Long-Range Collisions: Results and Open Ques5ons

Size: px
Start display at page:

Download "Long-Range Collisions: Results and Open Ques5ons"

Transcription

1 Long-Range Collisions: Results and Open Ques5ons C. Fred Driscoll UCSD Expts : M. Affolter, F. Anderegg, B. Beck, J. Fajans, K. Fine, E. Hollman, X.-P. Huang, A. Kabantsev, J. Kriesel Theory: D. Dubin, T. O'Neil, M. Glinsky, D.-Z. Jin Work supported by NSF/DoE Partnership grants PHY and DE-SC NNP-017

2 Classical and Long-Range Transport Coefficients cross-field par-cle diffusion Kinema-c shear viscosity Cross-field thermal diffusivity slowing rate D ν // λ = η nm χ = κ 3n ν c nvb b = e T classical 4 ρ < r c 3 π ν c r c ln ρ max 5 π ν c r c ln ρ max 16 9 π ν c r c ln ρ max b 4 3 π ν c ln ρ max ρ max = Min(r c,λ D long range ρ > r c D bounceaveraged for f b > S Longmire 1956 McWilliams 1987 π ν c r c ln λ D r c (Lifshitz&Pitaevskii Dubin 1997, Anderegg π f B Dubin 001 Anderegg 00 ln S ν c r c ln r δ ω p Ω c γ Longmire1956 Simon ν c λ D ln ω p γ (+ waves O Neil 1985, Dubin 1988, Driscoll π f B S ν c δ g(δ / r Dubin 1998 Kreisel 001 Braginskii ν c λ D (+ waves Rosenbluth 1976 Dubin 1998 Hollmann 000 NA Spitzer 196 Bowles 1994 π ν c 5.898ln Dubin 014 Affolter 016 NA d Max(b, r c λ + ln D Max(d, r c d 5 = b 3 v S = r ʹ ω E γ = Max(S,ν c δ = 4D / S f B = v / L ν //

3 Collision Rates : ν c (n, T ; B, ʹ ω ExB, f bou Short-Range Velocity-Scajering b < ρ < r c b = e / T = (1.44e-9 m T ev -1 r c = v / Ω = (1.0e-3 m T 0.5 B kg -1 ρ Δr ν * // = 8 15 π nvb ln r c b Dynamical Reduc5on of Short-Range Perp-to-Parallel Collisions when r c < b

4 Collision Rates : ν c (n, T ; B, ʹ ω ExB, f bou Short-Range Velocity-Scajering b < ρ < r c ρ Δr 3D Long-Range Dris-Kine5c r c < ρ < λ D v ExB E r c d λ D ρ ρ Fokker-Planck fluctua5on-collisions, & v-reflec5on -par5cle Boltzmann collisions, & v-reflec5on d 5 = b 3 v ν = (0.37e-3 m T1/5 n /5 7 // End Reflec5on : Par5cles collide N bou = f bou / (r ω' ExB 5mes before being separated by shear

5 Collision Rates : ν c (n, T ; B, ʹ ω ExB, f bou Short-Range Velocity-Scajering b < ρ < r c ρ Δr 3D Long-Range Dris-Kine5c r c < ρ < λ D r c d λ D ρ ρ D Long-Range, Point-Vortex, "z-bounce-averaged" Dris-only, E E r c < ρ < λ D ω ExB ω + "Collisions" do not separate vor5ces; ExB r Shear in ω ExB searates vor5ces v ExB

6 Classical and Long-Range Transport Coefficients cross-field par-cle diffusion Kinema-c shear viscosity Cross-field thermal diffusivity slowing rate D ν // λ = η nm χ = κ 3n ν c nvb classical 4 ρ < r c 3 π ν c r c ln ρ max 5 π ν c r c ln ρ max 16 9 π ν c r c ln ρ max b 4 3 π ν c ln ρ max ρ max = Min(r c,λ D long range ρ > r c D bounceaveraged for f b > S Longmire 1956 McWilliams 1987 π ν c r c ln λ D r c (Lifshitz&Pitaevskii Dubin 1997, Anderegg π f B Dubin 001 Anderegg 00 ln S ν c r c ln r δ ω p Ω c γ Longmire1956 Simon ν c λ D ln ω p γ (+ waves O Neil 1985, Dubin 1988, Driscoll π f B S ν c δ g(δ / r Dubin 1998 Kreisel 001 Braginskii ν c λ D (+ waves Rosenbluth 1976 Dubin 1998 Hollmann 000 NA Spitzer 196 Bowles 1994 π ν c 5.898ln Dubin 014 Affolter 016 NA d Max(b, r c λ + ln D Max(d, r c d 5 = b 3 v S = r ʹ ω E γ = Max(S,ν c δ = 4D / S f B = v / L ν //

7 Test Par5cle Diffusion n (10 6 cm n T T (ev Confined, steady-state Mg+ ion plasma v y (10 3 cm / sec v dia v tot ms n t / n r x (cm 6 s 15 s LIF "tagging" of ions at r=0.5cm, subsequent detec5on of n t (r,t

8 first ExB Dris calcula5on, using "Integra5on along Unperturbed Orbits" >> 3x too small α = 1 Anderegg, 1997

9 10 - cm sec Ê Á Ë n ln( l D /r c 10 cm 3 - ˆ -1 B 7 3 T D 3D IUO D 3D D clas "Velocity Caging" (v-reflec5ons} cause α = 3x more collisions Integra5on along Unperturbed Orbits >> no mul5ple collisions D T (ev Dubin, 1997

