Parallel Tempering I

Size: px
Start display at page:

Download "Parallel Tempering I"

Transcription

1 Parallel Tempering I this is a fancy (M)etropolis-(H)astings algorithm it is also called (M)etropolis (C)oupled MCMC i.e. MCMCMC! (as the name suggests,) it consists of running multiple MH chains in parallel invented by Charles J. Geyer [1, Geyer, 1991] March 21, 2006 c Gopi Goswami (goswami@stat.harvard.edu) Page 1

2 Parallel Tempering II want samples from the target density: g(z ), z R d let H(z ) = log(g(z )), then we have, g(z ) = exp{ H(z )/1.0} H( ), the negative of the log density is called the fitness function in general, one might be interested in sampling from: g(z ) exp{ H(z )/τ min }, z R d assuming exp{ H(z )/τ min } dz < note H(ũ) H(ṽ) g(ũ) g(ṽ), so, low fitness values corresponds to good or high-probability samples March 21, 2006 c Gopi Goswami (goswami@stat.harvard.edu) Page 2

3 Parallel Tempering III consider a temperature ladder (just a decreasing sequence of positive numbers): t 1 > t 2 > > t N > 0.0, where t N = τ min extend the sample space: x := (x 1;...;x i;...;x N) R Nd terminology: population or state of the chain: (x 1, t 1 ;... ; x i, t i ;...;x N, t N ) i th chromosome: x i modified target density: N f(x ) f i (x i) i=1 f i (x i) exp{ H(x i)/t i }, i = 1, 2,...,N f N ( ) = g( ) where and note because t N = τ min March 21, 2006 c Gopi Goswami (goswami@stat.harvard.edu) Page 3

4 Parallel Tempering III (P)arallel (T)empering consists two types of moves: MH update (local move) apply MH updates to the individual chains at the different temperature levels or to the chromosomes also called the Mutation move Exchange update (global move) propose to swap the states of the chains at the two neighboring temperature levels or two neighboring chromosomes also called the Random Exchange move March 21, 2006 c Gopi Goswami (goswami@stat.harvard.edu) Page 4

5 Mutation I 1. choose i ɛ {1,...,N} using some distribution p(i = i x ), could be random or deterministic 2. for simple (R)andom (W)alk (M)etropolis, propose ỹ i = x i + ε i, where ε i is suitably chosen from a symmetric mean zero proposal distribution: T i (x i, ) note we could choose T i (x i, ) Normal d (x i,, σ 2 i I d; ) the σ 2 values may need some tweaking after observing the level-specific acceptance rates of the mutation move one can also do block or coordinate wise Gibbs or use a general MH on x i here 3. accept (ỹ, t ) = (x 1, t 1 ;...;ỹ i, t i ;...;x N, t N ) with probability α m = min(1, r m ) where, r m = f i(ỹ i ) f i (x i) p(i = i ỹ) p(i = i x ) March 21, 2006 c Gopi Goswami (goswami@stat.harvard.edu) Page 5

6 Mutation II computation of r m : here we are using a mixture of updaters note only change between x and ỹ is in the i-th chromosome: x i has changed to ỹ i so T(x, ỹ) = p(i = i x ) T i (x i, ỹ i ) and T(ỹ, x ) = p(i = i ỹ) T i (ỹ i, x i) hence we have: r m = f(ỹ)t(ỹ, x ) f(x )T(x, ỹ) = f i(ỹ i )p(i = i ỹ)t i (ỹ i, x i) f i (x i)p(i = i x )T i (x i, ỹ i ) = f i(ỹ i ) f i (x i) p(i = i ỹ) p(i = i x ), here T i(, ) s cancel in because it s a RWM in general, it may not March 21, 2006 c Gopi Goswami (goswami@stat.harvard.edu) Page 6

7 Mutation III at higher temperature levels, Mutation moves are easily accepted because the distribution is flat and thus hotter chains travel around the sample space a lot at lower temperature levels, Mutation moves are rarely accepted because the distribution is very spiky and hence any colder chains tend to get stuck around a mode thus Mutation does local exploration for lower temperatures and since the lowest temperature is the temperature of interest only doing Mutation doesn t help, one needs to consider the next move but the sticky nature of the Mutation move at lower temperature is a plus point as well, this tends to foster finer local exploration March 21, 2006 c Gopi Goswami (goswami@stat.harvard.edu) Page 7

