Impact of neutral atoms on plasma turbulence in the tokamak edge region


 Rebecca Lawrence
 2 years ago
 Views:
Transcription
1 Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint VarennaLausanne International Workshop
2 Physics at the periphery of a fusion plasma Toroidal limiter Limiter Core Edge SOL Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 2 / 37
3 Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Plasma Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 2 / 37
4 Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Parallel flow in the SOL to the limiter Plasma Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 2 / 37
5 Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Parallel flow in the SOL to the limiter Recombination on the limiter Plasma Neutrals Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 2 / 37
6 Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Parallel flow in the SOL to the limiter Recombination on the limiter Ionization of neutrals Ionization Density source Energy sink Plasma Neutrals Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 2 / 37
7 Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Parallel flow in the SOL to the limiter Recombination on the limiter Ionization of neutrals Ionization Density source Energy sink Plasma Neutrals Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 2 / 37
8 Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Parallel flow in the SOL to the limiter Recombination on the limiter Ionization of neutrals Ionization Recycling Density source Energy sink Plasma Neutrals Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 2 / 37
9 Movie Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 3 / 37
10 The tokamak scrapeoff layer (SOL) Heat exhaust Confinement Impurities Fusion ash removal Fueling the plasma (recycling) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 4 / 37
11 1. Modeling the periphery 2. A refined twopoint model with neutrals 3. Gas puff fueling simulations Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 5 / 37
12 Modeling the periphery Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 6 / 37
13 Modeling the periphery High plasma collisionality, local Maxwellian Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 6 / 37
14 Modeling the periphery High plasma collisionality, local Maxwellian d/dt ω ci,k 2 k 2 Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 6 / 37
15 Modeling the periphery High plasma collisionality, local Maxwellian d/dt ω ci,k 2 k 2 Driftreduced Braginskii equations n,ω,v e,v,i,t e,t i Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 6 / 37
16 Modeling the periphery High plasma collisionality, local Maxwellian d/dt ω ci,k 2 k 2 Driftreduced Braginskii equations n,ω,v e,v,i,t e,t i Fluxdriven, no separation between equilibrium and fluctuations Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 6 / 37
17 Modeling the periphery High plasma collisionality, local Maxwellian d/dt ω ci,k 2 k 2 Driftreduced Braginskii equations n,ω,v e,v,i,t e,t i Fluxdriven, no separation between equilibrium and fluctuations Kinetic neutral equation Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 6 / 37
18 Modeling the periphery High plasma collisionality, local Maxwellian d/dt ω ci,k 2 k 2 Driftreduced Braginskii equations n,ω,v e,v,i,t e,t i Fluxdriven, no separation between equilibrium and fluctuations Kinetic neutral equation Interplay between plasma outflow from the core, turbulent transport, sheath losses, and recycling Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 6 / 37
19 Fluid plasma model and interaction with neutrals n = ρ 1 [φ,n] + 2 t B [C(pe) nc(φ)] (nv e ) + Dn(n) + Sn+nnν iz nν rec (1) ω t v e t v i t T e t T i t = ρ 1 [φ, ω] v i ω + B2 = ρ 1 [φ,v e ] v e v e + m i m e n j + 2B n C(p) + D nn ω ( ω) n νcx ω (2) ( ν j ) n + φ 1 n pe 0.71 Te = ρ 1 [φ,v i ] v i v i 1 n p + Dv i (v nn i )+ = ρ 1 [φ,t e] v e T e + 4Te 3B [ 1 n C(pe) + 5 C(Te) C(φ) 2 + D Te (T e) + D Te (Te) + S Te + nn n ν iz ( 2 3 E iz T e + me = ρ 1 [φ,t i ] v i T i + 4T [ i 1 3B n C(pe) τ 5 ] 2 C(T i ) C(φ) + D v e (v e )+ nn n (νen + 2ν iz )(v n v e ) n (ν iz + ν cx )(v n v i ) (4) ] [ ] + 2Te n j v e (5) v m e (v e 4 i 3 v n [ + 2T i 3 + D Ti (T i ) + D T i (T i ) + S Ti + nn n (ν iz + ν cx )(T n T i (v n v i )2 ) 2 φ =ω, ρ = ρs/r, f = b 0 f, ω = ω + τ 2 T i, p = n(t e + τt i ) nn me 2 )) + νen n m i (v i v e ) n n v e 3 v e (v n v e )) ] (3) (6) + boundary conditions + kinetic neutral equation Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 7 / 37
20 The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 8 / 37
21 The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 8 / 37
22 The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 8 / 37
23 The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 8 / 37
24 The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 8 / 37
25 The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 8 / 37
26 The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 8 / 37
27 The kinetic model of the neutrals One monoatomic neutral species Krook operators for ionization, chargeexchange, and recombination C. Wersal and P. Ricci 2015 Nucl. Fusion Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 9 / 37
28 The neutral model f n t + v f n x = ν izf n ν cx (f n n n Φ i ) + ν rec n i Φ i (8) ν iz = n e v e σ iz (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Φ i = f i /n i Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 10 / 37
29 The neutral model f n t + v f n x = ν izf n ν cx (f n n n Φ i ) + ν rec n i Φ i (8) ν iz = n e v e σ iz (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Φ i = f i /n i Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 10 / 37
30 The neutral model f n t + v f n x = ν izf n ν cx (f n n n Φ i ) + ν rec n i Φ i (8) ν iz = n e v e σ iz (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Φ i = f i /n i Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 10 / 37
31 The neutral model f n t + v f n x = ν izf n ν cx (f n n n Φ i ) + ν rec n i Φ i (8) ν iz = n e v e σ iz (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Φ i = f i /n i Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 10 / 37