10 Mul5ple Axial Bounce Enhancement of Diffusion 10 3 D meas D 3D D 3D N b ª D D / D 3D D TM Mul5ple axial bounces increase D. Minimal shear approaches "D-Point-Vortex" limit of Taylor-McNamara N b f b S µ 1 L p S

11 Shear Viscosity : Non-uniform n(r and ωr(r relax to shear-free profile. Driscoll, 1988

12 Short Plasmas Short --> Long >> Viscosity is Enhanced by N bou correlated bounce-collisions Kriesel, 001

13 Cross-Field Thermal Diffusion : Independent of B Independent of n Hollman, 000 Kabantsev, NNP-017

14 Long-Range Collisional Slowing: enhanced at small T, small n, large B ν s = π nvb ln Λ ~ ~ ln Λ = Fokker-Planck Boltzmann λ ln D ln max[d,r c ] + 0 +/- -/- Velocity Caging Classical d 4 3 ln( min[r,λ ] c D max[b,r c ] + b lnl Dubin 014 Affolter, NNP H +, B=3T 10 6 r c < b p+ Density (cm -3 e lnλ 3D classical T HeVL lnl e -, B=3T r c < b lnλ3d classical T HeVL

15 Classical and Long-Range Transport Coefficients cross-field par-cle diffusion Kinema-c shear viscosity Cross-field thermal diffusivity slowing rate D ν // λ = η nm χ = κ 3n ν c nvb classical 4 ρ < r c 3 π ν c r c ln ρ max 5 π ν c r c ln ρ max 16 9 π ν c r c ln ρ max b 4 3 π ν c ln ρ max ρ max = Min(r c,λ D long range ρ > r c D bounceaveraged for f b > S Longmire 1956 McWilliams 1987 α π ν c r c ln λ D r c (Lifshitz&Pitaevskii Dubin 1997, Anderegg π Ν b f B Dubin 001 Anderegg 00 ln S ν c r c ln r δ ω p Ω c γ Longmire1956 Simon 1955 α 0.585ν c λ D ln ω p γ (+ waves O Neil 1985, Dubin 1988, Driscoll 1988 Ν b 16π f B S ν c δ g(δ / r Dubin 1998 Kreisel 001 Braginskii ν c λ D (+ waves Rosenbluth 1976 Dubin 1998 Hollmann 000 NA Spitzer 196 Bowles 1994 π ν c 5.898ln α Dubin 014 Affolter 016 NA d Max(b, r c λ + ln D Max(d, r c d 5 = b 3 v S = r ʹ ω E γ = Max(S,ν c δ = 4D / S f B = v / L ν //

16 Summary 1 Long-range collisions enhance cross-field par5cle diffusion by about 10x. About 1/3 of this enhancement is from the unusual "velocity caging" which results in mul5ple correlated collisions. Long-range shear viscosity and thermal diffusivity coefficients both scale as ν c λ D, making them independent of magne5c field. Thus, relaxa5on to the thermal equilibrium density profile and uniform temperature is strongly enhanced. 3 Individual par5cle slowing rates are substan5ally enhanced at low temperatures, again including "velocity caging". Theory has characterized the new fundamental length scale d : for ρ < d, collisions are -body and point-like; whereas for ρ > d, mul5ple weak collisions occur simultaneously. 4 In axially short plasmas, bouncing par5cles will have mul5ple correlated collisions, further enhancing diffusion and viscosity. The number of correlated collisions is imited by radial shear in the plasma rota5on.

17 Collision Rates : ν c (n, T ; B, ʹ ω ExB, f bou Short-Range Velocity-Scajering b < ρ < r c ρ Δr 3D Long-Range Dris-Kine5c r c < ρ < λ D r c d λ D ρ ρ D Long-Range, Point-Vortex, "z-bounce-averaged" Dris-only, E E r c < ρ < λ D ω ExB ω + "Collisions" do not separate vor5ces; ExB r Shear in ω ExB searates vor5ces v ExB

Collisional transport in non-neutral plasmas*

Collisional transport in non-neutral plasmas* PHYSICS OF PLASMAS VOLUME 5, NUMBER 5 MAY 1998 Collisional transport in non-neutral plasmas* Daniel H. E. Dubin,a) Department of Physics, University of California at San Diego, La Jolla, California 92093

More information

Test particle transport from long-range collisions*

Test particle transport from long-range collisions* Test particle transport from long-range collisions* F. Anderegg, X.-P. Huang, a) E.. Hollmann, C. F. Driscoll, T.. O Neil, and D. H. E. Dubin Institute for Pure and Applied Physical Sciences and Department

More information

Measurement of Correlation-Enhanced Collision Rates

Measurement of Correlation-Enhanced Collision Rates Measurement of Correlation-Enhanced Collision Rates F. Anderegg, D.H.E. Dubin, T.M. O Neil, and C.F. Driscoll Department of Physics, University of California at San Diego, La Jolla, California 92093 (Dated:

More information

Non-Linear Plasma Wave Decay to Longer Wavelength

Non-Linear Plasma Wave Decay to Longer Wavelength Non-Linear Plasma Wave Decay to Longer Wavelength F. Anderegg 1, a), M. Affolter 1, A. Ashourvan 1, D.H.E. Dubin 1, F. Valentini 2 and C.F. Driscoll 1 1 University of California San Diego Physics Department

More information

1A. J. H. Malmberg and J. S. degrassie, Properties of a Nonneutral Plasma, Phys. Rev. Lett. 35, 577 (1975). 1B. C. F. Driscoll and J. H.

