Impact of neutral atoms on plasma turbulence in the tokamak edge region


 Rebecca Lawrence
 1 years ago
 Views:
Transcription
1 Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint VarennaLausanne International Workshop
2 Physics at the periphery of a fusion plasma Toroidal limiter Limiter Core Edge SOL Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 2 / 37
3 Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Plasma Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 2 / 37
4 Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Parallel flow in the SOL to the limiter Plasma Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 2 / 37
5 Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Parallel flow in the SOL to the limiter Recombination on the limiter Plasma Neutrals Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 2 / 37
6 Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Parallel flow in the SOL to the limiter Recombination on the limiter Ionization of neutrals Ionization Density source Energy sink Plasma Neutrals Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 2 / 37
7 Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Parallel flow in the SOL to the limiter Recombination on the limiter Ionization of neutrals Ionization Density source Energy sink Plasma Neutrals Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 2 / 37
8 Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Parallel flow in the SOL to the limiter Recombination on the limiter Ionization of neutrals Ionization Recycling Density source Energy sink Plasma Neutrals Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 2 / 37
9 Movie Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 3 / 37
10 The tokamak scrapeoff layer (SOL) Heat exhaust Confinement Impurities Fusion ash removal Fueling the plasma (recycling) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 4 / 37
11 1. Modeling the periphery 2. A refined twopoint model with neutrals 3. Gas puff fueling simulations Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 5 / 37
12 Modeling the periphery Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 6 / 37
13 Modeling the periphery High plasma collisionality, local Maxwellian Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 6 / 37
14 Modeling the periphery High plasma collisionality, local Maxwellian d/dt ω ci,k 2 k 2 Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 6 / 37
15 Modeling the periphery High plasma collisionality, local Maxwellian d/dt ω ci,k 2 k 2 Driftreduced Braginskii equations n,ω,v e,v,i,t e,t i Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 6 / 37
16 Modeling the periphery High plasma collisionality, local Maxwellian d/dt ω ci,k 2 k 2 Driftreduced Braginskii equations n,ω,v e,v,i,t e,t i Fluxdriven, no separation between equilibrium and fluctuations Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 6 / 37
17 Modeling the periphery High plasma collisionality, local Maxwellian d/dt ω ci,k 2 k 2 Driftreduced Braginskii equations n,ω,v e,v,i,t e,t i Fluxdriven, no separation between equilibrium and fluctuations Kinetic neutral equation Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 6 / 37
18 Modeling the periphery High plasma collisionality, local Maxwellian d/dt ω ci,k 2 k 2 Driftreduced Braginskii equations n,ω,v e,v,i,t e,t i Fluxdriven, no separation between equilibrium and fluctuations Kinetic neutral equation Interplay between plasma outflow from the core, turbulent transport, sheath losses, and recycling Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 6 / 37
19 Fluid plasma model and interaction with neutrals n = ρ 1 [φ,n] + 2 t B [C(pe) nc(φ)] (nv e ) + Dn(n) + Sn+nnν iz nν rec (1) ω t v e t v i t T e t T i t = ρ 1 [φ, ω] v i ω + B2 = ρ 1 [φ,v e ] v e v e + m i m e n j + 2B n C(p) + D nn ω ( ω) n νcx ω (2) ( ν j ) n + φ 1 n pe 0.71 Te = ρ 1 [φ,v i ] v i v i 1 n p + Dv i (v nn i )+ = ρ 1 [φ,t e] v e T e + 4Te 3B [ 1 n C(pe) + 5 C(Te) C(φ) 2 + D Te (T e) + D Te (Te) + S Te + nn n ν iz ( 2 3 E iz T e + me = ρ 1 [φ,t i ] v i T i + 4T [ i 1 3B n C(pe) τ 5 ] 2 C(T i ) C(φ) + D v e (v e )+ nn n (νen + 2ν iz )(v n v e ) n (ν iz + ν cx )(v n v i ) (4) ] [ ] + 2Te n j v e (5) v m e (v e 4 i 3 v n [ + 2T i 3 + D Ti (T i ) + D T i (T i ) + S Ti + nn n (ν iz + ν cx )(T n T i (v n v i )2 ) 2 φ =ω, ρ = ρs/r, f = b 0 f, ω = ω + τ 2 T i, p = n(t e + τt i ) nn me 2 )) + νen n m i (v i v e ) n n v e 3 v e (v n v e )) ] (3) (6) + boundary conditions + kinetic neutral equation Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 7 / 37
20 The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 8 / 37
21 The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 8 / 37
22 The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 8 / 37
23 The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 8 / 37
24 The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 8 / 37
25 The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 8 / 37
26 The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 8 / 37
27 The kinetic model of the neutrals One monoatomic neutral species Krook operators for ionization, chargeexchange, and recombination C. Wersal and P. Ricci 2015 Nucl. Fusion Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 9 / 37
28 The neutral model f n t + v f n x = ν izf n ν cx (f n n n Φ i ) + ν rec n i Φ i (8) ν iz = n e v e σ iz (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Φ i = f i /n i Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 10 / 37
29 The neutral model f n t + v f n x = ν izf n ν cx (f n n n Φ i ) + ν rec n i Φ i (8) ν iz = n e v e σ iz (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Φ i = f i /n i Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 10 / 37
30 The neutral model f n t + v f n x = ν izf n ν cx (f n n n Φ i ) + ν rec n i Φ i (8) ν iz = n e v e σ iz (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Φ i = f i /n i Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 10 / 37
31 The neutral model f n t + v f n x = ν izf n ν cx (f n n n Φ i ) + ν rec n i Φ i (8) ν iz = n e v e σ iz (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Φ i = f i /n i Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 10 / 37
32 The neutral model f n t + v f n x = ν izf n ν cx (f n n n Φ i ) + ν rec n i Φ i (8) ν iz = n e v e σ iz (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Boundary conditions Φ i = f i /n i (v in respect to the surface; θ between v and normal vector to the surface) dv v f n ( x w, v) + u i n i = 0 (9) f n ( x w, v) cos(θ)e mv 2 /2T w for v > 0 (10) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 10 / 37