32 The neutral model f n t + v f n x = ν izf n ν cx (f n n n Φ i ) + ν rec n i Φ i (8) ν iz = n e v e σ iz (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Boundary conditions Φ i = f i /n i (v in respect to the surface; θ between v and normal vector to the surface) dv v f n ( x w, v) + u i n i = 0 (9) f n ( x w, v) cos(θ)e mv 2 /2T w for v > 0 (10) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 10 / 37
33 Boundary conditions for the neutrals Partial reflection at the limiters Window averaged particle flux conservation at the outer boundary nn nn Z/ ρ s Z/ ρ s R/ ρ s R/ ρ s Gas puffs and neutral background Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 11 / 37
34 Further simplifications Separation of time scales The neutrals time of life is typically shorter than the turbulent time scale T e = 20eV, n 0 = cm 3 τ neutral losses ν 1 eff s τ turbulence R 0 L p /c s s Assume fn / t 0 Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 12 / 37
35 Further simplifications Separation of time scales The neutrals time of life is typically shorter than the turbulent time scale T e = 20eV, n 0 = cm 3 τ neutral losses ν 1 eff s τ turbulence R 0 L p /c s s Assume fn / t 0 Plasma anitrosopy The plasma elongation along the field lines is much longer than the typical neutral mean free path Assume f n 0 Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 12 / 37
36 Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 13 / 37
37 Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) v 0 x f n (x,v) (12) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 13 / 37
38 Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) v 0 x f n (x,v) = x 0 dx (12) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 13 / 37
39 Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) 0 x' x v f n (x,v) = x 0 dx ν cx (x )n n (x )Φ i (x,v) v (12) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 13 / 37
40 Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) 0 x' x v f n (x,v) = x 0 dx ν cx (x )n n (x )Φ i (x,v) e 1 x v x dx (ν cx (x )+ν iz (x )) v (12) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 13 / 37
41 Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) 0 x' x v f n (x,v) = x 0 dx ν cx (x )n n (x )Φ i (x,v) v + f w (v)e 1 v x0 dx (ν cx (x )+ν iz (x )) e v 1 x x dx (ν cx (x )+ν iz (x )) (12) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 13 / 37
42 Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) 0 x' x v f n (x,v) = x 0 dx ν cx (x )n n (x )Φ i (x,v) v + f w (v)e 1 v x0 dx (ν cx (x )+ν iz (x )) e v 1 x x dx (ν cx (x )+ν iz (x )) (12) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 13 / 37
43 An equation for the density distribution By imposing f n dv = n n (13) we get a linear integral equation for n n (x) n n (x) = x dx n n (x ) contribution by v < 0 + n w (x) dv ν cx(x )Φ i (x,v) v e d eff ν eff (x x ) v (14) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 14 / 37
44 The GBS code, a tool to simulate SOL turbulence Evolves scalar fields in 3D geometry n,ω,v e,v,i,t e,t i Kinetic neutral physics Limiter geometry Open and closed fieldline region Sources S n and S T mimic plasma outflow from the core (Divertor geometry) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 15 / 37
45 Questions that we can address How is the temperature at the limiter related to main plasma parameters? How is the plasma fueled? How do neutrals affect plasma turbulence? SOL width? Heat flux? How do diagnostic gas puffs affect the SOL? Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 16 / 37
46 Questions that we can address How is the temperature at the limiter related to main plasma parameters? How is the plasma fueled? How do neutrals affect plasma turbulence? SOL width? Heat flux? How do diagnostic gas puffs affect the SOL? Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 16 / 37
47 1. Modeling the periphery 2. A refined twopoint model with neutrals 3. Gas puff fueling simulations Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 17 / 37
48 The twopoint model Relation between upstream and target plasma properties Limiter Target Widely used experimentally for a quick estimate Derived from 1D model along field lines Core Edge SOL Upstream Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 18 / 37
49 The SOL unrolled SOL Main Plasma Main Plasma Limiter Limiter SOL LCFS Limiter Wall Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 19 / 37
50 The SOL unrolled SOL Main Plasma Limiter Main Plasma Limiter Target Upstream SOL LCFS Target Limiter Wall Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 19 / 37
51 The SOL unrolled SOL Main Plasma Limiter Main Plasma Limiter Target s Upstream SOL LCFS Target Limiter Wall Parallel plasma dynamics projected along poloidal coordinate Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 19 / 37
52 The SOL unrolled SOL Main Plasma Main Plasma Limiter Limiter s SOL LCFS Limiter Wall Parallel plasma dynamics projected along poloidal coordinate Plasma and energy outflowing from the core are modeled with prescribed S n and S Q Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 19 / 37
53 The basic twopoint model Q = S Q ds = Q cond + Q conv (15) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 20 / 37
54 The basic twopoint model Q = S Q ds = Q cond + Q conv (15) Q cond = χ e0 T 5/2 dt e e dz (16) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 20 / 37
55 The basic twopoint model Q = S Q ds = Q cond + Q conv (15) Q cond = χ e0 T 5/2 dt e e dz (16) Q conv = c e0 ΓT e (17) Γ = nv = S n ds (18) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 20 / 37
56 The basic twopoint model Q = S Q ds = Q cond + Q conv (15) Q cond = χ e0 T 5/2 dt e e dz (16) Q conv = c e0 ΓT e (17) Γ = nv = S n ds (18) Boundary conditions Upstream: dt e /ds = 0 At the limiter: Q L = γ e Γ L T el, γ e 5 Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 20 / 37
57 The basic twopoint model Q = S Q ds = Q cond + Q conv (15) Q cond = χ e0 T 5/2 dt e e dz (16) Q conv = c e0 ΓT e (17) Γ = nv = S n ds (18) Boundary conditions Upstream: dt e /ds = 0 At the limiter: Q L = γ e Γ L T el, γ e 5 S Q,S n T e,u T e,t Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 20 / 37
58 Simulations with different densities n 0 = cm 3 n 0 = cm 3 Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 21 / 37
59 Simulations with different densities n 0 = cm 3 n 0 = cm 3 Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 22 / 37