1A. J. H. Malmberg and J. S. degrassie, Properties of a Nonneutral Plasma, Phys. Rev. Lett. 35, 577 (1975). 1B. C. F. Driscoll and J. H. TABLE OF CONTENTS, Volumes 1 and 2 (Bound Separately) 1A. J. H. Malmberg and J. S. degrassie, Properties of a Nonneutral Plasma, Phys. Rev. Lett. 35, 577 (1975). 1B. C. F. Driscoll and J. H. Malmberg,

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012536 TITLE: Shear Reduction of 2D Point Vortex Diffusion DISTRIBUTION: Approved for public release, distribution unlimited

More information

Theory and Simulation of Neoclassical Transport Processes, with Local Trapping

Theory and Simulation of Neoclassical Transport Processes, with Local Trapping Theory and Simulation of Neoclassical Transport Processes, with Local Trapping Daniel H. E. Dubin Department of Physics, University of California at San Diego, La Jolla, CA USA 92093-0319 Abstract. Neoclassical

More information

Trapped particles and asymmetry-induced transport a

Trapped particles and asymmetry-induced transport a PHYSICS OF PLASMAS VOLUME 10, NUMBER 5 MAY 2003 Trapped particles and asymmetry-induced transport a A. A. Kabantsev, b) J. H. Yu, R. B. Lynch, and C. F. Driscoll Physics Department and Institute for Pure

More information

Long-Range Interacting Systems

Long-Range Interacting Systems Long-Range Interacting Systems Thierry Dauxois École Normale Supérieure de Lyon, CNRS, France Stefano Ruffo Università di Firenze, INFN, Firenze, Italy Leticia Cugliandolo Université Pierre et Marie Curie

More information

Dr. David Schecter. Dr. Emmanuel Moreau (Ecole Normale) Ms. Michelle Snider C-1 AUTHORIZED FOR 20 PAGES.

Dr. David Schecter. Dr. Emmanuel Moreau (Ecole Normale) Ms. Michelle Snider C-1 AUTHORIZED FOR 20 PAGES. C. PROJECT DESCRIPTION C.1. NSF Support, 1997 Present This long-term collaboration between O Neil, Driscoll, and Dubin has developed theory and experiment on a wide range of fundamental processes in plasmas.

More information

Plasma Heating Due to Cyclic Diffusion Across a Separatrix

Plasma Heating Due to Cyclic Diffusion Across a Separatrix Plasma Heating Due to Cyclic Diffusion Across a Separatrix F. Anderegg, M. Affolter, D.H.E.Dubin, and C.F. Driscoll University of California San Diego, Physics Department 39, a Jolla, CA 9293, USA (Dated:

More information

University of California, San Diego Institute of Pure and Applied Physical Sciences La Jolla, CA 92093

University of California, San Diego Institute of Pure and Applied Physical Sciences La Jolla, CA 92093 University of California, San Diego Institute of Pure and Applied Physical Sciences La Jolla, CA 92093 Final Technical Report Transport in Non-Neutral Plasmas 1996 2003 Supported by Office of Naval Research

More information

Integrated modeling of LHCD non- induc6ve scenario development on Alcator C- Mod

Integrated modeling of LHCD non- induc6ve scenario development on Alcator C- Mod Integrated modeling of LHCD non- induc6ve scenario development on Alcator C- Mod S. Shiraiwa, P. Bonoli, R. Parker, F. Poli 1, G. Wallace, and J, R. Wilson 1 PSFC, MIT and 1 PPPL 40th European Physical

More information

Vortex dynamics of 2D electron plasmas

Vortex dynamics of 2D electron plasmas Physica C 369 (2002) 21 27 www.elsevier.com/locate/physc Vortex dynamics of 2D electron plasmas C.F. Driscoll *, D.Z. Jin, D.A. Schecter, D.H.E. Dubin Department of Physics, Institute of Pure and Applied

More information

Two-dimensional bounce-averaged collisional particle transport in a single species non-neutral plasma

Two-dimensional bounce-averaged collisional particle transport in a single species non-neutral plasma PHYSICS OF PLASMAS VOLUME 5, NUMER 5 MAY 1998 Two-dimensional bounce-averaged collisional particle transport in a single species non-neutral plasma Daniel H. E. Dubin a) and T. M. O Neil Department of

More information

Electron plasma profiles from a cathode with an r 2 potential variation

Electron plasma profiles from a cathode with an r 2 potential variation PHYSICS OF PLASMAS VOLUME 5, NUMBER 5 MAY 1998 Electron plasma profiles from a cathode with an r 2 potential variation J. M. Kriesel a) and C. F. Driscoll Department of Physics and Institute for Pure and

More information

Cyclotron Mode Frequency Shifts in Multi-species Ion Plasmas

Cyclotron Mode Frequency Shifts in Multi-species Ion Plasmas Cyclotron Mode Frequency Shifts in Multi-species Ion Plasmas M. Affolter, F. Anderegg, D. H. E. Dubin, and C. F. Driscoll Department of Physics, University of California at San Diego, La Jolla, California

More information

On the Possibility of Non-Neutral Antiproton Plasmas and Antiproton-Positron Plasmas

On the Possibility of Non-Neutral Antiproton Plasmas and Antiproton-Positron Plasmas On the Possibility of Non-Neutral Antiproton Plasmas and Antiproton-Positron Plasmas H. Higaki Plasma Research Center, University of Tsukuba 1-1-1, Tennoudai, Tsukuba, Ibaraki, Japan 305-8577 Abstract.