33 Boundary conditions for the neutrals Partial reflection at the limiters Window averaged particle flux conservation at the outer boundary nn nn Z/ ρ s Z/ ρ s R/ ρ s R/ ρ s Gas puffs and neutral background Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 11 / 37
34 Further simplifications Separation of time scales The neutrals time of life is typically shorter than the turbulent time scale T e = 20eV, n 0 = cm 3 τ neutral losses ν 1 eff s τ turbulence R 0 L p /c s s Assume fn / t 0 Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 12 / 37
35 Further simplifications Separation of time scales The neutrals time of life is typically shorter than the turbulent time scale T e = 20eV, n 0 = cm 3 τ neutral losses ν 1 eff s τ turbulence R 0 L p /c s s Assume fn / t 0 Plasma anitrosopy The plasma elongation along the field lines is much longer than the typical neutral mean free path Assume f n 0 Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 12 / 37
36 Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 13 / 37
37 Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) v 0 x f n (x,v) (12) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 13 / 37
38 Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) v 0 x f n (x,v) = x 0 dx (12) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 13 / 37
39 Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) 0 x' x v f n (x,v) = x 0 dx ν cx (x )n n (x )Φ i (x,v) v (12) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 13 / 37
40 Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) 0 x' x v f n (x,v) = x 0 dx ν cx (x )n n (x )Φ i (x,v) e 1 x v x dx (ν cx (x )+ν iz (x )) v (12) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 13 / 37
41 Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) 0 x' x v f n (x,v) = x 0 dx ν cx (x )n n (x )Φ i (x,v) v + f w (v)e 1 v x0 dx (ν cx (x )+ν iz (x )) e v 1 x x dx (ν cx (x )+ν iz (x )) (12) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 13 / 37
42 Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) 0 x' x v f n (x,v) = x 0 dx ν cx (x )n n (x )Φ i (x,v) v + f w (v)e 1 v x0 dx (ν cx (x )+ν iz (x )) e v 1 x x dx (ν cx (x )+ν iz (x )) (12) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 13 / 37
43 An equation for the density distribution By imposing f n dv = n n (13) we get a linear integral equation for n n (x) n n (x) = x dx n n (x ) contribution by v < 0 + n w (x) dv ν cx(x )Φ i (x,v) v e d eff ν eff (x x ) v (14) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 14 / 37
44 The GBS code, a tool to simulate SOL turbulence Evolves scalar fields in 3D geometry n,ω,v e,v,i,t e,t i Kinetic neutral physics Limiter geometry Open and closed fieldline region Sources S n and S T mimic plasma outflow from the core (Divertor geometry) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 15 / 37
45 Questions that we can address How is the temperature at the limiter related to main plasma parameters? How is the plasma fueled? How do neutrals affect plasma turbulence? SOL width? Heat flux? How do diagnostic gas puffs affect the SOL? Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 16 / 37
46 Questions that we can address How is the temperature at the limiter related to main plasma parameters? How is the plasma fueled? How do neutrals affect plasma turbulence? SOL width? Heat flux? How do diagnostic gas puffs affect the SOL? Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 16 / 37
47 1. Modeling the periphery 2. A refined twopoint model with neutrals 3. Gas puff fueling simulations Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 17 / 37
48 The twopoint model Relation between upstream and target plasma properties Limiter Target Widely used experimentally for a quick estimate Derived from 1D model along field lines Core Edge SOL Upstream Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 18 / 37
49 The SOL unrolled SOL Main Plasma Main Plasma Limiter Limiter SOL LCFS Limiter Wall Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 19 / 37
50 The SOL unrolled SOL Main Plasma Limiter Main Plasma Limiter Target Upstream SOL LCFS Target Limiter Wall Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 19 / 37
51 The SOL unrolled SOL Main Plasma Limiter Main Plasma Limiter Target s Upstream SOL LCFS Target Limiter Wall Parallel plasma dynamics projected along poloidal coordinate Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 19 / 37
52 The SOL unrolled SOL Main Plasma Main Plasma Limiter Limiter s SOL LCFS Limiter Wall Parallel plasma dynamics projected along poloidal coordinate Plasma and energy outflowing from the core are modeled with prescribed S n and S Q Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 19 / 37
53 The basic twopoint model Q = S Q ds = Q cond + Q conv (15) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 20 / 37
54 The basic twopoint model Q = S Q ds = Q cond + Q conv (15) Q cond = χ e0 T 5/2 dt e e dz (16) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 20 / 37
55 The basic twopoint model Q = S Q ds = Q cond + Q conv (15) Q cond = χ e0 T 5/2 dt e e dz (16) Q conv = c e0 ΓT e (17) Γ = nv = S n ds (18) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 20 / 37
56 The basic twopoint model Q = S Q ds = Q cond + Q conv (15) Q cond = χ e0 T 5/2 dt e e dz (16) Q conv = c e0 ΓT e (17) Γ = nv = S n ds (18) Boundary conditions Upstream: dt e /ds = 0 At the limiter: Q L = γ e Γ L T el, γ e 5 Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 20 / 37
57 The basic twopoint model Q = S Q ds = Q cond + Q conv (15) Q cond = χ e0 T 5/2 dt e e dz (16) Q conv = c e0 ΓT e (17) Γ = nv = S n ds (18) Boundary conditions Upstream: dt e /ds = 0 At the limiter: Q L = γ e Γ L T el, γ e 5 S Q,S n T e,u T e,t Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 20 / 37
58 Simulations with different densities n 0 = cm 3 n 0 = cm 3 Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 21 / 37
59 Simulations with different densities n 0 = cm 3 n 0 = cm 3 Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 22 / 37
60 Simulations with different densities n 0 = cm 3 n 0 = cm 3 Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 22 / 37