60 Simulations with different densities n 0 = cm 3 n 0 = cm 3 Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 22 / 37
61 Poloidal profiles of electron temperature n 0 = cm 3 n 0 = cm 3 Te L 0 L s Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 23 / 37
62 Poloidal profiles of electron temperature n 0 = cm 3 n 0 = cm 3 Te L 0 L s Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 23 / 37
63 Temperature ratio upstream to target 2 basic model 1.8 Te,u/Te,t (tpm) , no n n , no n n x , E iz = T e,u /T e,t (GBS) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 24 / 37
64 A more refined twopoint model Obtain an electron heat equation in quasisteady state 3 2 T n e t n T e 0 (19) t Assume v e, v i, and neglect small terms (e.g., D Te ) Combine perpendicular transport terms into S Q ( 5 2 nv T e ) χ e0 ( T 5/2 e T e ) v (nt e ) (20) = S Q + S neutrals with S neutrals = n n ν iz (T e )E iz and χ e0 = 3/2 nκ e Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 25 / 37
65 Further assumptions and relations v is linear from c s to c s c s = T e,t + T i,t 2T e,t nv = [S n + n n ν iz (T e )]ds n n is decaying exponentially from limiter with λ mfp Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 26 / 37
66 Three external input quantities Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 27 / 37
67 Three external input quantities Perpendicular heat source, S Q GBS cos fit SQ L 0 L s Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 27 / 37
68 Three external input quantities Perpendicular heat source, S Q Perpendicular particle source, S n GBS cos fit Sn L 0 L s Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 27 / 37
69 Three external input quantities Perpendicular heat source, S Q Perpendicular particle source, S n Ionization particle source, S iz Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 27 / 37
70 Three external input quantities Perpendicular heat source, S Q Perpendicular particle source, S n Ionization particle source, S iz S Q,S n,s iz T e,u T e,t Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 27 / 37
71 Temperature ratio upstream to target 2 basic model 2 full model Te,u/Te,t (tpm) , no n n , no n n x , E iz = T e,u /T e,t (GBS) Te,u/Te,t (tpm) , no n n , no n n x , E iz = T e,u /T e,t (GBS) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 28 / 37
72 Questions that we can address How is the temperature at the limiter related to main plasma parameters? How is the plasma fueled? How do neutrals affect plasma turbulence? SOL width? Heat flux? How do diagnostic gas puffs affect the SOL? Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 29 / 37
73 1. Modeling the periphery 2. A refined twopoint model with neutrals 3. Gas puff fueling simulations Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 30 / 37
74 Gas puff/fueling simulations Open and closed field lines Various gas puff locations (hfs, bot, lfs, top) Small constant main wall recycling n 0 = cm 3, T 0 = 20eV, q = 3.87, ρ 1 = 500, a 0 = 200ρ s Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 31 / 37
75 Neutral density Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 32 / 37
76 Ionization Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 33 / 37
77 Radial ExB flow outward/inward flow Ballooning outward transport at the low field side Inward fueling at the high field side Robust feature independent of gas puff location Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 34 / 37
78 Questions that we can address How is the temperature at the limiter related to main plasma parameters? How is the plasma fueled? How do neutrals affect plasma turbulence? SOL width? Heat flux? How do diagnostic gas puffs affect the SOL? Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 35 / 37
79 Poloidal ExB flow Poloidal rotation due to radial electric field Shearing of the turbulent eddies Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 36 / 37
80 Conclusions Plasma turbulence at the periphery and interaction with neutrals are crucial issues on the way to fusion electricity GBS is now able to simulate this complex interplay selfconsistently Development of a more refined twopoint model, in agreement with GBS Initial study of plasma fueling due to ionization and radial flows, and of plasma poloidal rotation. Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 37 / 37
81 Reaction rates  Stangeby Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 1 / 4
82 Reaction rates  openadas σv (m 3 s 1 ) CX ion, n 0 =1e+18 rec, n 0 =1e+18 ion, n 0 =1e+20 rec, n 0 =1e T e,t i (ev) Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 2 / 4
83 Timescales T 0 (ev) n 0 (m 3 ) τ turbulence (s) τ nnloss (s) λ mfp (m) 1 1e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e05 Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 3 / 4
84 The model in steady state Steady state, f n t = 0, first approach Valid if τ neutral losses < τ turbulence e.g. T e = 20eV, n 0 = m 3 τ neutral losses ν 1 eff s τ turbulence R 0 L p /c s s Otherwise: time dependent model Christoph Wersal  SPC Neutrals in the turbulent tokamak edge 4 / 4
A kinetic neutral atom model for tokamak scrapeoff layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva
A kinetic neutral atom model for tokamak scrapeoff layer tubulence simulations Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva CRPP  EPFL SPS Annual Meeting 2014 02.07.2014 CRPP The tokamak
More informationA comparison between a refined twopoint model for the limited tokamak SOL and selfconsistent plasma turbulence simulations
EUROFUSION WP15ERPR(16) 16618 C. Wersal et al. A comparison between a refined twopoint model for the limited tokamak SOL and selfconsistent plasma turbulence simulations Preprint of Paper to be submitted
More informationModeling neutralplasma interactions in scrapeoff layer (SOLT) simulations*
Modeling neutralplasma interactions in scrapeoff layer (SOLT) simulations* D. A. Russell and J. R. Myra Research Corporation Boulder CO USA Presented at the US Transport Task Force Workshop Williamsburg
More informationDriftDriven and TransportDriven Plasma Flow Components in the Alcator CMod Boundary Layer
DriftDriven and TransportDriven Plasma Flow Components in the Alcator CMod Boundary Layer N. Smick, B. LaBombard MIT Plasma Science and Fusion Center PSI19 San Diego, CA May 25, 2010 Boundary flows