8 Random Exchange I 1. select i ɛ {1,...,N} with p(i 1 = i x ) = 1 N also select j i s.t. p(i 2 = 2 x, I 1 = 1) = 1, p(i 2 = N 1 x, I 1 = N) = 1 and for i 1, N, p(i 2 = i ± 1 x, I 1 = i) = propose to exchange x i and x j 3. accept (ỹ, t ) = (x 1, t 1 ;...;x j, t i ;... ; x i, t j ;...;x N, t N ), with probability α re = min(1, r re ) where, r re = f i(x j)f j (x i) f i (x i)f j (x j) what are T(x, ỹ), T(ỹ, x ) here? = exp[(h(x j) H(x i)) (1/t j 1/t i )] March 21, 2006 c Gopi Goswami (goswami@stat.harvard.edu) Page 8

9 Random Exchange II for i > j and H(x j) H(x i) implies r re 1, because 1/t j 1/t i so, good samples are brought down the ladder and in the process, the bad guys are pushed up so this move probabilistically transports good samples down and bad up the ladder this can cause jumps between two widely separate modes, thus this move has a global nature March 21, 2006 c Gopi Goswami (goswami@stat.harvard.edu) Page 9

10 Parallel Tempering Algorithm I (0) i (0), i = 1, 2,...,N} giving x we initialize the population to {x we take a suitably chosen temperature ladder {t i, i = 1, 2,...,N}, for a concrete recipe see [2, Goswami et. al.] choose a moves mixture probability vector (q, 1 q), q (0, 1) Algorithm 0.1 (PT: one iteration). 1. with probability q apply the Mutation move N-times on the population 2. with probability 1 q apply the Random Exchange move N-times on the resultant population thus we get draws: x (0) x (1) (2) x (t) x (t) samples of interest: upon convergence we look at N, t = 1, 2,...m} out {x of {x (t), t = 1, 2,...m} March 21, 2006 c Gopi Goswami (goswami@stat.harvard.edu) Page 10

11 Parallel Tempering III is doing all this extra work worth the effort: PT isn t stuck in one mode like MH! Figure 1: MH-PT Comparison March 21, 2006 c Gopi Goswami (goswami@stat.harvard.edu) Page 11

12 Parallel Tempering III is doing all this extra work worth the effort: PT yields less auto-correlation than MH (BTW, these plots are not enough, one need to look at AIAT, this is what others do, we shouldn t) Figure 2: MH-PT Comparison March 21, 2006 c Gopi Goswami (goswami@stat.harvard.edu) Page 12

13 Parallel Tempering III PT is a computationally expensive method and so it is generally used for harder problems where simple MH cannot possibly jump between modes in finite amount of time the draws produced by MH are very highly correlated intuitively why does PT work? the Mutation move at higher temperatures, helps to cover the whole space and at lower temperatures fosters finer local exploration the Exchange move does the transportation job facilitating global exploration: good ones go down bad guys go up March 21, 2006 c Gopi Goswami (goswami@stat.harvard.edu) Page 13

14 References [1] C. J. Geyer. Markov chain Monte Carlo maximum likelihood. In Computing Science and Statistics: Proc. 23rd Symp. Interface, pages , [2] Gopika R. Goswami and Jun S. Liu. On real-parameter evolutionary monte carlo algorithm. Statistics and Computing, (just accepted). March 21, 2006 c Gopi Goswami (goswami@stat.harvard.edu) Page 14

MH I. Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution

MH I. Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution MH I Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution a lot of Bayesian mehods rely on the use of MH algorithm and it s famous

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 Sequential parallel tempering With the development of science and technology, we more and more need to deal with high dimensional systems. For example, we need to align a group of protein or DNA sequences

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

17 : Markov Chain Monte Carlo

17 : Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models, Spring 2015 17 : Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Heran Lin, Bin Deng, Yun Huang 1 Review of Monte Carlo Methods 1.1 Overview Monte Carlo