61 Poloidal profiles of electron temperature n 0 = cm 3 n 0 = cm 3 Te L 0 L s Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 23 / 37
62 Poloidal profiles of electron temperature n 0 = cm 3 n 0 = cm 3 Te L 0 L s Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 23 / 37
63 Temperature ratio upstream to target 2 basic model 1.8 Te,u/Te,t (tpm) , no n n , no n n x , E iz = T e,u /T e,t (GBS) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 24 / 37
64 A more refined twopoint model Obtain an electron heat equation in quasisteady state 3 2 T n e t n T e 0 (19) t Assume v e, v i, and neglect small terms (e.g., D Te ) Combine perpendicular transport terms into S Q ( 5 2 nv T e ) χ e0 ( T 5/2 e T e ) v (nt e ) (20) = S Q + S neutrals with S neutrals = n n ν iz (T e )E iz and χ e0 = 3/2 nκ e Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 25 / 37
65 Further assumptions and relations v is linear from c s to c s c s = T e,t + T i,t 2T e,t nv = [S n + n n ν iz (T e )]ds n n is decaying exponentially from limiter with λ mfp Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 26 / 37
66 Three external input quantities Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 27 / 37
67 Three external input quantities Perpendicular heat source, S Q GBS cos fit SQ L 0 L s Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 27 / 37
68 Three external input quantities Perpendicular heat source, S Q Perpendicular particle source, S n GBS cos fit Sn L 0 L s Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 27 / 37
69 Three external input quantities Perpendicular heat source, S Q Perpendicular particle source, S n Ionization particle source, S iz Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 27 / 37
70 Three external input quantities Perpendicular heat source, S Q Perpendicular particle source, S n Ionization particle source, S iz S Q,S n,s iz T e,u T e,t Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 27 / 37
71 Temperature ratio upstream to target 2 basic model 2 full model Te,u/Te,t (tpm) , no n n , no n n x , E iz = T e,u /T e,t (GBS) Te,u/Te,t (tpm) , no n n , no n n x , E iz = T e,u /T e,t (GBS) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 28 / 37
72 Questions that we can address How is the temperature at the limiter related to main plasma parameters? How is the plasma fueled? How do neutrals affect plasma turbulence? SOL width? Heat flux? How do diagnostic gas puffs affect the SOL? Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 29 / 37
73 1. Modeling the periphery 2. A refined twopoint model with neutrals 3. Gas puff fueling simulations Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 30 / 37
74 Gas puff/fueling simulations Open and closed field lines Various gas puff locations (hfs, bot, lfs, top) Small constant main wall recycling n 0 = cm 3, T 0 = 20eV, q = 3.87, ρ 1 = 500, a 0 = 200ρ s Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 31 / 37
75 Neutral density Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 32 / 37
76 Ionization Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 33 / 37
77 Radial ExB flow outward/inward flow Ballooning outward transport at the low field side Inward fueling at the high field side Robust feature independent of gas puff location Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 34 / 37
78 Questions that we can address How is the temperature at the limiter related to main plasma parameters? How is the plasma fueled? How do neutrals affect plasma turbulence? SOL width? Heat flux? How do diagnostic gas puffs affect the SOL? Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 35 / 37
79 Poloidal ExB flow Poloidal rotation due to radial electric field Shearing of the turbulent eddies Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 36 / 37
80 Conclusions Plasma turbulence at the periphery and interaction with neutrals are crucial issues on the way to fusion electricity GBS is now able to simulate this complex interplay selfconsistently Development of a more refined twopoint model, in agreement with GBS Initial study of plasma fueling due to ionization and radial flows, and of plasma poloidal rotation. Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 37 / 37
81 Reaction rates  Stangeby Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 1 / 4
82 Reaction rates  openadas σv (m 3 s 1 ) CX ion, n 0 =1e+18 rec, n 0 =1e+18 ion, n 0 =1e+20 rec, n 0 =1e T e,t i (ev) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 2 / 4
83 Timescales T 0 (ev) n 0 (m 3 ) τ turbulence (s) τ nnloss (s) λ mfp (m) 1 1e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e05 Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 3 / 4
84 The model in steady state Steady state, f n t = 0, first approach Valid if τ neutral losses < τ turbulence e.g. T e = 20eV, n 0 = m 3 τ neutral losses ν 1 eff s τ turbulence R 0 L p /c s s Otherwise: time dependent model Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 4 / 4
A kinetic neutral atom model for tokamak scrapeoff layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva
A kinetic neutral atom model for tokamak scrapeoff layer tubulence simulations Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva CRPP  EPFL SPS Annual Meeting 2014 02.07.2014 CRPP The tokamak
More informationA firstprinciples selfconsistent model of plasma turbulence and kinetic neutral dynamics in the tokamak scrapeoff layer
A firstprinciples selfconsistent model of plasma turbulence and kinetic neutral dynamics in the tokamak scrapeoff layer C Wersal and P Ricci Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma
More informationVerification & Validation: application to the TORPEX basic plasma physics experiment
Verification & Validation: application to the TORPEX basic plasma physics experiment Paolo Ricci F. Avino, A. Bovet, A. Fasoli, I. Furno, S. Jolliet, F. Halpern, J. Loizu, A. Mosetto, F. Riva, C. Theiler,
More informationTokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011
Tokamak Divertor System Concept and the Design for ITER Chris Stoafer April 14, 2011 Presentation Overview Divertor concept and purpose Divertor physics General design considerations Overview of ITER divertor
More informationDirect drive by cyclotron heating can explain spontaneous rotation in tokamaks
Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.J. Zheng Institute for Fusion Studies University of Texas at Austin 12th USEU Transport Task Force Annual
More information14. Energy transport.