More information

Cyclotron Resonances in a Non-Neutral Multispecies Ion Plasma

Cyclotron Resonances in a Non-Neutral Multispecies Ion Plasma Cyclotron Resonances in a NonNeutral Multispecies Ion Plasma M. Affolter, F. Anderegg, C. F. Driscoll, and D. H. E. Dubin Department of Physics, University of California at San Diego, La Jolla, California

More information

Transport, Damping, and Wave-Couplings from Chaotic and Collisional Neoclassical Transport

Transport, Damping, and Wave-Couplings from Chaotic and Collisional Neoclassical Transport Transport, Damping, and Wave-Couplings from Chaotic and Collisional Neoclassical Transport C. Fred Driscoll, Andrey A. Kabantsev, and Daniel H. E. Dubin and Yu. A. Tsidulko Department of Physics, University

More information

Low Temperature Plasma Technology Laboratory

Low Temperature Plasma Technology Laboratory Low Temperature Plasma Technology Laboratory CENTRAL PEAKING OF MAGNETIZED GAS DISCHARGES Francis F. Chen and Davide Curreli LTP-1210 Oct. 2012 Electrical Engineering Department Los Angeles, California

More information

Magnetically Confined Fusion: Transport in the core and in the Scrape- off Layer Bogdan Hnat

Magnetically Confined Fusion: Transport in the core and in the Scrape- off Layer Bogdan Hnat Magnetically Confined Fusion: Transport in the core and in the Scrape- off Layer ogdan Hnat Joe Dewhurst, David Higgins, Steve Gallagher, James Robinson and Paula Copil Fusion Reaction H + 3 H 4 He + n

More information

The dissertation of Terance Joseph Hilsabeck is approved, and it is acceptable in quality and form for publication on microfilm: Chairman University o

The dissertation of Terance Joseph Hilsabeck is approved, and it is acceptable in quality and form for publication on microfilm: Chairman University o UNIVERSITY OF CALIFORNIA, SAN DIEGO Finite Length and Trapped-Particle Diocotron Modes A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics

More information

Per Helander. Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos. Wendelsteinstraße 1, Greifswald

Per Helander. Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos. Wendelsteinstraße 1, Greifswald Rotation and zonal flows in stellarators Per Helander Wendelsteinstraße 1, 17491 Greifswald Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos What is a stellarator? In a tokamak

More information

Ultra-Cold Plasma: Ion Motion

Ultra-Cold Plasma: Ion Motion Ultra-Cold Plasma: Ion Motion F. Robicheaux Physics Department, Auburn University Collaborator: James D. Hanson This work supported by the DOE. Discussion w/ experimentalists: Rolston, Roberts, Killian,

More information

14. Energy transport.

14. Energy transport. Phys780: Plasma Physics Lecture 14. Energy transport. 1 14. Energy transport. Chapman-Enskog theory. ([8], p.51-75) We derive macroscopic properties of plasma by calculating moments of the kinetic equation

More information

Chapter 1. Rotating Wall Technique and Centrifugal Separation

Chapter 1. Rotating Wall Technique and Centrifugal Separation July 15, 2015 15:39 World Scientific Review Volume - 9in x 6in Anderegg RW les Houches15 page 1 Chapter 1 Rotating Wall Technique and Centrifugal Separation François Anderegg University of California San

More information

APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics

APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics APPENDIX Z. USEFUL FORMULAS 1 Appendix Z Useful Formulas APPENDIX Z. USEFUL FORMULAS 2 Key Vector Relations A B = B A, A B = B A, A A = 0, A B C) = A B) C A B C) = B A C) C A B), bac-cab rule A B) C D)

More information

Monte Carlo Collisions in Particle in Cell simulations

Monte Carlo Collisions in Particle in Cell simulations Monte Carlo Collisions in Particle in Cell simulations Konstantin Matyash, Ralf Schneider HGF-Junior research group COMAS : Study of effects on materials in contact with plasma, either with fusion or low-temperature

More information

Collisions and transport phenomena

Collisions and transport phenomena Collisions and transport phenomena Collisions in partly and fully ionized plasmas Typical collision parameters Conductivity and transport coefficients Conductivity tensor Formation of the ionosphere and

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO

UNIVERSITY OF CALIFORNIA, SAN DIEGO UNIVERSITY OF CALIFORNIA, SAN DIEGO Experimental Studies of Multi-Species Pure Ion Plasmas: Cyclotron Modes, Long-Range Collisional Drag, and Non-Linear Langmuir Waves A dissertation submitted in partial

More information

Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas

Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas Lei Qi a, Jaemin Kwon a, T. S. Hahm a,b and Sumin Yi a a National Fusion Research Institute (NFRI), Daejeon,

More information

Experimental evaluation of nonlinear collision effect on the beam slowing-down process

Experimental evaluation of nonlinear collision effect on the beam slowing-down process P-2 Experimental evaluation of nonlinear collision effect on the beam slowing-down process H. Nuga R. Seki,2 S. Kamio M. Osakabe,2 M. Yokoyama,2 M. Isobe,2 K. Ogawa,2 National Institute for Fusion Science,

More information

Turbulence and Transport The Secrets of Magnetic Confinement

Turbulence and Transport The Secrets of Magnetic Confinement Turbulence and Transport The Secrets of Magnetic Confinement Presented by Martin Greenwald MIT Plasma Science & Fusion Center IAP January 2005 FUSION REACTIONS POWER THE STARS AND PRODUCE THE ELEMENTS