More informationDriving Mechanism of SOL Plasma Flow and Effects on the Divertor Performance in JT60U
EX/D3 Driving Mechanism of SOL Plasma Flow and Effects on the Divertor Performance in JT6U N. Asakura ), H. Takenaga ), S. Sakurai ), G.D. Porter ), T.D. Rognlien ), M.E. Rensink ), O. Naito ), K. Shimizu
More informationModelling of JT60U Detached Divertor Plasma using SONIC code
J. Plasma Fusion Res. SERIES, Vol. 9 (2010) Modelling of JT60U Detached Divertor Plasma using SONIC code Kazuo HOSHINO, Katsuhiro SHIMIZU, Tomonori TAKIZUKA, Nobuyuki ASAKURA and Tomohide NAKANO Japan
More informationVerification & Validation: application to the TORPEX basic plasma physics experiment
Verification & Validation: application to the TORPEX basic plasma physics experiment Paolo Ricci F. Avino, A. Bovet, A. Fasoli, I. Furno, S. Jolliet, F. Halpern, J. Loizu, A. Mosetto, F. Riva, C. Theiler,
More informationModelling of plasma edge turbulence with neutrals
Modelling of plasma edge turbulence with neutrals Ben Dudson 1 1 York Plasma Institute, Department of Physics, University of York, Heslington, York YO1 5DD, UK 7 th IAEA TM on Plasma Instabilities 46
More informationLH transitions driven by ion heating in scrapeoff layer turbulence (SOLT) model simulations
LH transitions driven by ion heating in scrapeoff layer turbulence (SOLT) model simulations D.A. Russell, D.A. D Ippolito and J.R. Myra Research Corporation, Boulder, CO, USA Presented at the 015 Joint
More informationA firstprinciples selfconsistent model of plasma turbulence and kinetic neutral dynamics in the tokamak scrapeoff layer
A firstprinciples selfconsistent model of plasma turbulence and kinetic neutral dynamics in the tokamak scrapeoff layer C Wersal and P Ricci Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma
More informationOverview of edge modeling efforts for advanced divertor configurations in NSTXU with magnetic perturbation fields
Overview of edge modeling efforts for advanced divertor configurations in NSTXU with magnetic perturbation fields H. Frerichs, O. Schmitz, I. Waters, G. P. Canal, T. E. Evans, Y. Feng and V. Soukhanovskii
More informationPlasmaneutrals transport modeling of the ORNL plasmamaterials test stand target cell
Plasmaneutrals transport modeling of the ORNL plasmamaterials test stand target cell J.M. Canik, L.W. Owen, Y.K.M. Peng, J. Rapp, R.H. Goulding Oak Ridge National Laboratory ORNL is developing a heliconbased
More informationBounceaveraged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas
Bounceaveraged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas Lei Qi a, Jaemin Kwon a, T. S. Hahm a,b and Sumin Yi a a National Fusion Research Institute (NFRI), Daejeon,
More informationThe Levitated Dipole Experiment: Towards Fusion Without Tritium
The Levitated Dipole Experiment: Towards Fusion Without Tritium Jay Kesner MIT M.S. Davis, J.E. Ellsworth, D.T. Garnier, M.E. Mauel, P.C. Michael, P.P. Woskov MCP I3.110 Presented at the EPS Meeting, Dublin,
More informationA neoclassical model for toroidal rotation and the radial electric field in the edge pedestal. W. M. Stacey
A neoclassical model for toroidal rotation and the radial electric field in the edge pedestal W. M. Stacey Fusion Research Center Georgia Institute of Technology Atlanta, GA 30332, USA October, 2003 ABSTRACT
More informationTURBULENT TRANSPORT THEORY
ASDEX Upgrade MaxPlanckInstitut für Plasmaphysik TURBULENT TRANSPORT THEORY C. Angioni GYRO, J. Candy and R.E. Waltz, GA The problem of Transport Transport is the physics subject which studies the physical
More informationOn the locality of parallel transport of heat carrying electrons in the SOL
P1068 On the locality of parallel transport of heat carrying electrons in the SOL A.V. Chankin* and D.P. Coster MaxPlanckInstitut für Pasmaphysik, 85748 Garching, Germany Abstract A continuum VlasovFokkerPlanck
More informationOperational Phase Space of the Edge Plasma in Alcator CMod
Operational Phase Space of the Edge Plasma in B. LaBombard, T. Biewer, M. Greenwald, J.W. Hughes B. Lipschultz, N. Smick, J.L. Terry, Team Contributed talk RO.00008 Presented at the 47th Annual Meeting
More informationKinetic theory of ions in the magnetic presheath
Kinetic theory of ions in the magnetic presheath Alessandro Geraldini 1,2, Felix I. Parra 1,2, Fulvio Militello 2 1. Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, Oxford
More informationPredicting the Rotation Profile in ITER
Predicting the Rotation Profile in ITER by C. Chrystal1 in collaboration with B. A. Grierson2, S. R. Haskey2, A. C. Sontag3, M. W. Shafer3, F. M. Poli2, and J. S. degrassie1 1General Atomics 2Princeton
More informationFluid Neutral Momentum Transport Reference Problem D. P. Stotler, PPPL S. I. Krasheninnikov, UCSD
Fluid Neutral Momentum Transport Reference Problem D. P. Stotler, PPPL S. I. Krasheninnikov, UCSD 1 Summary Type of problem: kinetic or fluid neutral transport Physics or algorithm stressed: thermal force
More informationTokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011
Tokamak Divertor System Concept and the Design for ITER Chris Stoafer April 14, 2011 Presentation Overview Divertor concept and purpose Divertor physics General design considerations Overview of ITER divertor
More informationHelium3 transport experiments in the scrapeoff layer with the Alcator CMod omegatron ion mass spectrometer
PHYSICS OF PLASMAS VOLUME 7, NUMBER 11 NOVEMBER 2000 Helium3 transport experiments in the scrapeoff layer with the Alcator CMod omegatron ion mass spectrometer R. Nachtrieb a) Lutron Electronics Co.,
More informationPartially Coherent Fluctuations in Novel High Confinement Regimes of a Tokamak
Partially Coherent Fluctuations in Novel High Confinement Regimes of a Tokamak István Cziegler UCSD, Center for Energy Research Center for Momentum Transport and Flow Organization Columbia Seminar Feb
More informationConnections between Particle Transport and Turbulence Structures in the Edge and SOL of Alcator CMod
Connections between Particle Transport and Turbulence Structures in the Edge and SOL of Alcator CMod I. Cziegler J.L. Terry, B. LaBombard, J.W. Hughes MIT  Plasma Science and Fusion Center th 19 Plasma
More informationIntrinsic rotation due to non Maxwellian equilibria in tokamak plasmas. Jungpyo (J.P.) Lee (Part 1) Michael Barnes (Part 2) Felix I.