Phys780: Plasma Physics Lecture 14. Energy transport. 1 14. Energy transport. ChapmanEnskog theory. ([8], p.5175) We derive macroscopic properties of plasma by calculating moments of the kinetic equation
More informationPhysics of the detached radiative divertor regime in DIIID
Plasma Phys. Control. Fusion 41 (1999) A345 A355. Printed in the UK PII: S7413335(99)972998 Physics of the detached radiative divertor regime in DIIID M E Fenstermacher, J Boedo, R C Isler, A W Leonard,
More informationINTRODUCTION TO GYROKINETIC AND FLUID SIMULATIONS OF PLASMA TURBULENCE AND OPPORTUNITES FOR ADVANCED FUSION SIMULATIONS
INTRODUCTION TO GYROKINETIC AND FLUID SIMULATIONS OF PLASMA TURBULENCE AND OPPORTUNITES FOR ADVANCED FUSION SIMULATIONS G.W. Hammett, Princeton Plasma Physics Lab w3.pppl.gov/ hammett Fusion Simulation
More informationToroidal confinement devices
Toroidal confinement devices Dr Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 24 th January 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 20) Last time... Power
More informationEFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE
EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIIID Group 47 th Annual Meeting
More informationA THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS
A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS Presented by D.P. SCHISSEL Presented to APS Centennial Meeting March 20 26, 1999 Atlanta, Georgia
More information12. MHD Approximation.
Phys780: Plasma Physics Lecture 12. MHD approximation. 1 12. MHD Approximation. ([3], p. 169183) The kinetic equation for the distribution function f( v, r, t) provides the most complete and universal
More informationLow Temperature Plasma Technology Laboratory
Low Temperature Plasma Technology Laboratory Equilibrium theory for plasma discharges of finite length Francis F. Chen and Davide Curreli LTP6 June, Electrical Engineering Department Los Angeles, California
More informationHeat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UWMadison
Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UWMadison CMPD & CMSO Winter School UCLA Jan 510, 2009 Magnetic perturbations can destroy the nestedsurface topology desired for
More informationIntegrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport
1 Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama Japan Atomic Energy Agency, Naka, Ibarakiken, 3110193 Japan
More informationTH/P614 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a)
1 TH/P614 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a) 1 Chang, C.S., 1 Ku, S., 2 Adams M., 3 D Azevedo, G., 4 Chen, Y., 5 Cummings,
More informationParticle Transport and Density Gradient Scale Lengths in the Edge Pedestal
Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal W. M. Stacey Fusion Research Center, Georgia Institute of Technology, Atlanta, GA, USA Email: weston.stacey@nre.gatech.edu Abstract
More informationEX/C35Rb Relationship between particle and heat transport in JT60U plasmas with internal transport barrier
EX/CRb Relationship between particle and heat transport in JTU plasmas with internal transport barrier H. Takenaga ), S. Higashijima ), N. Oyama ), L. G. Bruskin ), Y. Koide ), S. Ide ), H. Shirai ),
More informationExtensions of the TEP Neutral Transport Methodology. Dingkang Zhang, John Mandrekas, Weston M. Stacey
Extensions of the TEP Neutral Transport Methodology Dingkang Zhang, John Mandrekas, Weston M. Stacey Fusion Research Center, Georgia Institute of Technology, Atlanta, GA 303320425, USA Abstract Recent
More informationPlasma and Fusion Research: Regular Articles Volume 10, (2015)
Possibility of QuasiSteadyState Operation of LowTemperature LHDType DeuteriumDeuterium (DD) Reactor Using Impurity Hole Phenomena DD Reactor Controlled by Solid Boron Pellets ) Tsuguhiro WATANABE
More informationTwo dimensional modelling approach to transport properties of the TEXTORDED laminar zone
Two dimensional modelling approach to transport properties of the TEXTORDED laminar zone T. Eich, D. Reiser K.H. Finken Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, Euratom Association, Trilateral
More informationCMod Core Transport Program. Presented by Martin Greenwald CMod PAC Feb. 68, 2008 MIT Plasma Science & Fusion Center
CMod Core Transport Program Presented by Martin Greenwald CMod PAC Feb. 68, 2008 MIT Plasma Science & Fusion Center Practical Motivations for Transport Research Overall plasma behavior must be robustly
More informationGyrokinetic Transport Driven by Energetic Particle Modes
Gyrokinetic Transport Driven by Energetic Particle Modes by Eric Bass (General Atomics) Collaborators: Ron Waltz, Ming Chu GSEP Workshop General Atomics August 10, 2009 Outline I. Background Alfvén (TAE/EPM)
More informationTurbulence bursts probing of transport barriers analyzed in terms of competing stochastic processes
Author manuscript, published in "Plasma Phys. Control. Fusion 55, 9 (013) 09501" DOI : 10.1088/0713335/55/9/09501 Turbulence bursts probing of transport barriers analyzed in terms of competing stochastic
More informationDIIID TOKAMAK MODELING OF THE RECYCLING PARTICLE FLUX AND ELECTRON PARTICLE TRANSPORT IN THE
MODELING OF THE RECYCLING ARTICLE FLUX AND ELECTRON ARTICLE TRANSORT IN THE DIIID TOKAMAK by D.R. BAKER, R. MAINGI, L.W. OWEN, G.D. ORTER, and G.L. JACKSON OCTOBER 1996 GENERAL ATOMICS ortions of this
More informationThe FieldReversed Configuration (FRC) is a highbeta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is