More information

Markov Chain Monte Carlo, Numerical Integration

Markov Chain Monte Carlo, Numerical Integration Markov Chain Monte Carlo, Numerical Integration (See Statistics) Trevor Gallen Fall 2015 1 / 1 Agenda Numerical Integration: MCMC methods Estimating Markov Chains Estimating latent variables 2 / 1 Numerical

More information

Markov Chain Monte Carlo Inference. Siamak Ravanbakhsh Winter 2018

Markov Chain Monte Carlo Inference. Siamak Ravanbakhsh Winter 2018 Graphical Models Markov Chain Monte Carlo Inference Siamak Ravanbakhsh Winter 2018 Learning objectives Markov chains the idea behind Markov Chain Monte Carlo (MCMC) two important examples: Gibbs sampling

More information

Markov Chain Monte Carlo Lecture 4

Markov Chain Monte Carlo Lecture 4 The local-trap problem refers to that in simulations of a complex system whose energy landscape is rugged, the sampler gets trapped in a local energy minimum indefinitely, rendering the simulation ineffective.

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

Tutorial on ABC Algorithms

Tutorial on ABC Algorithms Tutorial on ABC Algorithms Dr Chris Drovandi Queensland University of Technology, Australia c.drovandi@qut.edu.au July 3, 2014 Notation Model parameter θ with prior π(θ) Likelihood is f(ý θ) with observed

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling Professor Erik Sudderth Brown University Computer Science October 27, 2016 Some figures and materials courtesy

More information

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 18, 2015 1 / 45 Resources and Attribution Image credits,

More information

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Anthony Trubiano April 11th, 2018 1 Introduction Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a probability

More information

The Ising model and Markov chain Monte Carlo

The Ising model and Markov chain Monte Carlo The Ising model and Markov chain Monte Carlo Ramesh Sridharan These notes give a short description of the Ising model for images and an introduction to Metropolis-Hastings and Gibbs Markov Chain Monte

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Markov chain Monte Carlo (MCMC) Gibbs and Metropolis Hastings Slice sampling Practical details Iain Murray http://iainmurray.net/ Reminder Need to sample large, non-standard distributions:

More information

Metropolis Hastings. Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601. Module 9

Metropolis Hastings. Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601. Module 9 Metropolis Hastings Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601 Module 9 1 The Metropolis-Hastings algorithm is a general term for a family of Markov chain simulation methods

More information

A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling. Christopher Jennison. Adriana Ibrahim. Seminar at University of Kuwait

A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling. Christopher Jennison. Adriana Ibrahim. Seminar at University of Kuwait A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Adriana Ibrahim Institute

More information

Sampling Algorithms for Probabilistic Graphical models

Sampling Algorithms for Probabilistic Graphical models Sampling Algorithms for Probabilistic Graphical models Vibhav Gogate University of Washington References: Chapter 12 of Probabilistic Graphical models: Principles and Techniques by Daphne Koller and Nir

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet Stat 535 C - Statistical Computing & Monte Carlo Methods Lecture 13-28 February 2006 Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Limitations of Gibbs sampling. Metropolis-Hastings algorithm. Proof

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

On Markov Chain Monte Carlo

On Markov Chain Monte Carlo MCMC 0 On Markov Chain Monte Carlo Yevgeniy Kovchegov Oregon State University MCMC 1 Metropolis-Hastings algorithm. Goal: simulating an Ω-valued random variable distributed according to a given probability

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems John Bardsley, University of Montana Collaborators: H. Haario, J. Kaipio, M. Laine, Y. Marzouk, A. Seppänen, A. Solonen, Z.