More information

Confinement of toroidal non-neutral plasma

Confinement of toroidal non-neutral plasma 10th International Workshop on Non-neutral Plasmas 28 August 2012, Greifswald, Germany 1/20 Confinement of toroidal non-neutral plasma in magnetic dipole RT-1: Magnetospheric plasma experiment Visualized

More information

NOTE. Application of Contour Dynamics to Systems with Cylindrical Boundaries

NOTE. Application of Contour Dynamics to Systems with Cylindrical Boundaries JOURNAL OF COMPUTATIONAL PHYSICS 145, 462 468 (1998) ARTICLE NO. CP986024 NOTE Application of Contour Dynamics to Systems with Cylindrical Boundaries 1. INTRODUCTION Contour dynamics (CD) is a widely used

More information

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. Paz-Soldan 2, F. Carpanese 3, C.C. Petty 2, T.C.

More information

Generation and active control of coherent structures in partially neutralized magnetized plasmas

Generation and active control of coherent structures in partially neutralized magnetized plasmas Generation and active control of coherent structures in partially neutralized magnetized plasmas Giancarlo Maero on behalf of the plasma physics group R. Pozzoli, M. Romé, G. Maero Dipartimento di Fisica,

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 23 March 2001 with E. A. Spiegel

More information

Trapped-particle diocotron modes

Trapped-particle diocotron modes PHYSICS OF PLASMAS VOLUME 1, NUMBER 9 SEPEMBER 23 rapped-particle diocotron modes. J. Hilsabeck and. M. O Neil Department of Physics, University of California at San Diego, La Jolla, California 9293 Received

More information

TURBULENT TRANSPORT THEORY

TURBULENT TRANSPORT THEORY ASDEX Upgrade Max-Planck-Institut für Plasmaphysik TURBULENT TRANSPORT THEORY C. Angioni GYRO, J. Candy and R.E. Waltz, GA The problem of Transport Transport is the physics subject which studies the physical

More information

Neoclassical transport

Neoclassical transport Neoclassical transport Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 28 th January 2013 Dr Ben Dudson Magnetic Confinement Fusion (1 of 19) Last time Toroidal devices

More information

Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus. K. C. Shaing

Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus. K. C. Shaing Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus K. C. Shaing Plasma and Space Science Center, and ISAPS, National Cheng Kung University, Tainan, Taiwan 70101, Republic

More information

Thermally excited Trivelpiece Gould modes as a pure electron plasma temperature diagnostic a

Thermally excited Trivelpiece Gould modes as a pure electron plasma temperature diagnostic a PHYSICS OF PLASMAS VOLUME 10, NUMBER 5 MAY 2003 Thermally excited Trivelpiece Gould modes as a pure electron plasma temperature diagnostic a F. Anderegg, b) N. Shiga, D. H. E. Dubin, and C. F. Driscoll

More information

Phase mixing and echoes in a pure electron plasma a

Phase mixing and echoes in a pure electron plasma a PHYSICS OF PLASMAS 12, 055701 2005 Phase mixing and echoes in a pure electron plasma a J. H. Yu, b C. F. Driscoll, and T. M. O Neil Department of Mechanical and Aerospace Engineering, University of California

More information

Experimental study of classical heat transport in a magnetized plasma

Experimental study of classical heat transport in a magnetized plasma PHYSICS OF PLASMAS VOLUME 7, NUMBER 2 FEBRUARY 2000 Experimental study of classical heat transport in a magnetized plasma A. T. Burke, J. E. Maggs, and G. J. Morales Department of Physics and Astronomy,

More information

Reaction Dynamics (2) Can we predict the rate of reactions?

Reaction Dynamics (2) Can we predict the rate of reactions? Reaction Dynamics (2) Can we predict the rate of reactions? Reactions in Liquid Solutions Solvent is NOT a reactant Reactive encounters in solution A reaction occurs if 1. The reactant molecules (A, B)

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 21 May 2001 with E. A. Spiegel

More information

Gyrokinetic Theory and Dynamics of the Tokamak Edge

Gyrokinetic Theory and Dynamics of the Tokamak Edge ASDEX Upgrade Gyrokinetic Theory and Dynamics of the Tokamak Edge B. Scott Max Planck Institut für Plasmaphysik D-85748 Garching, Germany PET-15, Sep 2015 these slides: basic processes in the dynamics

More information

Impact of neutral atoms on plasma turbulence in the tokamak edge region

Impact of neutral atoms on plasma turbulence in the tokamak edge region Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint Varenna-Lausanne International

More information

1.3 Molecular Level Presentation

1.3 Molecular Level Presentation 1.3.1 Introduction A molecule is the smallest chemical unit of a substance that is capable of stable, independent existence. Not all substances are composed of molecules. Some substances are composed of

More information

arxiv:physics/ v1 [physics.plasm-ph] 5 Nov 2004

arxiv:physics/ v1 [physics.plasm-ph] 5 Nov 2004 Ion Resonance Instability in the ELTRAP electron plasma G. Bettega, 1 F. Cavaliere, 2 M. Cavenago, 3 A. Illiberi, 1 R. Pozzoli, 1 and M. Romé 1 1 INFM Milano Università, INFN Sezione di Milano, Dipartimento

More information

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is 1 I. BROWNIAN MOTION The dynamics of small particles whose size is roughly 1 µmt or smaller, in a fluid at room temperature, is extremely erratic, and is called Brownian motion. The velocity of such particles