and Stability of FieldReversed Equilibrium with Toroidal Field Configurations Atomics General Box 85608, San Diego, California 921865608 P.O. APS Annual APS Meeting of the Division of Plasma Physics
More informationFluctuation statistics in the scrapeoff layer of Alcator CMod
Fluctuation statistics in the scrapeoff layer of Alcator CMod R. Kube, O. E. Garcia, B. LaBombard, and J. L. Terry We study long time series of the ion saturation current and floating potential, obtained
More informationCalculations of Energy Losses due to Atomic Processes in Tokamaks with Applications to the ITER Divertor
Calculations of Energy Losses due to Atomic Processes in Tokamaks with Applications to the ITER Divertor D. Post 1, J. Abdallah, R. E. H. Clark, and N. Putvinskaya 1 1 ITER Joint Central Team, San Diego,
More informationIntroduction to Fusion Physics
Introduction to Fusion Physics Hartmut Zohm MaxPlanckInstitut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction
More informationIntroduction to Fusion Physics
Introduction to Fusion Physics J. W. Haverkort October 15, 2009 Abstract This is a summary of the first eight chapters from the book Plasma Physics and Fusion Energy by Jeffrey P. Freidberg. Contents 2
More informationGA A23736 EFFECTS OF CROSSSECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT
GA A3736 EFFECTS OF CROSSSECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT by T.C. LUCE, C.C. PETTY, and J.E. KINSEY AUGUST DISCLAIMER This report was prepared as an account of work sponsored by an
More informationPROGRESS IN STEADYSTATE SCENARIO DEVELOPMENT IN THE DIIID TOKAMAK
PROGRESS IN STEADYSTATE SCENARIO DEVELOPMENT IN THE DIIID TOKAMAK by T.C. LUCE, J.R. FERRON, C.T. HOLCOMB, F. TURCO, P.A. POLITZER, and T.W. PETRIE GA A26981 JANUARY 2011 DISCLAIMER This report was prepared
More informationProgress in characterization of the Hmode pedestal
Journal of Physics: Conference Series Progress in characterization of the Hmode pedestal To cite this article: A W Leonard 2008 J. Phys.: Conf. Ser. 123 012001 View the article online for updates and
More informationDivertor Detachment on TCV
Divertor Detachment on TCV R. A. Pitts, Association EURATOMConfédération Suisse,, CH LAUSANNE, Switzerland thanks to A. Loarte a, B. P. Duval, J.M. Moret, J. A. Boedo b, L. Chousal b, D. Coster c, G.
More informationResearch of Basic Plasma Physics Toward Nuclear Fusion in LHD
Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Akio KOMORI and LHD experiment group National Institute for Fusion Science, Toki, Gifu 5095292, Japan (Received 4 January 2010 / Accepted
More informationPlasma Spectroscopy Inferences from Line Emission
Plasma Spectroscopy Inferences from Line Emission Ø From line λ, can determine element, ionization state, and energy levels involved Ø From line shape, can determine bulk and thermal velocity and often
More informationIntegrated Simulation of ELM Energy Loss and Cycle in Improved Hmode Plasmas
1 Integrated Simulation of ELM Energy Loss and Cycle in Improved Hmode Plasmas N. Hayashi 1), T. Takizuka 1), N. Aiba 1), N. Oyama 1), T. Ozeki 1), S. Wiesen 2), V. Parail 3) 1) Japan Atomic Energy Agency,
More informationASCOT simulations of electron energy distribution at the divertor targets in an ASDEX Upgrade Hmode discharge
ASCOT simulations of electron energy distribution at the divertor targets in an ASDEX Upgrade Hmode discharge L K AhoMantila 1, T KurkiSuonio 1, A V Chankin 2, D P Coster 2 and S K Sipilä 1 1 Helsinki
More informationD 3 He HA tokamak device for experiments and power generations
D He HA tokamak device for experiments and power generations USJapan Fusion Power Plant Studies Contents University of Tokyo, Japan January , 5 O.Mitarai (Kyushu Tokai University).Motivation.Formalism,
More informationarxiv: v1 [physics.plasmph] 14 Jan 2009
arxiv:0901.2043v1 [physics.plasmph] 14 Jan 2009 Effectsofparallel ion motion onzonal flowgeneration in iontemperaturegradient mode turbulence J. Anderson 1, J. Li, Y. Kishimoto Department of Fundamental
More informationImpact on Divertor Operation of the Pattern of Edge and SOL Flows Induced by Particle Sources and Sinks
1 TH/P426 Impact on Divertor Operation of the Pattern of Edge and SOL Flows Induced by Particle Sources and Sinks Ph. Ghendrih 1, T. Auphan 2, B. Bensiali 3, M. Bilanceri 4, K. Bodi 3,5, J. Bucalossi
More informationThermodynamical and microscopic properties of turbulent transport in the edge plasma
Home Search Collections Journals About Contact us My IOPscience Thermodynamical and microscopic properties of turbulent transport in the edge plasma This content has been downloaded from IOPscience. Please
More informationEffect of ECRH Regime on Characteristics of ShortWave Turbulence in Plasma of the L2M Stellarator
1 Effect of ECRH Regime on Characteristics of ShortWave Turbulence in Plasma of the L2M Stellarator N.N. Skvortsova, D.K. Akulina, G.M. Batanov, G.S. Voronov, L.V. Kolik, L.M. Kovrizhnykh, A.A. Letunov,
More informationITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model
1 THC/33 ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model J.E. Kinsey, G.M. Staebler, J. Candy, and R.E. Waltz General Atomics, P.O. Box 8608, San Diego, California
More informationInvestigations of pedestal turbulence and ELM bursts in NSTX Hmode plasmas