Intrinsic rotation due to non Maxwellian equilibria in tokamak plasmas Jungpyo (J.P.) Lee (Part 1) Michael Barnes (Part 2) Felix I. Parra MIT Plasma Science & Fusion Center. 1 Outlines Introduction to
More informationSimple examples of MHD equilibria
Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will
More informationImpact of diverted geometry on turbulence and transport barrier formation in 3D global simulations of tokamak edge plasma
1 Impact of diverted geometry on turbulence and transport barrier formation in 3D global simulations of tokamak edge plasma D. Galassi, P. Tamain, H. Bufferand, C. Baudoin, G. Ciraolo, N. Fedorczak, Ph.
More informationInterlinkage of transports and its bridging mechanism
Interlinkage of transports and its bridging mechanism Katsumi Ida National Institute for Fusion Science 17 th International Toki Conference 1519 October 27, Toki OUTLINE 1 Introduction 2 particle pinch
More informationEffect of Neutrals on ScrapeOffLayer and Divertor Stability in Tokamaks
Effect of Neutrals on ScrapeOffLayer and Divertor Stability in Tokamaks D. A. D Ippolito and J. R. Myra Lodestar Research Corporation, 2400 Central Avenue, Boulder, Colorado 80301 Abstract The influence
More informationGyrokinetic Theory and Dynamics of the Tokamak Edge
ASDEX Upgrade Gyrokinetic Theory and Dynamics of the Tokamak Edge B. Scott Max Planck Institut für Plasmaphysik D85748 Garching, Germany PET15, Sep 2015 these slides: basic processes in the dynamics
More information3D analysis of impurity transport and radiation for ITER limiter startup configurations
3D analysis of impurity transport and radiation for ITER limiter startup configurations P274 X. Zha a*, F. Sardei a, Y. Feng a, M. Kobayashi b, A. Loarte c, G. Federici c a MaxPlanckInstitut für Plasmaphysik,
More informationThe physics of the heat flux narrow decay length in the TCV scrapeoff layer: experiments and simulations
EUROFUSION WPMST1CP(16) 15302 B Labit et al. The physics of the heat flux narrow decay length in the TCV scrapeoff layer: experiments and simulations Preprint of Paper to be submitted for publication
More informationDynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit. Transport Physics of the Density Limit
Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit Transport Physics of the Density Limit R. Hajjar, P. H. Diamond, M. Malkov This research was supported by the U.S. Department of Energy,
More informationAlcator CMod. Particle Transport in the Alcator CMod Scrapeoff Layer
Alcator CMod Particle Transport in the Alcator CMod Scrapeoff Layer B. LaBombard, R.L. Boivin, B. Carreras, M. Greenwald, J. Hughes, B. Lipschultz, D. Mossessian, C.S. Pitcher, J.L. Terry, S.J. Zweben,
More informationNeoclassical transport
Neoclassical transport Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 28 th January 2013 Dr Ben Dudson Magnetic Confinement Fusion (1 of 19) Last time Toroidal devices
More informationFlow measurements in the ScrapeOff Layer of Alcator CMod using Impurity Plumes
Flow measurements in the ScrapeOff Layer of Alcator CMod using Impurity Plumes S. Gangadhara,. Laombard M.I.T. Plasma Science and Fusion Center, 175 Albany St., Cambridge, MA 2139 USA Abstract Accurate
More informationTotal Flow Vector in the CMod SOL
Total Flow Vector in the SOL N. Smick, B. LaBombard MIT Plasma Science and Fusion Center APSDPP Annual Meeting Atlanta, GA November 3, 2009 Motivation and Goals Measurements have revealed high parallel
More informationDirect drive by cyclotron heating can explain spontaneous rotation in tokamaks
Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.J. Zheng Institute for Fusion Studies University of Texas at Austin 12th USEU Transport Task Force Annual
More informationCharacteristics of the Hmode H and Extrapolation to ITER
Characteristics of the Hmode H Pedestal and Extrapolation to ITER The Hmode Pedestal Study Group of the International Tokamak Physics Activity presented by T.Osborne 19th IAEA Fusion Energy Conference
More informationPhysics of the detached radiative divertor regime in DIIID
Plasma Phys. Control. Fusion 41 (1999) A345 A355. Printed in the UK PII: S7413335(99)972998 Physics of the detached radiative divertor regime in DIIID M E Fenstermacher, J Boedo, R C Isler, A W Leonard,
More informationUEDGE Modeling of the Effect of Changes in the Private Flux Wall in DIIID on Divertor Performance
UEDGE Modeling of the Effect of Changes in the Private Flux Wall in DIIID on Divertor Performance N.S. Wolf, G.D. Porter, M.E. Rensink, T.D. Rognlien Lawrence Livermore National Lab, And the DIIID team
More information0 Magnetically Confined Plasma
0 Magnetically Confined Plasma 0.1 Particle Motion in Prescribed Fields The equation of motion for species s (= e, i) is written as d v ( s m s dt = q s E + vs B). The motion in a constant magnetic field
More informationEdge Momentum Transport by Neutrals
1 TH/P318 Edge Momentum Transport by Neutrals J.T. Omotani 1, S.L. Newton 1,2, I. Pusztai 1 and T. Fülöp 1 1 Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden 2 CCFE,
More informationLow Temperature Plasma Technology Laboratory
Low Temperature Plasma Technology Laboratory CENTRAL PEAKING OF MAGNETIZED GAS DISCHARGES Francis F. Chen and Davide Curreli LTP1210 Oct. 2012 Electrical Engineering Department Los Angeles, California
More information14. Energy transport.
