Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach. Olaf Kaczmarek. University of Bielefeld

Size: px
Start display at page:

Download "Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach. Olaf Kaczmarek. University of Bielefeld"

Transcription

1 Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach (some selected) Recent Developments in Lattice Studies for Quarkonia Olaf Kaczmarek University of Bielefeld 5th International Workshop on Heavy Quark Production in Heavy-Ion Collisions Utrecht

2 Motivation - Quarkonium in Heavy Ion Collisions Heavy Ion Collision QGP Expansion+Cooling Hadronization J/ J/?? c J/ c J/ D D Charmonium+Bottmonium is produced (mainly) in the early stage of the collision Depending on the Dissociation Temperature - remain as bound states in the whole evolution - release their constituents in the plasma [Kaczmarek, Zantow] [S.Bass] ψ S(J/ ) In In, SPS Pb Pb, SPS Au Au, RHIC, y < 0.35 Au Au, RHIC, y =[1.2,2.2] Charmonium yields at SPS/RHIC ε (GeV/fm 3) First estimates on Dissociation Temperatures from detailed knowledge of Heavy Quark Free Energies and Potential Models χ c J/ψ Ψ F(r,T) [MeV] T=0 0.81T c 1.02T c 1.50T c r [fm] 4.01T c

3 Motivation - Transport Coefficients Transport Coefficients are important ingredients into hydro models for the evolution of the system. R AA AAR (a) 0-10% central Armesto et al. (I) van Hees et al. (II) 3/(2 T) 12/(2 T) Moore & Teaney (III) Usually determined by matching to 0.8 experiment (see right plot) here: Heavy Quark Diffusion Constant D also: Electrical conductivity σ (light quarks) v2 HF 2 HF v s NN = 200 GeV (b) minimum bias 0 R AA 0 v 2, p > 2 GeV/c T HF e R, e AA v 2 Need to be determined from QCD using first principle lattice calculations! [GeV/c] [PHENIX Collaboration, Adare et al.,arxiv: & PRL98(2007)172301] p T

4 Motivation PHENIX/STAR results for the low-mass dilepton rates pp-data well understood by hadronic cocktail large enhancement in Au+Au between MeV indications for thermal effects!? Need to understand the contribution from QGP spectral functions from lattice QCD [PHENIX PRC81, (2010)] Dileptonrate directly related to vector spectral function: [STAR preliminary, arxiv: ] dw dωd 3 p = 5α2 54π 3 1 ω 2 (e ω/t 1) ρ V(ω, ~p, T)

5 Vector correlation functions at high temperature G(τ,~p, T ) = Z 0 dω ρ(ω,~p, T )K(τ, ω,t) 2π cosh ω(τ 1 K(τ, ω,t)= sinh ω 2T 2T Lattice observables: G μν (τ,~x) = hj μ (τ,~x)j ν(0,~0)i q Γ H Γ H (0,0) q (τ,x) J μ (τ,~x) = 2κZ V ψ(τ,~x)γμ ψ(τ,~x) local, non-conserved current, needs to be renormalized G μν (τ,~p) = X ~x G μν (τ,~x)e i~p~x ~p =0 only used here How to extract spectral properties from correlation functions?

6 Spectral functions at high temperature Free theory (massless case): free non-interacting vector spectral function (infinite temperature): ρ free 00 (ω) = 2πT 2 ωδ(ω) ρ free ii (ω) = 2πT 2 ωδ(ω)+ 3 2π ω2 tanh(ω/4t ) δ-functions exactly cancel in ρ V (ω)=-ρ 00 (ω)+ρ ii (ω)

7 Spectral functions at high temperature Free theory (massless case): free non-interacting vector spectral function (infinite temperature): ρ free 00 (ω) = 2πT 2 ωδ(ω) ρ free ii (ω) = 2πT 2 ωδ(ω)+ 3 2π ω2 tanh(ω/4t ) δ-functions exactly cancel in ρ V (ω)=-ρ 00 (ω)+ρ ii (ω) With interactions (but without bound states): while ρ 00 is protected, the δ-funtion in ρ ii gets smeared: Ansatz: ρ 00 (ω) = 2πχ q ωδ(ω) ρ ii (ω) = 2χ q c BW ωγ/2 ω 2 +(Γ/2) π (1 + κ) ω2 tanh(ω/4t ) Ansatz with 3-4 parameters: works fine for light quarks at 1.5 Tc (χ q ),c BW, Γ, κ κ = α s π at leading order [ Thermal dilepton rate and electrical conductivity, H.T.-Ding, OK et al., PRD83 (2011) ]