Supported by Investigations of pedestal turbulence and ELM bursts in NSTX Hmode plasmas Coll of Wm & Mary Columbia U CompX General Atomics FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U Nova
More informationEffect of ExB Driven Transport on the Deposition of Carbon in the Outer Divertor of. ASDEX Upgrade
Association EuratomTekes ASDEX Upgrade Effect of ExB Driven Transport on the Deposition of Carbon in the Outer Divertor of ASDEX Upgrade L. AhoMantila 1,2, M. Wischmeier 3, K. Krieger 3, V. Rohde 3,
More informationFusion Research at the ASDEX Upgrade Tokamak Experiences with Tungsten Plasma Facing Components
Fusion Research at the ASDEX Upgrade Tokamak Experiences with Tungsten Plasma Facing Components Magnetically Confined Fusion Towards ITER Results with Tungsten PFCs in ASDEX Upgrade R. Neu and ASDEX Upgrade
More informationPlasma instability during ITBs formation with pellet injection in tokamak
Plasma instability during ITBs formation with pellet injection in tokamak P. Klaywittaphat 1, B. Chatthong 2, T. Onjun. R. Picha 3, J. Promping 3 1 Faculty of Engineering, Thaksin University, Phatthalung,
More informationFundamentals of Plasma Physics
Fundamentals of Plasma Physics Definition of Plasma: A gas with an ionized fraction (n i + + e ). Depending on density, E and B fields, there can be many regimes. Collisions and the Mean Free Path (mfp)
More informationarxiv: v1 [physics.plasmph] 9 Sep 2011
Correlation length scalings in fusion edge plasma turbulence computations S. Konzett 1, D. Reiser 2, A. Kendl 1 arxiv:119.1997v1 [physics.plasmph] 9 Sep 211 1) Institut für Ionenphysik und Angewandte
More informationInitial Experimental Program Plan for HSX
Initial Experimental Program Plan for HSX D.T. Anderson, A F. Almagri, F.S.B. Anderson, J. Chen, S. Gerhardt, V. Sakaguchi, J. Shafii and J.N. Talmadge, UWMadison HSX Plasma Laboratory Team The Helically
More informationImproved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus)
Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) PD/P01 C. Castaldo 1), R. Cesario 1), Y, Andrew 2), A. Cardinali 1), V. Kiptly 2), M. Mantsinen
More informationImplementation of drift velocities and currents in SOLEDGE2DEIRENE
Implementation of drift velocities and currents in SOLEDGE2DEIRENE Hugo Bufferand, C Baudoin, J Bucalossi, G Ciraolo, J Denis, Nicolas Fedorczak, D Galassi, Philippe Ghendrih, R Leybros, Y Marandet, et
More informationKINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS
KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS Ralf Peter Brinkmann, Dennis Krüger Fakultät für Elektrotechnik und Informationstechnik Lehrstuhl für Theoretische Elektrotechnik Magnetized low
More informationMinimal Model Study for ELM Control by Supersonic Molecular Beam Injection and Pellet Injection
25 th Fusion Energy Conference, Saint Petersburg, Russia, 2014 TH/P29 Minimal Model Study for ELM Control by Supersonic Molecular Beam Injection and Pellet Injection Tongnyeol Rhee 1,2, J.M. Kwon 1, P.H.
More informationproposed [6]. This scaling is found for single null divertor configurations with the VB
ORNL/CP99185 Assessment of Effects of Neutrals on the Power Threshold for L to H Transitions in DIIID ^ ^ L W Owent, B A Carrerast, R Maingit, P K Mioduszewskit, T N CarlstrfS. R J Groebner* A(jQ j toak
More informationStatistical analysis of fluctuations in the Alcator CMod scrapeoff layer
FACULTY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF PHYSICS AND TECHNOLOGY Statistical analysis of fluctuations in the Alcator CMod scrapeoff layer Sindre Markus Fritzner FYS39 Master s Thesis in Physics
More informationThe RFP: Plasma Confinement with a Reversed Twist
The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of WisconsinMadison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed
More informationEffect of the Radial Electric Field on Lower Hybrid Plasma Heating in the FT2 Tokamak
Plasma Physics Reports, Vol. 7, No.,, pp.. Translated from Fizika Plazmy, Vol. 7, No.,, pp. 9 9. Original Russian Text Copyright by Lashkul, Budnikov, Vekshina, D yachenko, Ermolaev, Esipov, Its, Kantor,
More informationIdeal Magnetohydrodynamics (MHD)
Ideal Magnetohydrodynamics (MHD) Nick Murphy HarvardSmithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 1, 2016 These lecture notes are largely based on Lectures in Magnetohydrodynamics
More informationRotation and Neoclassical Ripple Transport in ITER
Rotation and Neoclassical Ripple Transport in ITER Elizabeth J. Paul 1 Matt Landreman 1 Francesca Poli 2 Don Spong 3 Håkan Smith 4 William Dorland 1 1 University of Maryland 2 Princeton Plasma Physics
More informationEstimating the plasma flow in a recombining plasma from
Paper P338 Estimating the plasma flow in a recombining plasma from the H α emission U. Wenzel a, M. Goto b a MaxPlanckInstitut für Plasmaphysik (IPP) b National Institute for Fusion Science, Toki 5095292,
More informationThe Future of Boundary Plasma and Material Science
The Future of Boundary Plasma and Material Science Dennis Whyte Plasma Science & Fusion Center, MIT, Cambridge USA Director, Plasma Surface Interaction Science Center (psisc.org) APS Sherwood Meeting of
More informationProduction of Overdense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device
Production of Overdense Plasmas by Launching 2.45GHz Electron Cyclotron Waves in a Helical Device R. Ikeda a, M. Takeuchi a, T. Ito a, K. Toi b, C. Suzuki b, G. Matsunaga c, S. Okamura b, and CHS Group