Phys780: Plasma Physics Lecture 14. Energy transport. 1 14. Energy transport. ChapmanEnskog theory. ([8], p.5175) We derive macroscopic properties of plasma by calculating moments of the kinetic equation
More informationIssues of Perpendicular Conductivity and Electric Fields in Fusion Devices
Issues of Perpendicular Conductivity and Electric Fields in Fusion Devices Michael Tendler, Alfven Laboratory, Royal Institute of Technology, Stockholm, Sweden Plasma Turbulence Turbulence can be regarded
More informationINTRODUCTION TO GYROKINETIC AND FLUID SIMULATIONS OF PLASMA TURBULENCE AND OPPORTUNITES FOR ADVANCED FUSION SIMULATIONS
INTRODUCTION TO GYROKINETIC AND FLUID SIMULATIONS OF PLASMA TURBULENCE AND OPPORTUNITES FOR ADVANCED FUSION SIMULATIONS G.W. Hammett, Princeton Plasma Physics Lab w3.pppl.gov/ hammett Fusion Simulation
More informationEFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE
EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIIID Group 47 th Annual Meeting
More informationTurbulence and Transport The Secrets of Magnetic Confinement
Turbulence and Transport The Secrets of Magnetic Confinement Presented by Martin Greenwald MIT Plasma Science & Fusion Center IAP January 2005 FUSION REACTIONS POWER THE STARS AND PRODUCE THE ELEMENTS
More informationParallel transport and profile of boundary plasma with a low recycling wall
1 TH/P416 Parallel transport and profile of boundary plasma with a low recycling wall XianZhu Tang 1 and Zehua Guo 1 1 Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
More informationProgress in Turbulence Modeling JET SOL and edge phenomena
1 Progress in Turbulence Modeling JET SOL and edge phenomena V. Naulin 1, W. Fundamenski 2, E. Havlíčková 2, Chr. Maszl 3, G. Xu 4, A.H. Nielsen 1, J. Juul Rasmussen 1, R. Schrittwieser 3, J. Horacek 5,
More informationAlcator CMod. Particle Transport in the Scrapeoff Layer and Relationship to Discharge Density Limit in Alcator CMod
Alcator CMod Particle Transport in the Scrapeoff Layer and Relationship to Discharge Density Limit in Alcator CMod B. LaBombard, R.L. Boivin, M. Greenwald, J. Hughes, B. Lipschultz, D. Mossessian, C.S.
More informationModeling of ELM Dynamics for ITER
Modeling of ELM Dynamics for ITER A.Y. PANKIN 1, G. BATEMAN 1, D.P. BRENNAN 2, A.H. KRITZ 1, S. KRUGER 3, P.B. SNYDER 4 and the NIMROD team 1 Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015
More informationStability of a plasma confined in a dipole field
PHYSICS OF PLASMAS VOLUME 5, NUMBER 10 OCTOBER 1998 Stability of a plasma confined in a dipole field Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Received
More informationSimulation of Plasma Blobs in Realistic Tokamak Geometry
Simulation of Plasma Blobs in Realistic Tokamak Geometry Rogério Jorge rogerio.jorge@tecnico.ulisboa.pt Instituto Superior Técnico, Lisboa, Portugal October 4 Abstract Understanding Scrapeoff Layer (SOL)
More informationErosion and Confinement of Tungsten in ASDEX Upgrade
ASDEX Upgrade MaxPlanckInstitut für Plasmaphysik Erosion and Confinement of Tungsten in ASDEX Upgrade R. Dux, T.Pütterich, A. Janzer, and ASDEX Upgrade Team 3rd IAEAFECConference, 4.., Daejeon, Rep.