8 Light Quarks - Vector Correlation Function continuum extrapolation Use our Ansatz for the spectral function ρ 00 (ω) = 2πχ q ωδ(ω) and fit to the continuum extrapolated values T 2 G V ( T)/[ q G V free ( T)] x x x x48 Extrapolation fit [0.2:0.5] [ Thermal dilepton rate and electrical conductivity, H.T.-Ding, OK et al., PRD83 (2011) ] ρ ii (ω) = 2χ q c BW ωγ/2 ω 2 +(Γ/2) π (1 + κ) ω2 tanh(ω/4t ) G V (τ, T) Ḡ 00 G free V (τ, T) & G (2) V 2C BW χ q Γ = 1.098(27) Γ T = 2.235(75) κ = (27) T 2 G V ( T)/( q G V free ( T)) 2Tc BW / =1.098 /2T= T/T c = T T

9 Light Quarks - Spectral function and electrical conductivity Use our Ansatz for the spectral function ρ 00 (ω) = 2πχ q ωδ(ω) [ Thermal dilepton rate and electrical conductivity, H.T.-Ding, OK et al., PRD83 (2011) ] ρ ii (ω) = 2χ q c BW ωγ/2 ω 2 +(Γ/2) π (1 + κ) ω2 tanh(ω/4t ) Θ(ω 0, ω ) ii ( T T/T c =1.5 0 /T=0, /T=0 0 /T=1.5, /T=0.5 HTL free Hard thermal loop (HTL) [E.Braaten, R.D.Pisarski, NP B337 (1990) 569] /T Analysis of the systematic errors using truncation of the large ω contribution Θ(ω 0, ω )= σ T = C em 6 ³1+e (ω2 0 ω2 )/ω ω 1 lim ω 0 ρ ii (ω,~p =0,T) ωt electrical conductivity 1/3 1 C em σ T 1

10 Light Quarks - Dilepton rates and electrical conductivity Dileptonrate directly related to vector spectral function: [ Thermal dilepton rate and electrical conductivity, H.T.-Ding, OK et al., PRD83 (2011) ] 1e-05 1e-06 1e-07 1e-08 1e-09 dw dωd 3 p = 5α2 54π 3 1 ω 2 (e ω/t 1) ρ V(ω, ~p, T) dn l + l -/d d 3 p BW+continuum: 0 /T=0, /T=0 0 /T=1.5, /T=0.5 HTL Born T/T c =1.5 p=0 1e-10 1e-11 1e-12 Hard thermal loop (HTL) [E.Braaten, R.D.Pisarski, NP B337 (1990) 569] /T

11 Preliminary results at 1.1 T c PRACE-Project: Thermal Dilepton Rates and Electrical Conductivity in the QGP (JUGENE Bluegene/P in Jülich) [M.Müller et al., preliminary 2012] study of T-dependence of dilepton rates and electrical conductivity fixed aspect ratio to allow continuum limit at finite momentum: ~p T =2π~ k N τ N σ

12 Preliminary results at 1.1 T c [M.Müller et al., preliminary 2012] Use our Ansatz for the spectral function ρ 00 (ω) = 2πχ q ωδ(ω) ρ ii (ω) = 2χ q c BW ωγ/2 ω 2 +(Γ/2) π (1 + κ) ω2 tanh(ω/4t ) 6 5 ii ( ) / T 1.1 T c T=1.45Tc T=1.09Tc HTL Born Analysis of the systematic errors T c in progress 3 2 electrical conductivity σ T = C em 6 lim ω 0 ρ ii (ω,~p =0,T) ωt 1 /T