More information

Sawtooth oscillations in a damped/driven cryogenic electron plasma: Experiment and theory

Sawtooth oscillations in a damped/driven cryogenic electron plasma: Experiment and theory Sawtooth oscillations in a damped/driven cryogenic electron plasma: Experiment and theory B. P. Cluggish, a) C. F. Driscoll, K. Avinash, b) and J. A. Helffrich c) Department of Physics, 0319, University

More information

Physics of fusion power. Lecture 13 : Diffusion equation / transport

Physics of fusion power. Lecture 13 : Diffusion equation / transport Physics of fusion power Lecture 13 : Diffusion equation / transport Many body problem The plasma has some 10 22 particles. No description is possible that allows for the determination of position and velocity

More information

Quadrupole Induced Resonant Particle Transport in a Pure Electron Plasma

Quadrupole Induced Resonant Particle Transport in a Pure Electron Plasma Quadrupole Induced Resonant Particle Transport in a Pure Electron Plasma E. Gilson 1 and J. Fajans 2 Department of Physics University of California, Berkeley Berkeley, California, 94720-7300 Abstract.

More information

Confinement of pure electron plasmas in the CNT stellarator

Confinement of pure electron plasmas in the CNT stellarator Confinement of pure electron plasmas in the CNT stellarator Thomas Sunn Pedersen CNT Columbia University In the City of New York Overview Background/introductory remarks CNT s magnetic topology (a stellarator)

More information

Absorption of gas by a falling liquid film

Absorption of gas by a falling liquid film Absorption of gas by a falling liquid film Christoph Albert Dieter Bothe Mathematical Modeling and Analysis Center of Smart Interfaces/ IRTG 1529 Darmstadt University of Technology 4th Japanese-German

More information

Nonlinear Diffusion in Magnetized Discharges. Francis F. Chen. Electrical Engineering Department

Nonlinear Diffusion in Magnetized Discharges. Francis F. Chen. Electrical Engineering Department Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical Engineering Department PPG-1579 January, 1998 Revised April, 1998 Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical

More information

Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit. Transport Physics of the Density Limit

Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit. Transport Physics of the Density Limit Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit Transport Physics of the Density Limit R. Hajjar, P. H. Diamond, M. Malkov This research was supported by the U.S. Department of Energy,

More information

Transport Simula/ons for Fast Igni/on on NIF

Transport Simula/ons for Fast Igni/on on NIF Transport Simula/ons for Fast Igni/on on NIF D. J. Strozzi, M. Tabak, D. P. Grote, B. I. Cohen, H. D. Shay, R. P. J. Town, A. J. Kemp, M. Key Lawrence Livermore Na.onal Laboratory 7000 East Avenue, Livermore,

More information

Chapter 3. Coulomb collisions

Chapter 3. Coulomb collisions Chapter 3 Coulomb collisions Coulomb collisions are long-range scattering events between charged particles due to the mutual exchange of the Coulomb force. Where do they occur, and why they are of interest?

More information

Characteristics of the H-mode H and Extrapolation to ITER

Characteristics of the H-mode H and Extrapolation to ITER Characteristics of the H-mode H Pedestal and Extrapolation to ITER The H-mode Pedestal Study Group of the International Tokamak Physics Activity presented by T.Osborne 19th IAEA Fusion Energy Conference

More information

Two-Dimensional Vortex Dynamics With Background Vorticity

Two-Dimensional Vortex Dynamics With Background Vorticity Two-Dimensional Vortex Dynamics With Background Vorticity David A. Schecter Advanced Study Program National Center for Atmospheric Research, 1 P.O. Box 3000, Boulder, CO 80307 Abstract. Magnetized electron

More information

DOPPLER RESONANCE EFFECT ON ROTATIONAL DRIVE BY ION CYCLOTRON MINORITY HEATING

DOPPLER RESONANCE EFFECT ON ROTATIONAL DRIVE BY ION CYCLOTRON MINORITY HEATING DOPPLER RESONANCE EFFECT ON ROTATIONAL DRIVE BY ION CYCLOTRON MINORITY HEATING V.S. Chan, S.C. Chiu, Y.A. Omelchenko General Atomics, San Diego, CA, U.S.A. 43rd Annual APS Division of Plasma Physics Meeting

More information

Confinement and manipulation of non-neutral plasmas using rotating wall electric fields

Confinement and manipulation of non-neutral plasmas using rotating wall electric fields PHYSICS OF PLASMAS VOLUME 7, NUMBER 7 JULY 2000 Confinement and manipulation of non-neutral plasmas using rotating wall electric fields E. M. Hollmann, F. Anderegg, and C. F. Driscoll Physics Department

More information

Measurements of classical transport of fast ions

Measurements of classical transport of fast ions PHYSICS OF PLASMAS 12, 052108 2005 Measurements of classical transport of fast ions L. Zhao, W. W. Heidbrink, H. Boehmer, and R. McWilliams Department of Physics and Astronomy, University of California,

More information

Nuclear Fusion. STEREO Images of Extreme UV Radia6on at 1 Million C

Nuclear Fusion. STEREO Images of Extreme UV Radia6on at 1 Million C Nuclear Fusion STEREO Images of Extreme UV Radia6on at 1 Million C 1 Fusion vs. Fission Fission is the breaking apart of a nucleus what occurs during radioac6ve decay naturally occurring and happens in