More information

Monte Carlo methods for sampling-based Stochastic Optimization

Monte Carlo methods for sampling-based Stochastic Optimization Monte Carlo methods for sampling-based Stochastic Optimization Gersende FORT LTCI CNRS & Telecom ParisTech Paris, France Joint works with B. Jourdain, T. Lelièvre, G. Stoltz from ENPC and E. Kuhn from

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

A = {(x, u) : 0 u f(x)},

A = {(x, u) : 0 u f(x)}, Draw x uniformly from the region {x : f(x) u }. Markov Chain Monte Carlo Lecture 5 Slice sampler: Suppose that one is interested in sampling from a density f(x), x X. Recall that sampling x f(x) is equivalent

More information

Bayesian Inference using Markov Chain Monte Carlo in Phylogenetic Studies

Bayesian Inference using Markov Chain Monte Carlo in Phylogenetic Studies Bayesian Inference using Markov Chain Monte Carlo in Phylogenetic Studies 1 What is phylogeny? Essay written for the course in Markov Chains 2004 Torbjörn Karfunkel Phylogeny is the evolutionary development

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Bayesian Computation in Color-Magnitude Diagrams

Bayesian Computation in Color-Magnitude Diagrams Bayesian Computation in Color-Magnitude Diagrams SA, AA, PT, EE, MCMC and ASIS in CMDs Paul Baines Department of Statistics Harvard University October 19, 2009 Overview Motivation and Introduction Modelling

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

Approximate Bayesian Computation: a simulation based approach to inference

Approximate Bayesian Computation: a simulation based approach to inference Approximate Bayesian Computation: a simulation based approach to inference Richard Wilkinson Simon Tavaré 2 Department of Probability and Statistics University of Sheffield 2 Department of Applied Mathematics

More information

Reducing The Computational Cost of Bayesian Indoor Positioning Systems

Reducing The Computational Cost of Bayesian Indoor Positioning Systems Reducing The Computational Cost of Bayesian Indoor Positioning Systems Konstantinos Kleisouris, Richard P. Martin Computer Science Department Rutgers University WINLAB Research Review May 15 th, 2006 Motivation

More information

Answers and expectations

Answers and expectations Answers and expectations For a function f(x) and distribution P(x), the expectation of f with respect to P is The expectation is the average of f, when x is drawn from the probability distribution P E

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Markov Chains: Basic Theory Definition 1. A (discrete time/discrete state space) Markov chain (MC) is a sequence of random quantities {X k }, each tak

Markov Chains: Basic Theory Definition 1. A (discrete time/discrete state space) Markov chain (MC) is a sequence of random quantities {X k }, each tak MARKOV CHAIN MONTE CARLO (MCMC) METHODS 0 These notes utilize a few sources: some insights are taken from Profs. Vardeman s and Carriquiry s lecture notes, some from a great book on Monte Carlo strategies

More information

Quantitative Biology II Lecture 4: Variational Methods

Quantitative Biology II Lecture 4: Variational Methods 10 th March 2015 Quantitative Biology II Lecture 4: Variational Methods Gurinder Singh Mickey Atwal Center for Quantitative Biology Cold Spring Harbor Laboratory Image credit: Mike West Summary Approximate

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

16 : Approximate Inference: Markov Chain Monte Carlo

16 : Approximate Inference: Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models 10-708, Spring 2017 16 : Approximate Inference: Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Yuan Yang, Chao-Ming Yen 1 Introduction As the target distribution

More information

Markov chain Monte Carlo Lecture 9

Markov chain Monte Carlo Lecture 9 Markov chain Monte Carlo Lecture 9 David Sontag New York University Slides adapted from Eric Xing and Qirong Ho (CMU) Limitations of Monte Carlo Direct (unconditional) sampling Hard to get rare events

More information

CS281A/Stat241A Lecture 22

CS281A/Stat241A Lecture 22 CS281A/Stat241A Lecture 22 p. 1/4 CS281A/Stat241A Lecture 22 Monte Carlo Methods Peter Bartlett CS281A/Stat241A Lecture 22 p. 2/4 Key ideas of this lecture Sampling in Bayesian methods: Predictive distribution

More information

Introduction to Computational Biology Lecture # 14: MCMC - Markov Chain Monte Carlo

Introduction to Computational Biology Lecture # 14: MCMC - Markov Chain Monte Carlo Introduction to Computational Biology Lecture # 14: MCMC - Markov Chain Monte Carlo Assaf Weiner Tuesday, March 13, 2007 1 Introduction Today we will return to the motif finding problem, in lecture 10

More information

Likelihood Inference for Lattice Spatial Processes

Likelihood Inference for Lattice Spatial Processes Likelihood Inference for Lattice Spatial Processes Donghoh Kim November 30, 2004 Donghoh Kim 1/24 Go to 1234567891011121314151617 FULL Lattice Processes Model : The Ising Model (1925), The Potts Model

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Monte Carlo integration

Monte Carlo integration Monte Carlo integration Eample of a Monte Carlo sampler in D: imagine a circle radius L/ within a square of LL. If points are randoml generated over the square, what s the probabilit to hit within circle?