More informationDivertor Plasma Detachment
Divertor Plasma Detachment S. I. Krasheninnikov 1, A. S. Kukushkin 2,3 and A. A. Pshenov 2,3 1 University California San Diego, 9500 Gilman Drive, La Jolla, CA 920930411, USA 2 National Research Nuclear
More informationFundamentals of Plasma Physics Transport in weakly ionized plasmas
Fundamentals of Plasma Physics Transport in weakly ionized plasmas APPLAuSE Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Luís L Alves (based on Vasco Guerra s original slides) 1 As perguntas
More informationPlasma Science and Fusion Center
Plasma Science and Fusion Center Turbulence and transport studies in ALCATOR C Mod using Phase Contrast Imaging (PCI) Diagnos@cs and Comparison with TRANSP and Nonlinear Global GYRO Miklos Porkolab (in
More informationSome Notes on the Window Frame Method for Assessing the Magnitude and Nature of PlasmaWall Contact
Some Notes on the Window Frame Method for Assessing the Magnitude and Nature of PlasmaWall Contact Peter Stangeby 4 September 2003 1. Fig. 1 shows an example of a suitable magnetic configuration for application
More informationTheory Work in Support of CMod
Theory Work in Support of CMod 2/23/04 CMod PAC Presentation Peter J. Catto for the PSFC theory group MC & LH studies ITB investigations Neutrals & rotation BOUT improvements TORIC ICRF Mode Conversion
More informationToroidal confinement devices
Toroidal confinement devices Dr Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 24 th January 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 20) Last time... Power
More informationFlow and dynamo measurements in the HIST double pulsing CHI experiment
Innovative Confinement Concepts (ICC) & USJapan Compact Torus (CT) Plasma Workshop August 1619, 211, Seattle, Washington HIST Flow and dynamo measurements in the HIST double pulsing CHI experiment M.
More informationA THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS
A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS Presented by D.P. SCHISSEL Presented to APS Centennial Meeting March 20 26, 1999 Atlanta, Georgia
More information1. Motivation power exhaust in JT60SA tokamak. 2. Tool COREDIV code. 3. Operational scenarios of JT60SA. 4. Results. 5.
1. Motivation power exhaust in JT60SA tokamak 2. Tool COREDIV code 3. Operational scenarios of JT60SA 4. Results 5. Conclusions K. Gałązka Efficient power exhaust in JT60SA by COREDIV Page 2 The Institute
More informationArbiTER studies of filamentary structures in the SOL of spherical tokamaks
ArbiTER studies of filamentary structures in the SOL of spherical tokamaks D. A. Baver, J. R. Myra, Research Corporation F. Scotti, Lawrence Livermore National Laboratory S. J. Zweben, Princeton Plasma
More informationDivertor Heat Flux Reduction and Detachment in NSTX
1 EX/P428 Divertor Heat Flux Reduction and Detachment in NSTX V. A. Soukhanovskii 1), R. Maingi 2), R. Raman 3), R. E. Bell 4), C. Bush 2), R. Kaita 4), H. W. Kugel 4), C. J. Lasnier 1), B. P. LeBlanc
More informationBursty Transport in Tokamaks with Internal Transport Barriers
Bursty Transport in Tokamaks with Internal Transport Barriers S. Benkadda 1), O. Agullo 1), P. Beyer 1), N. Bian 1), P. H. Diamond 3), C. Figarella 1), X. Garbet 2), P. Ghendrih 2), V. Grandgirard 1),
More informationDivertor Requirements and Performance in ITER
Divertor Requirements and Performance in ITER M. Sugihara ITER International Team 1 th International Toki Conference Dec. 1114, 001 Contents Overview of requirement and prediction for divertor performance
More informationParticle transport results from collisionality scans and perturbative experiments on DIIID
1 EX/P326 Particle transport results from collisionality scans and perturbative experiments on DIIID E.J. Doyle 1), L. Zeng 1), G.M. Staebler 2), T.E. Evans 2), T.C. Luce 2), G.R. McKee 3), S. Mordijck
More informationTurbulence in Tokamak Plasmas
ASDEX Upgrade Turbulence in Tokamak Plasmas basic properties and typical results B. Scott Max Planck Institut für Plasmaphysik Euratom Association D85748 Garching, Germany Uni Innsbruck, Nov 2011 Basics
More informationDIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH
DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK
More informationMagnetized ion collection by oblique surfaces including selfconsistent drifts: Machprobes of arbitrary shape.
1 Magnetized ion collection by oblique surfaces including selfconsistent drifts: Machprobes of arbitrary shape I H Hutchinson Plasma Science and Fusion Center and and Engineering Department MIT APS DPP
More informationEffect of divertor nitrogen seeding on the power exhaust channel width in Alcator CMod
Effect of divertor nitrogen seeding on the power exhaust channel width in Alcator CMod B. LaBombard, D. Brunner, A.Q. Kuang, W. McCarthy, J.L. Terry and the Alcator Team Presented at the International
More information12. MHD Approximation.