13 Preliminary results at 1.1 T c Dileptonrate directly related to vector spectral function: dw dωd 3 p = 5α2 54π 3 1 ω 2 (e ω/t 1) ρ V(ω, ~p, T) [M.Müller et al., preliminary 2012] 1e-05 1e-06 1e-07 dw/d d 3 p 1.1 T c 1.5 T c T=1.09T c T=1.46T c HTL Born Rate 1e-08 1e-09 1e-10 1e-11 /T 1e

14 Non-zero momentum T 2 free,lat. G VL ( T,p) / q G VL ( T,p=2) V L p/t = [M.Müller et al., preliminary 2012] T 2 free,lat. G VT ( T,p) / q G VT ( T,p=2) V T p/t = N = 64 N = 48 N = T continuum extrapolation N = 64 N = 48 N = T continuum extrapolation indications for non-trivial behaviour of spectral functions at small frequencies: [Hong+Teaney, PRC82 (2010)044908]

15 Quarkonium spectral function What do we expect!? ρ(ω) ω 2 T= ω + zero-mode contribution at ω=0: ρ(ω) =2πχ 00 ωδ(ω)

16 Quarkonium spectral function What do we expect!? ρ(ω) ω 2 TÀT c T= ω + zero-mode contribution at ω=0: + transport peak at small ω: ρ(ω) =2πχ 00 ωδ(ω) ρ(ω T ) ' 2χ 00 T M ωη ω 2 + η 2, η = T MD

17 Quarkonium spectral function What do we expect!? ρ(ω) ω 2 T>T c TÀT c T= ω + zero-mode contribution at ω=0: + transport peak at small ω: ρ(ω) =2πχ 00 ωδ(ω) ρ(ω T )=2χ 00 T M ωη ω 2 + η 2, η = T MD

18 Quarkonium spectral function What do we expect!? ρ(ω) ω 2 T<T c T>T c TÀT c ω + zero-mode contribution at ω=0: + transport peak at small ω: ρ(ω) =2πχ 00 ωδ(ω) ρ(ω T )=2χ 00 T M ωη ω 2 + η 2, η = T MD

19 Quarkonium spectral function What do we expect!? ρ(ω) ω 2 T=0 T<T c ω + zero-mode contribution at ω=0: + transport peak at small ω: ρ(ω) =2πχ 00 ωδ(ω) ρ(ω T )=2χ 00 T M ωη ω 2 + η 2, η = T MD

20 Quarkonium spectral function What do we expect!? ρ(ω) ω 2 T=0 T<T c T>T c TÀT c T= ω + zero-mode contribution at ω=0: + transport peak at small ω: ρ(ω) =2πχ 00 ωδ(ω) ρ(ω T )=2χ 00 T M ωη ω 2 + η 2, η = T MD

21 Spatial Correlation Function and Screening Masses Correlation functions along the spatial direction Z G(z, T) = dxdy Z 1/T 0 dτhj(x, y, z, τ)j(0, 0, 0, 0)i are related to the meson spectral function at non-zero spatial momentum G(z, T) = Z dp z e ip zz Z 0 dω σ(ω,p z,t) ω exponential decay defines screening mass M scr : zà1/t e M scrz bound state contribution σ(ω,p z,t) δ(ω 2 p 2 z M 2 ) high-t limit (non-interacting free limit) σ(ω,p z,t) σ free (ω,p z,t) M scr = M indications for medium modifications/dissociation M scr =2 p (πt ) 2 + m c 2

22 Spatial Correlation Function and Screening Masses [ Signatures of charmonium modification in spatial correlation functions, F.Karsch, E.Laermann, S.Mukherjee, P.Petreczky, (2012) arxiv: ] 2+1 flavor QCD using p4-improved staggered action 32 3 N t with N t =6,8,12 and 32 physical m s and m l =ms/10 (m π ' 220 MeV) M PS (T)/M PS (T=0) N =6 N =8 N =12 quenched M scr =2 p (πt ) 2 + m c A PS (T)/A PS (T=0) N =8 N = T/T c T/T c M scr = M indications for medium M scr =2 p (πt ) 2 + m 2 c modifications/dissociation