More information

Quantifying Uncertainty

Quantifying Uncertainty Sai Ravela M. I. T Last Updated: Spring 2013 1 Markov Chain Monte Carlo Monte Carlo sampling made for large scale problems via Markov Chains Monte Carlo Sampling Rejection Sampling Importance Sampling

More information

On the flexibility of Metropolis-Hastings acceptance probabilities in auxiliary variable proposal generation

On the flexibility of Metropolis-Hastings acceptance probabilities in auxiliary variable proposal generation On the flexibility of Metropolis-Hastings acceptance probabilities in auxiliary variable proposal generation Geir Storvik Department of Mathematics and (sfi) 2 Statistics for Innovation, University of

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC Markov chains Let S = {1, 2,..., N} be a finite set consisting of N states. A Markov chain Y 0, Y 1, Y 2,... is a sequence of random variables, with Y t S for all points in time

More information

Computer intensive statistical methods

Computer intensive statistical methods Lecture 13 MCMC, Hybrid chains October 13, 2015 Jonas Wallin jonwal@chalmers.se Chalmers, Gothenburg university MH algorithm, Chap:6.3 The metropolis hastings requires three objects, the distribution of

More information

Ch5. Markov Chain Monte Carlo

Ch5. Markov Chain Monte Carlo ST4231, Semester I, 2003-2004 Ch5. Markov Chain Monte Carlo In general, it is very difficult to simulate the value of a random vector X whose component random variables are dependent. In this chapter we

More information

Bayes Nets: Sampling

Bayes Nets: Sampling Bayes Nets: Sampling [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Approximate Inference:

More information

Session 5B: A worked example EGARCH model

Session 5B: A worked example EGARCH model Session 5B: A worked example EGARCH model John Geweke Bayesian Econometrics and its Applications August 7, worked example EGARCH model August 7, / 6 EGARCH Exponential generalized autoregressive conditional

More information

Distributed Evolutionary Monte Carlo with Applications to Bayesian Analysis

Distributed Evolutionary Monte Carlo with Applications to Bayesian Analysis DEPARTMENT OF STATISTICS University of Wisconsin - Madison Medical Science Center 1300 University Avenue Madison, WI 53706 TECHNICAL REPORT NO. 1112 November 10, 2005 Distributed Evolutionary Monte Carlo

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Peter Beerli October 10, 2005 [this chapter is highly influenced by chapter 1 in Markov chain Monte Carlo in Practice, eds Gilks W. R. et al. Chapman and Hall/CRC, 1996] 1 Short

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

Advanced Statistical Modelling

Advanced Statistical Modelling Markov chain Monte Carlo (MCMC) Methods and Their Applications in Bayesian Statistics School of Technology and Business Studies/Statistics Dalarna University Borlänge, Sweden. Feb. 05, 2014. Outlines 1

More information

Advanced Sampling Algorithms

Advanced Sampling Algorithms + Advanced Sampling Algorithms + Mobashir Mohammad Hirak Sarkar Parvathy Sudhir Yamilet Serrano Llerena Advanced Sampling Algorithms Aditya Kulkarni Tobias Bertelsen Nirandika Wanigasekara Malay Singh

More information

Math 456: Mathematical Modeling. Tuesday, April 9th, 2018

Math 456: Mathematical Modeling. Tuesday, April 9th, 2018 Math 456: Mathematical Modeling Tuesday, April 9th, 2018 The Ergodic theorem Tuesday, April 9th, 2018 Today 1. Asymptotic frequency (or: How to use the stationary distribution to estimate the average amount

More information

Learning Bayesian Networks for Biomedical Data

Learning Bayesian Networks for Biomedical Data Learning Bayesian Networks for Biomedical Data Faming Liang (Texas A&M University ) Liang, F. and Zhang, J. (2009) Learning Bayesian Networks for Discrete Data. Computational Statistics and Data Analysis,

More information

Accounting for Phylogenetic Uncertainty in Comparative Studies: MCMC and MCMCMC Approaches. Mark Pagel Reading University.