More information

Integration of Fokker Planck calculation in full wave FEM simulation of LH waves

Integration of Fokker Planck calculation in full wave FEM simulation of LH waves Integration of Fokker Planck calculation in full wave FEM simulation of LH waves O. Meneghini S. Shiraiwa R. Parker 51 st DPP APS, Atlanta November 4, 29 L H E A F * Work supported by USDOE awards DE-FC2-99ER54512

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO. The Diocotron Echo and Trapped-Particle Diocotron. Mode in Pure Electron Plasmas

UNIVERSITY OF CALIFORNIA, SAN DIEGO. The Diocotron Echo and Trapped-Particle Diocotron. Mode in Pure Electron Plasmas UNIVERSITY OF CALIFORNIA, SAN DIEGO The Diocotron Echo and Trapped-Particle Diocotron Mode in Pure Electron Plasmas A dissertation submitted in partial satisfaction of the requirements for the degree Doctor

More information

Statistical Physics. Problem Set 4: Kinetic Theory

Statistical Physics. Problem Set 4: Kinetic Theory Statistical Physics xford hysics Second year physics course Dr A. A. Schekochihin and Prof. A. Boothroyd (with thanks to Prof. S. J. Blundell) Problem Set 4: Kinetic Theory PROBLEM SET 4: Collisions and

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

Progressing Performance Tokamak Core Physics. Marco Wischmeier Max-Planck-Institut für Plasmaphysik Garching marco.wischmeier at ipp.mpg.

Progressing Performance Tokamak Core Physics. Marco Wischmeier Max-Planck-Institut für Plasmaphysik Garching marco.wischmeier at ipp.mpg. Progressing Performance Tokamak Core Physics Marco Wischmeier Max-Planck-Institut für Plasmaphysik 85748 Garching marco.wischmeier at ipp.mpg.de Joint ICTP-IAEA College on Advanced Plasma Physics, Triest,

More information

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UW-Madison CMPD & CMSO Winter School UCLA Jan 5-10, 2009 Magnetic perturbations can destroy the nested-surface topology desired for

More information

Flow and dynamo measurements in the HIST double pulsing CHI experiment

Flow and dynamo measurements in the HIST double pulsing CHI experiment Innovative Confinement Concepts (ICC) & US-Japan Compact Torus (CT) Plasma Workshop August 16-19, 211, Seattle, Washington HIST Flow and dynamo measurements in the HIST double pulsing CHI experiment M.

More information

Non-Equilibrium Kinetics and Transport Processes in a Hypersonic Flow of CO 2 /CO/O 2 /C/O Mixture

Non-Equilibrium Kinetics and Transport Processes in a Hypersonic Flow of CO 2 /CO/O 2 /C/O Mixture Non-Equilibrium Kinetics and Transport Processes in a Hypersonic Flow of CO 2 /CO/O 2 /C/O Mixture E.V. Kustova, E.A. Nagnibeda, Yu.D. Shevelev and N.G. Syzranova Department of Mathematics and Mechanics,

More information

Collisional damping of plasma waves on a pure electron plasma column

Collisional damping of plasma waves on a pure electron plasma column PHYSICS OF PLASMAS 14, 112110 2007 Collisional damping of plasma waves on a pure electron plasma column M. W. Anderson and T. M. O Neil Department of Physics, University of California at San Diego, La

More information

Aim: Understand equilibrium of galaxies

Aim: Understand equilibrium of galaxies 8. Galactic Dynamics Aim: Understand equilibrium of galaxies 1. What are the dominant forces? 2. Can we define some kind of equilibrium? 3. What are the relevant timescales? 4. Do galaxies evolve along

More information

Fluid Neutral Momentum Transport Reference Problem D. P. Stotler, PPPL S. I. Krasheninnikov, UCSD

Fluid Neutral Momentum Transport Reference Problem D. P. Stotler, PPPL S. I. Krasheninnikov, UCSD Fluid Neutral Momentum Transport Reference Problem D. P. Stotler, PPPL S. I. Krasheninnikov, UCSD 1 Summary Type of problem: kinetic or fluid neutral transport Physics or algorithm stressed: thermal force

More information

Chapter 17. Fundamentals of Atmospheric Modeling

Chapter 17. Fundamentals of Atmospheric Modeling Overhead Slides for Chapter 17 of Fundamentals of Atmospheric Modeling by Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 August 21, 1998 Mass

More information

Progress in Vlasov-Fokker- Planck simulations of laserplasma

Progress in Vlasov-Fokker- Planck simulations of laserplasma Progress in Vlasov-Fokker- Planck simulations of laserplasma interactions C. P. Ridgers, M. W. Sherlock, R. J. Kingham, A.Thomas, R. Evans Imperial College London Outline Part 1 simulations of long-pulse

More information

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 311-0102, Japan 1) University

More information

Toroidal confinement devices

Toroidal confinement devices Toroidal confinement devices Dr Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 24 th January 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 20) Last time... Power

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Estimation of diffusion Coefficient Dr. Zifei Liu Diffusion mass transfer Diffusion mass transfer refers to mass in transit due to a species concentration

More information

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University Plasma Astrophysics Chapter 1: Basic Concepts of Plasma Yosuke Mizuno Institute of Astronomy National Tsing-Hua University What is a Plasma? A plasma is a quasi-neutral gas consisting of positive and negative

More information

Intrinsic rotation due to non- Maxwellian equilibria in tokamak plasmas. Jungpyo (J.P.) Lee (Part 1) Michael Barnes (Part 2) Felix I.