More informationPer Helander. Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos. Wendelsteinstraße 1, Greifswald
Rotation and zonal flows in stellarators Per Helander Wendelsteinstraße 1, 17491 Greifswald Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos What is a stellarator? In a tokamak
More informationEnergetic particle modes: from bump on tail to tokamak plasmas
Energetic particle modes: from bump on tail to tokamak plasmas M. K. Lilley 1 B. N. Breizman 2, S. E. Sharapov 3, S. D. Pinches 3 1 Physics Department, Imperial College London, London, SW7 2AZ, UK 2 IFS,
More informationFUSION and PLASMA PHYSICS
FUSION and PLASMA PHYSICS My objectives: to explain why Nuclear Fusion is worth pursuing to describe some basic concepts behind magnetic confinement to summarize the history of fusion to describe some
More informationJ. Kesner. April Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts USA
PFC/JA8838 Effect of Local Shear on Drift Fluctuation Driven T'ransport in Tokamaks J. Kesner April 1989 Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts 2139 USA Submitted
More informationAnalysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission
Analysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. PazSoldan 2, F. Carpanese 3, C.C. Petty 2, T.C.
More informationMeasuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor
PHYSICS OF PLASMAS VOLUME 5, NUMBER FEBRUARY 1998 Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor C. Ren, a) J. D. Callen, T. A. Gianakon, and C. C. Hegna University
More informationEvolution of the pedestal on MAST and the implications for ELM power loadings
Evolution of the pedestal on MAST and the implications for ELM power loadings Presented by Andrew Kirk EURATOM / UKAEA Fusion Association UKAEA authors were funded jointly by the United Kingdom Engineering
More informationEvaluation of CT injection to RFP for performance improvement and reconnection studies
Evaluation of CT injection to RFP for performance improvement and reconnection studies S. Masamune A. Sanpei, T. Nagano, S. Nakanobo, R. Tsuboi, S. Kunita, M. Emori, H. Makizawa, H. Himura, N. Mizuguchi
More informationTokamak Fusion Basics and the MHD Equations
MHD Simulations for Fusion Applications Lecture 1 Tokamak Fusion Basics and the MHD Equations Stephen C. Jardin Princeton Plasma Physics Laboratory CEMRACS 1 Marseille, France July 19, 21 1 Fusion Powers
More informationIntegration of Fokker Planck calculation in full wave FEM simulation of LH waves
Integration of Fokker Planck calculation in full wave FEM simulation of LH waves O. Meneghini S. Shiraiwa R. Parker 51 st DPP APS, Atlanta November 4, 29 L H E A F * Work supported by USDOE awards DEFC299ER54512
More informationSMR/ Summer College on Plasma Physics. 30 July  24 August, Introduction to Magnetic Island Theory.
SMR/18561 2007 Summer College on Plasma Physics 30 July  24 August, 2007 Introduction to Magnetic Island Theory. R. Fitzpatrick Inst. for Fusion Studies University of Texas at Austin USA Introduction
More informationTungsten impurity transport experiments in Alcator CMod to address high priority R&D for ITER
Tungsten impurity transport experiments in Alcator CMod to address high priority R&D for ITER M.L. Reinke 1, A. Loarte 2, M. Chilenski 3, N. Howard 3, F. Köchl 4, A. Polevoi 2, A. Hubbard 3, J.W. Hughes
More information1 Introduction to Governing Equations 2 1a Methodology... 2
Contents 1 Introduction to Governing Equations 2 1a Methodology............................ 2 2 Equation of State 2 2a Mean and Turbulent Parts...................... 3 2b Reynolds Averaging.........................
More informationActive and Fast Particle Driven Alfvén Eigenmodes in Alcator CMod
Active and Fast Particle Driven Alfvén Eigenmodes in Alcator CMod JUST DID IT. J A Snipes, N Basse, C Boswell, E Edlund, A Fasoli #, N N Gorelenkov, R S Granetz, L Lin, Y Lin, R Parker, M Porkolab, J
More informationNonlinear Diffusion in Magnetized Discharges. Francis F. Chen. Electrical Engineering Department
Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical Engineering Department PPG1579 January, 1998 Revised April, 1998 Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical
More informationHypocoercivity for kinetic equations with linear relaxation terms
Hypocoercivity for kinetic equations with linear relaxation terms Jean Dolbeault dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université ParisDauphine http://www.ceremade.dauphine.fr/ dolbeaul (A JOINT
More informationFusion Principles Jef ONGENA Plasma Physics Laboratory Royal Military Academy Brussels
Fusion Principles Jef ONGENA Plasma Physics Laboratory Royal Military Academy Brussels 4 th SIFEPS International School on Energy Villa Monastero Varenna, Lago di Como 25 July 2017 Outline Fusion reactions
More informationQTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team*
ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR Presented by D.P. SCHISSEL for the DIII D Team* Presented to 38th APS/DPP Meeting NOVEMBER 11 15, 1996 Denver, Colorado
More informationCurrent density modelling in JET and JT60U identity plasma experiments. Paula Sirén
Current density modelling in JET and JT60U identity plasma experiments Paula Sirén 1/12 1/16 EuratomTEKES EuratomTekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET
More informationInternational Workshop on the Frontiers of Modern Plasma Physics July On the Nature of Plasma Core Turbulence.