Accounting for Phylogenetic Uncertainty in Comparative Studies: MCMC and MCMCMC Approaches. Mark Pagel Reading University. Accounting for Phylogenetic Uncertainty in Comparative Studies: MCMC and MCMCMC Approaches Mark Pagel Reading University m.pagel@rdg.ac.uk Phylogeny of the Ascomycota Fungi showing the evolution of lichen-formation

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

6 Markov Chain Monte Carlo (MCMC)

6 Markov Chain Monte Carlo (MCMC) 6 Markov Chain Monte Carlo (MCMC) The underlying idea in MCMC is to replace the iid samples of basic MC methods, with dependent samples from an ergodic Markov chain, whose limiting (stationary) distribution

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

MCMC: Markov Chain Monte Carlo

MCMC: Markov Chain Monte Carlo I529: Machine Learning in Bioinformatics (Spring 2013) MCMC: Markov Chain Monte Carlo Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Review of Markov

More information

Paul Karapanagiotidis ECO4060

Paul Karapanagiotidis ECO4060 Paul Karapanagiotidis ECO4060 The way forward 1) Motivate why Markov-Chain Monte Carlo (MCMC) is useful for econometric modeling 2) Introduce Markov-Chain Monte Carlo (MCMC) - Metropolis-Hastings (MH)

More information

Dynamic models. Dependent data The AR(p) model The MA(q) model Hidden Markov models. 6 Dynamic models

Dynamic models. Dependent data The AR(p) model The MA(q) model Hidden Markov models. 6 Dynamic models 6 Dependent data The AR(p) model The MA(q) model Hidden Markov models Dependent data Dependent data Huge portion of real-life data involving dependent datapoints Example (Capture-recapture) capture histories

More information

Sampling Methods (11/30/04)

Sampling Methods (11/30/04) CS281A/Stat241A: Statistical Learning Theory Sampling Methods (11/30/04) Lecturer: Michael I. Jordan Scribe: Jaspal S. Sandhu 1 Gibbs Sampling Figure 1: Undirected and directed graphs, respectively, with

More information

MINIMUM ENERGY DESIGNS: EXTENSIONS, ALGORITHMS, AND APPLICATIONS

MINIMUM ENERGY DESIGNS: EXTENSIONS, ALGORITHMS, AND APPLICATIONS MINIMUM ENERGY DESIGNS: EXTENSIONS, ALGORITHMS, AND APPLICATIONS A Thesis Presented to The Academic Faculty by Li Gu In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 3 More Markov Chain Monte Carlo Methods The Metropolis algorithm isn t the only way to do MCMC. We ll

More information

Markov chain Monte Carlo methods in atmospheric remote sensing

Markov chain Monte Carlo methods in atmospheric remote sensing 1 / 45 Markov chain Monte Carlo methods in atmospheric remote sensing Johanna Tamminen johanna.tamminen@fmi.fi ESA Summer School on Earth System Monitoring and Modeling July 3 Aug 11, 212, Frascati July,

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Asymptotics and Simulation of Heavy-Tailed Processes

Asymptotics and Simulation of Heavy-Tailed Processes Asymptotics and Simulation of Heavy-Tailed Processes Department of Mathematics Stockholm, Sweden Workshop on Heavy-tailed Distributions and Extreme Value Theory ISI Kolkata January 14-17, 2013 Outline

More information

Physics 403. Segev BenZvi. Numerical Methods, Maximum Likelihood, and Least Squares. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Numerical Methods, Maximum Likelihood, and Least Squares. Department of Physics and Astronomy University of Rochester Physics 403 Numerical Methods, Maximum Likelihood, and Least Squares Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Quadratic Approximation