Intrinsic rotation due to non- Maxwellian equilibria in tokamak plasmas. Jungpyo (J.P.) Lee (Part 1) Michael Barnes (Part 2) Felix I. Intrinsic rotation due to non- Maxwellian equilibria in tokamak plasmas Jungpyo (J.P.) Lee (Part 1) Michael Barnes (Part 2) Felix I. Parra MIT Plasma Science & Fusion Center. 1 Outlines Introduction to

More information

ω = 0 a = 0 = α P = constant L = constant dt = 0 = d Equilibrium when: τ i = 0 τ net τ i Static Equilibrium when: F z = 0 F net = F i = ma = d P

ω = 0 a = 0 = α P = constant L = constant dt = 0 = d Equilibrium when: τ i = 0 τ net τ i Static Equilibrium when: F z = 0 F net = F i = ma = d P Equilibrium when: F net = F i τ net = τ i a = 0 = α dp = 0 = d L = ma = d P = 0 = I α = d L = 0 P = constant L = constant F x = 0 τ i = 0 F y = 0 F z = 0 Static Equilibrium when: P = 0 L = 0 v com = 0

More information

First Experiments with / Plasmas: Enhanced Centrifugal Separation from Diocotron Mode Damping

First Experiments with / Plasmas: Enhanced Centrifugal Separation from Diocotron Mode Damping First Experiments with / Plasmas: Enhanced Centriugal Separation rom Diocotron Mode Damping A.A. Kabantsev a), K.A. Thompson, and C.F. Driscoll Department o Physics, University o Caliornia at San Diego,

More information

Fundamentals of Plasma Physics

Fundamentals of Plasma Physics Fundamentals of Plasma Physics Definition of Plasma: A gas with an ionized fraction (n i + + e ). Depending on density, E and B fields, there can be many regimes. Collisions and the Mean Free Path (mfp)

More information

Fine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence

Fine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence Fine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence S.E. Parker, J.J. Kohut, Y. Chen, Z. Lin, F.L. Hinton and W.W. Lee Center for Integrated Plasma Studies, University of Colorado,

More information

Measured Energy Transport in the MST Reversed-Field Pinch. G.Fiksel University of Wisconsin-Madison. adison ymmetric orus

Measured Energy Transport in the MST Reversed-Field Pinch. G.Fiksel University of Wisconsin-Madison. adison ymmetric orus Measured Energy Transport in the MST Reversed-Field Pinch T.M. Biewer,, J.K. Anderson, B.E. Chapman, S.D. Terry 1, J.C. Reardon,, N.E. Lanier, G.Fiksel Fiksel,, D.J. Den Hartog,, S.C. Prager,, and C.B.

More information

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability V.V.Mirnov, C.C.Hegna, S.C.Prager APS DPP Meeting, October 27-31, 2003, Albuquerque NM Abstract In the most general case,

More information

Low Temperature Plasma Technology Laboratory

Low Temperature Plasma Technology Laboratory Low Temperature Plasma Technology Laboratory Equilibrium theory for plasma discharges of finite length Francis F. Chen and Davide Curreli LTP-6 June, Electrical Engineering Department Los Angeles, California

More information

Effects of QCD cri/cal point on electromagne/c probes

Effects of QCD cri/cal point on electromagne/c probes Effects of QCD cri/cal point on electromagne/c probes Akihiko Monnai (IPhT, CNRS/CEA Saclay) with Swagato Mukherjee (BNL), Yi Yin (MIT) + Björn Schenke (BNL) + Jean-Yves Ollitrault (IPhT) Phase diagram

More information

The Levitated Dipole Experiment: Experiment and Theory

The Levitated Dipole Experiment: Experiment and Theory The Levitated Dipole Experiment: Experiment and Theory Jay Kesner, R. Bergmann, A. Boxer, J. Ellsworth, P. Woskov, MIT D.T. Garnier, M.E. Mauel Columbia University Columbia University Poster CP6.00083

More information

Theory and simulations of electrostatic field error transport

Theory and simulations of electrostatic field error transport PHYSICS OF PLASMAS 5, 7 8 Theory and simulations of electrostatic field error transport Daniel H. E. Dubin Department of Physics, University of California at San Diego, La Jolla, California 993, USA Received

More information

Low-collisionality density-peaking in GYRO simulations of C-Mod plasmas

Low-collisionality density-peaking in GYRO simulations of C-Mod plasmas Low-collisionality density-peaking in GYRO simulations of C-Mod plasmas D. R. Mikkelsen, M. Bitter, K. Hill, PPPL M. Greenwald, J.W. Hughes, J. Rice, MIT J. Candy, R. Waltz, General Atomics APS Division

More information

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in Thermal Equilibrium in Nebulae 1 For an ionized nebula under steady conditions, heating and cooling processes that in isolation would change the thermal energy content of the gas are in balance, such that

More information

Fokker-Planck Simulation Study of Hot-Tail Effect on Runaway Electron Generation in ITER Disruptions )

Fokker-Planck Simulation Study of Hot-Tail Effect on Runaway Electron Generation in ITER Disruptions ) Fokker-Planck Simulation Study of Hot-Tail Effect on Runaway Electron Generation in ITER Disruptions ) Hideo NUGA, Akinobu MATSUYAMA 1), Masatoshi YAGI 1) and Atsushi FUKUYAMA Kyoto University, Kyoto-Daigaku-Katsura,

More information

MD Simulations of classical sqgp

MD Simulations of classical sqgp MD Simulations of classical sqgp From RHIC to LHC: Achievements and Opportunities Tuesday, November 7, 2006 Kevin Dusling Ismail Zahed Outline Introduction Motivation for sqgp Motivation for classical

More information