195343 International Workshop on the Frontiers of Modern Plasma Physics 1425 July 2008 On the Nature of Plasma Core Turbulence. F. Jenko MaxPlanck Institute fuer Plasmaphysik Garching bei Munchen Germany
More informationNeeds work : define boundary conditions and fluxes before, change slides Useful definitions and conservation equations
Needs work : define boundary conditions and fluxes before, change slides 123 Useful definitions and conservation equations Turbulent Kinetic energy The fluxes are crucial to define our boundary conditions,
More informationTokamak Edge Turbulence background theory and computation
ASDEX Upgrade Tokamak Edge Turbulence background theory and computation B. Scott Max Planck Institut für Plasmaphysik Euratom Association D85748 Garching, Germany Krakow, Sep 2006 Outline Basic Concepts
More informationSimulations of HMode Plasmas in Tokamak Using a Complete CoreEdge Modeling in the BALDUR Code
Plasma Science and Technology, Vol.14, No.9, Sep. 2012 Simulations of HMode Plasmas in Tokamak Using a Complete CoreEdge Modeling in the BALDUR Code Y. PIANROJ, T. ONJUN School of Manufacturing Systems
More informationCore Transport Properties in JT60U and JET Identity Plasmas
1 EXC/P412 Core Transport Properties in JT60U and JET Identity Plasmas X. Litaudon 1, Y. Sakamoto 2, P.C. de Vries 3, A. Salmi 4, T. Tala 5, C. Angioni 6, S. Benkadda 7, M.N.A. Beurskens 8, C. Bourdelle
More informationThe Virial Theorem, MHD Equilibria, and ForceFree Fields
The Virial Theorem, MHD Equilibria, and ForceFree Fields Nick Murphy HarvardSmithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 10 12, 2014 These lecture notes are largely
More informationNonlinear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations.
Nonlinear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations. M. Becoulet 1, F. Orain 1, G.T.A. Huijsmans 2, P. Maget 1, N. Mellet 1, G. DifPradalier 1, G. Latu 1, C. Passeron
More informationThe role of zonal flows and predatorprey oscillations in triggering
The role of zonal flows and predatorprey oscillations in triggering the formation of edge and core transport barriers L. Schmitz, 1 L. Zeng, 1 T.L. Rhodes, 1 J.C. Hillesheim 2 W.A. Peebles, 1 R.J. Groebner,
More informationModelling of lowtemperature plasmas: kinetic and transport mechanisms. L.L. Alves
Modelling of lowtemperature plasmas: kinetic and transport mechanisms L.L. Alves llalves@tecnico.ulisboa.pt Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Universidade de Lisboa Lisboa,
More informationStellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK
Stellarators Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 6 th February 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously... Toroidal devices
More informationToroidal confinement of nonneutral plasma. Martin Droba
Toroidal confinement of nonneutral plasma Martin Droba Contents Experiments with toroidal nonneutral plasma Magnetic surfaces CNT and IAPhigh current ring Conclusion 2. Experiments with toroidal nonneutral
More informationBRIEF COMMUNICATION. Nearmagneticaxis Geometry of a Closely QuasiIsodynamic Stellarator. Greifswald, Wendelsteinstr. 1, Greifswald, Germany
BRIEF COMMUNICATION Nearmagneticaxis Geometry of a Closely QuasiIsodynamic Stellarator M.I. Mikhailov a, J. Nührenberg b, R. Zille b a Russian Research Centre Kurchatov Institute, Moscow,Russia b MaxPlanckInstitut
More informationELM filament heat loads on plasma facing components in JET and ITER
1 filament heat loads on plasma facing components in JET and ITER 1. Fundamenski, R.A.Pitts, 1 G.Arnoux, 3 M.Jakubowski, A.Loarte, 1 M.Beurskens and JET EFDA contributors 1 Euratom/UKAEA Fusion Association,
More informationComparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIIID Tokamak
Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIIID Tokamak T.C. Jernigan, L.R. Baylor, S.K. Combs, W.A. Houlberg (Oak Ridge National Laboratory) P.B. Parks (General
More informationTopics in Nuclear Astrophysics II. Stellar Reaction Rates
Topics in Nuclear strophysics II Stellar Reaction Rates definition of a reaction rate Gamow window lifetimes of isotopes at stellar conditions nuclear energy production rate introduction to network simulations
More informationMechanisms for ITB Formation and Control in Alcator CMod Identified through Gyrokinetic Simulations of TEM Turbulence
th IAEA Fusion Energy Conference Vilamoura, Portugal, 16 November IAEACN116/TH/1 Mechanisms for ITB Formation and Control in Alcator CMod Identified through Gyrokinetic Simulations of TEM Turbulence
More informationTokamak/Helical Configurations Related to LHD and CHSqa
9TH WORKSHOP ON MHD STABILITY CONTROL: "CONTROL OF MHD STABILITY: BACK TO THE BASICS" NOVEMBER 2123, 2004, PRINCETON PLASMA PHYSICS LABORATORY Tokamak/Helical Configurations Related to LHD and CHSqa
More information