More information

General Construction of Irreversible Kernel in Markov Chain Monte Carlo

General Construction of Irreversible Kernel in Markov Chain Monte Carlo General Construction of Irreversible Kernel in Markov Chain Monte Carlo Metropolis heat bath Suwa Todo Department of Applied Physics, The University of Tokyo Department of Physics, Boston University (from

More information

The Metropolis-Hastings Algorithm. June 8, 2012

The Metropolis-Hastings Algorithm. June 8, 2012 The Metropolis-Hastings Algorithm June 8, 22 The Plan. Understand what a simulated distribution is 2. Understand why the Metropolis-Hastings algorithm works 3. Learn how to apply the Metropolis-Hastings

More information

Chris Fraley and Daniel Percival. August 22, 2008, revised May 14, 2010

Chris Fraley and Daniel Percival. August 22, 2008, revised May 14, 2010 Model-Averaged l 1 Regularization using Markov Chain Monte Carlo Model Composition Technical Report No. 541 Department of Statistics, University of Washington Chris Fraley and Daniel Percival August 22,

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

Chapter 12 PAWL-Forced Simulated Tempering

Chapter 12 PAWL-Forced Simulated Tempering Chapter 12 PAWL-Forced Simulated Tempering Luke Bornn Abstract In this short note, we show how the parallel adaptive Wang Landau (PAWL) algorithm of Bornn et al. (J Comput Graph Stat, to appear) can be

More information

Brief introduction to Markov Chain Monte Carlo

Brief introduction to Markov Chain Monte Carlo Brief introduction to Department of Probability and Mathematical Statistics seminar Stochastic modeling in economics and finance November 7, 2011 Brief introduction to Content 1 and motivation Classical

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) School of Computer Science 10-708 Probabilistic Graphical Models Markov Chain Monte Carlo (MCMC) Readings: MacKay Ch. 29 Jordan Ch. 21 Matt Gormley Lecture 16 March 14, 2016 1 Homework 2 Housekeeping Due

More information

SAMSI Astrostatistics Tutorial. More Markov chain Monte Carlo & Demo of Mathematica software

SAMSI Astrostatistics Tutorial. More Markov chain Monte Carlo & Demo of Mathematica software SAMSI Astrostatistics Tutorial More Markov chain Monte Carlo & Demo of Mathematica software Phil Gregory University of British Columbia 26 Bayesian Logical Data Analysis for the Physical Sciences Contents:

More information

An introduction to Bayesian statistics and model calibration and a host of related topics

An introduction to Bayesian statistics and model calibration and a host of related topics An introduction to Bayesian statistics and model calibration and a host of related topics Derek Bingham Statistics and Actuarial Science Simon Fraser University Cast of thousands have participated in the

More information

Lecture 8: The Metropolis-Hastings Algorithm

Lecture 8: The Metropolis-Hastings Algorithm 30.10.2008 What we have seen last time: Gibbs sampler Key idea: Generate a Markov chain by updating the component of (X 1,..., X p ) in turn by drawing from the full conditionals: X (t) j Two drawbacks:

More information

Simulation of truncated normal variables. Christian P. Robert LSTA, Université Pierre et Marie Curie, Paris

Simulation of truncated normal variables. Christian P. Robert LSTA, Université Pierre et Marie Curie, Paris Simulation of truncated normal variables Christian P. Robert LSTA, Université Pierre et Marie Curie, Paris Abstract arxiv:0907.4010v1 [stat.co] 23 Jul 2009 We provide in this paper simulation algorithms

More information

Bayesian phylogenetics. the one true tree? Bayesian phylogenetics

Bayesian phylogenetics. the one true tree? Bayesian phylogenetics Bayesian phylogenetics the one true tree? the methods we ve learned so far try to get a single tree that best describes the data however, they admit that they don t search everywhere, and that it is difficult

More information

18 : Advanced topics in MCMC. 1 Gibbs Sampling (Continued from the last lecture)

