x-hidden variables; θ-parameters; E-step: q(x) = p(x y, θ t 1 ) M-step: θ t = arg max E q(x) [log p(y, x θ)] θ Monte

More information

Simulated Annealing for Constrained Global Optimization

Simulated Annealing for Constrained Global Optimization Monte Carlo Methods for Computation and Optimization Final Presentation Simulated Annealing for Constrained Global Optimization H. Edwin Romeijn & Robert L.Smith (1994) Presented by Ariel Schwartz Objective

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling

Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling 1 / 27 Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling Melih Kandemir Özyeğin University, İstanbul, Turkey 2 / 27 Monte Carlo Integration The big question : Evaluate E p(z) [f(z)]

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo 1 Motivation 1.1 Bayesian Learning Markov Chain Monte Carlo Yale Chang In Bayesian learning, given data X, we make assumptions on the generative process of X by introducing hidden variables Z: p(z): prior

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information