Phys780: Plasma Physics Lecture 12. MHD approximation. 1 12. MHD Approximation. ([3], p. 169183) The kinetic equation for the distribution function f( v, r, t) provides the most complete and universal
More informationMagnetically Confined Fusion: Transport in the core and in the Scrape off Layer Bogdan Hnat
Magnetically Confined Fusion: Transport in the core and in the Scrape off Layer ogdan Hnat Joe Dewhurst, David Higgins, Steve Gallagher, James Robinson and Paula Copil Fusion Reaction H + 3 H 4 He + n
More informationTransport and driftdriven plasma flow components in the Alcator CMod boundary plasma
Transport and driftdriven plasma flow components in the Alcator CMod boundary plasma The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
More informationNeutral gas modelling
Neutral gas modelling Ben Dudson 1 1 York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, UK BOUT++ Workshop 16 th September 2014 Ben Dudson, University of York
More informationLowcollisionality densitypeaking in GYRO simulations of CMod plasmas
Lowcollisionality densitypeaking in GYRO simulations of CMod plasmas D. R. Mikkelsen, M. Bitter, K. Hill, PPPL M. Greenwald, J.W. Hughes, J. Rice, MIT J. Candy, R. Waltz, General Atomics APS Division
More informationParticle Transport and Density Gradient Scale Lengths in the Edge Pedestal
Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal W. M. Stacey Fusion Research Center, Georgia Institute of Technology, Atlanta, GA, USA Email: weston.stacey@nre.gatech.edu Abstract
More informationTH/P49. T. Takizuka 1), K. Shimizu 1), N. Hayashi 1), M. Hosokawa 2), M. Yagi 3)
1 Twodimensional Full Particle Simulation of the Flow Patterns in the Scrapeofflayer Plasma for Upper and Lower Null Point Divertor Configurations in Tokamaks T. Takizuka 1), K. Shimizu 1), N. Hayashi
More informationTH/P614 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a)
1 TH/P614 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a) 1 Chang, C.S., 1 Ku, S., 2 Adams M., 3 D Azevedo, G., 4 Chen, Y., 5 Cummings,
More informationMeanfield and turbulent transport in divertor geometry Davide Galassi
Meanfield and turbulent transport in divertor geometry Davide Galassi In collaboration with: Ph. Ghendrih, P. Tamain, C. Baudoin, H. Bufferand, G. Ciraolo, C. Colin and E. Serre Our goal: quantify turbulence
More informationHeat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UWMadison
Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UWMadison CMPD & CMSO Winter School UCLA Jan 510, 2009 Magnetic perturbations can destroy the nestedsurface topology desired for
More informationCHAPTER 6 SCRAPEOFF LAYER TRANSPORT ON JET
CHAPTER 6 W. FUNDAMENSKI* Euratom0UKAEA Fusion Association Culham Science Centre, Abingdon OX14 3DB, United Kingdom Received June 25, 2007 Accepted for Publication October 5, 2007 The tokamak plasma boundary,
More informationA Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Selfconsistent Zonal Flows *
A Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Selfconsistent Zonal Flows * Bruce I. Cohen, Maxim V. Umansky, Ilon Joseph Lawrence Livermore National Laboratory
More informationHistory of PARASOL! T. Takizuka! Graduate School of Engineering, Osaka University!! PARASOL was developed at Japan Atomic Energy Agency!
History of PARASOL! T. Takizuka!!! Graduate School of Engineering, Osaka University!! PARASOL was developed at Japan Atomic Energy Agency! OSAKA UNIVERSITY! 20th NEXT Meeting, Kyoto Terrsa, Kyoto, 1314
More informationRecent Theoretical Progress in Understanding Coherent Structures in Edge and SOL Turbulence
Recent Theoretical Progress in Understanding Coherent Structures in Edge and SOL Turbulence S. I. Krasheninnikov University of California, San Diego, California D. A. D Ippolito and J. R. Myra Lodestar
More informationInteraction between plasma and neutrals near the divertor : the effect of particle and energy reflection
Eindhoven University of Technology MASTER Interaction between plasma and neutrals near the divertor : the effect of particle and energy reflection Minea, T. Award date: 23 Link to publication Disclaimer
More informationA.G. PEETERS UNIVERSITY OF BAYREUTH
IN MEMORIAM GRIGORY PEREVERZEV A.G. PEETERS UNIVERSITY OF BAYREUTH ESF Workshop (Garching 2013) Research areas Grigory Pereverzev. Current drive in magnetized plasmas Transport (ASTRA transport code) Wave
More informationFormation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )
Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 3110102, Japan 1) University
More informationNonSolenoidal Plasma Startup in
NonSolenoidal Plasma Startup in the A.C. Sontag for the Pegasus Research Team A.C. Sontag, 5th APSDPP, Nov. 2, 28 1 PointSource DC Helicity Injection Provides Viable NonSolenoidal Startup Technique
More informationTRANSPORT PROGRAM CMOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER
TRANSPORT PROGRAM CMod CMOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER CMOD  OPPORTUNITIES AND CHALLENGES Prediction and control are the ultimate goals
More informationFusion Development Facility (FDF) Divertor Plans and Research Options
Fusion Development Facility (FDF) Divertor Plans and Research Options A.M. Garofalo, T. Petrie, J. Smith, M. Wade, V. Chan, R. Stambaugh (General Atomics) J. Canik (Oak Ridge National Laboratory) P. Stangeby
More informationDIVIMP simulation of W transport in the SOL of JET Hmode plasmas
DIVIMP simulation of W transport in the SOL of JET Hmode plasmas A. Järvinen a, C. Giroud b, M. Groth a, K. Krieger c, D. Moulton d, S. Wiesen e, S. Brezinsek e and JET EFDA contributors¹ JETEFDA, Culham
More informationIntegrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport
1 Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama Japan Atomic Energy Agency, Naka, Ibarakiken, 3110193 Japan
More informationBlob motion and control. simple magnetized plasmas
Blob motion and control in simple magnetized plasmas Christian Theiler A. Fasoli, I. Furno, D. Iraji, B. Labit, P. Ricci, M. Spolaore 1, N. Vianello 1 Centre de Recherches en Physique des Plasmas (CRPP)
More informationGA A26119 MEASUREMENTS AND SIMULATIONS OF SCRAPEOFF LAYER FLOWS IN THE DIIID TOKAMAK
GA A26119 MEASUREMENTS AND SIMULATIONS OF SCRAPEOFF LAYER FLOWS IN THE DIIID TOKAMAK by M. GROTH, G.D. PORTER, J.A. BOEDO, N.H. BROOKS, R.C. ISLER, W.P. WEST, B.D. BRAY, M.E. FENSTERMACHER, R.J. GROEBNER,
More informationBlob sizes and velocities in the Alcator CMod scrapeoff
P159 Blob sizes and velocities in the Alcator CMod scrapeoff layer R. Kube a,b,*, O. E. Garcia a,b, B. LaBombard b, J. L. Terry b, S. J. Zweben c a Department of Physics and Technology, University of
More information