18 : Advanced topics in MCMC. 1 Gibbs Sampling (Continued from the last lecture) 10-708: Probabilistic Graphical Models 10-708, Spring 2014 18 : Advanced topics in MCMC Lecturer: Eric P. Xing Scribes: Jessica Chemali, Seungwhan Moon 1 Gibbs Sampling (Continued from the last lecture)

More information

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling 10-708: Probabilistic Graphical Models 10-708, Spring 2014 27 : Distributed Monte Carlo Markov Chain Lecturer: Eric P. Xing Scribes: Pengtao Xie, Khoa Luu In this scribe, we are going to review the Parallel

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Monte Carlo Methods. Geoff Gordon February 9, 2006

Monte Carlo Methods. Geoff Gordon February 9, 2006 Monte Carlo Methods Geoff Gordon ggordon@cs.cmu.edu February 9, 2006 Numerical integration problem 5 4 3 f(x,y) 2 1 1 0 0.5 0 X 0.5 1 1 0.8 0.6 0.4 Y 0.2 0 0.2 0.4 0.6 0.8 1 x X f(x)dx Used for: function

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning More Approximate Inference Mark Schmidt University of British Columbia Winter 2018 Last Time: Approximate Inference We ve been discussing graphical models for density estimation,

More information

Simulation - Lectures - Part III Markov chain Monte Carlo

Simulation - Lectures - Part III Markov chain Monte Carlo Simulation - Lectures - Part III Markov chain Monte Carlo Julien Berestycki Part A Simulation and Statistical Programming Hilary Term 2018 Part A Simulation. HT 2018. J. Berestycki. 1 / 50 Outline Markov

More information

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC Stat 451 Lecture Notes 07 12 Markov Chain Monte Carlo Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapters 8 9 in Givens & Hoeting, Chapters 25 27 in Lange 2 Updated: April 4, 2016 1 / 42 Outline

More information

Markov Chain Monte Carlo Using the Ratio-of-Uniforms Transformation. Luke Tierney Department of Statistics & Actuarial Science University of Iowa

Markov Chain Monte Carlo Using the Ratio-of-Uniforms Transformation. Luke Tierney Department of Statistics & Actuarial Science University of Iowa Markov Chain Monte Carlo Using the Ratio-of-Uniforms Transformation Luke Tierney Department of Statistics & Actuarial Science University of Iowa Basic Ratio of Uniforms Method Introduced by Kinderman and

More information

Learning the hyper-parameters. Luca Martino

Learning the hyper-parameters. Luca Martino Learning the hyper-parameters Luca Martino 2017 2017 1 / 28 Parameters and hyper-parameters 1. All the described methods depend on some choice of hyper-parameters... 2. For instance, do you recall λ (bandwidth

More information

Markov chain Monte Carlo

Markov chain Monte Carlo 1 / 26 Markov chain Monte Carlo Timothy Hanson 1 and Alejandro Jara 2 1 Division of Biostatistics, University of Minnesota, USA 2 Department of Statistics, Universidad de Concepción, Chile IAP-Workshop

More information

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017 Markov Chain Monte Carlo (MCMC) and Model Evaluation August 15, 2017 Frequentist Linking Frequentist and Bayesian Statistics How can we estimate model parameters and what does it imply? Want to find the

More information

Results: MCMC Dancers, q=10, n=500

Results: MCMC Dancers, q=10, n=500 Motivation Sampling Methods for Bayesian Inference How to track many INTERACTING targets? A Tutorial Frank Dellaert Results: MCMC Dancers, q=10, n=500 1 Probabilistic Topological Maps Results Real-Time

More information

arxiv: v1 [stat.co] 23 Apr 2018

arxiv: v1 [stat.co] 23 Apr 2018 Bayesian Updating and Uncertainty Quantification using Sequential Tempered MCMC with the Rank-One Modified Metropolis Algorithm Thomas A. Catanach and James L. Beck arxiv:1804.08738v1 [stat.co] 23 Apr

More information

LECTURE 15 Markov chain Monte Carlo

LECTURE 15 Markov chain Monte Carlo LECTURE 15 Markov chain Monte Carlo There are many settings when posterior computation is a challenge in that one does not have a closed form expression for the posterior distribution. Markov chain Monte

More information