23 Spatial Correlation Function and Screening Masses M PS (T)/M PS (T=0) N =8 N =12 anti-periodic boundary conditions (closed symbols) M scr =2 p (πt ) 2 + m c M scr = M T/T c periodic boundary conditions (open symbols) M scr =2m c screening masses for bound states insensitive to boundary conditions due to bosonic nature of the basic degrees of freedom the change in the behavior of the charmonium screening masses around T=1.5T c is likely due to the melting of the meson states. [ Signatures of charmonium modification in spatial correlation functions, F.Karsch, E.Laermann, S.Mukherjee, P.Petreczky (2012) arxiv: ]

24 Vector correlation and spectral function at finite temperature G(τ,~p, T ) = Z 0 dω ρ(ω,~p, T )K(τ, ω,t) 2π cosh ω(τ 1 K(τ, ω,t)= sinh ω 2T 2T Lattice observables: G μν (τ,~x) = hj μ (τ,~x)j ν(0,~0)i J μ (τ,~x) = 2κZ V ψ(τ,~x)γμ ψ(τ,~x) local, non-conserved current, needs to be renormalized G μν (τ,~p) = X ~x G μν (τ,~x)e i~p~x ~p =0 only used here q Γ H Γ H (0,0) q (τ,x)

25 Charmonium spectral function in quenched QCD Quenched SU(3) gauge configurations (separated by 500 updates) at 4 temperatures 3 Lattice size N σ N τ with N σ = 128 N τ = 16, 24, 32, 48, 96 Non-perturbatively O(a) clover improved Wilson fermions Non-perturbative renormalization constants Quark masses close to charm quark mass [H.T.Ding, OK et al., arxiv: ] cut-off dependence volume dependence close to continuum (m c a 1) Temperature dependence

26 Charmonium Correlators vs Reconstructed Correlators G(,T)/G rec (,T) PS 1.46 T c 2.20 T c 2.93 T c G(,T)/G rec (,T) V ii 1.46 T c 2.20 T c 2.93 T c [fm] [fm] Z main T-effect due to zero-mode contribution G rec (τ,t) = σ 0 (ω, 0.75T c )K(ω, τ,t) well described by small ω-part of σ T (ω,t) G μμ (τ,t) = G ii (τ,t)+g 00 (τ,t) explains the rise in the vector channel no zero-mode contribution in PS-channel (similar to discussions by Umeda, Petreczky)

27 Charmonium Correlators vs Reconstructed Correlators G(,T)/G rec (,T) PS 1.46 T c 2.20 T c 2.93 T c diff sub G(,T)/G rec (,T) V ii 1.46 T c 2.20 T c 2.93 T c diff sub [fm] [fm] Z main T-effect due to zero-mode contribution G rec (τ,t) = σ 0 (ω, 0.75T c )K(ω, τ,t) effectively removed by diff/sub correlators G μμ (τ,t) = G ii (τ,t)+g 00 (τ,t) G diff (τ,t) = G(τ,T) G(τ +1,T) G sub (τ,t) = G(τ,T) G(τ = N t /2,T) almost constant small-ω contribution similar T-dependence in PS and V channel in the large frequency part of spectral fct.

28 Charmonium Correlators vs Reconstructed Correlators (G( T) - G rec ( T))/T 3 PS 1.46 T c 2.20 T c 2.93 T c (G( T) - G rec ( T))/T 3 V ii 1.46 T c 2.20 T c 2.93 T c T T negative difference for all T indications for thermal modifications in the bound state frequency region remember: no transport contribution in this channel positive diff. due to small-ω contr. positive slope indicates modifications in the bound state frequency region remember: small-ω contribution determines transport coefficient First estimate from fit to vector channel: 2πT D

29 Charmonium Spectral function [H.T.Ding, OK et al., arxiv: ] from sophisticated Maximum Entropy Method analysis: statistical error band from Jackknife analysis no clear signal for bound states above 1.46 T c study of the interesting region closer to T c on the way!

30 Charmonium Spectral function [H.T.Ding, OK et al., arxiv: ] from sophisticated Maximum Entropy Method analysis: statistical error band from Jackknife analysis no clear signal for bound states above 1.46 T c study of the interesting region closer to T c on the way!

31 Charmonium Spectral function Transport Peak [H.T.Ding, OK et al., arxiv: ] 4 2 TD D = 0.5 T/T c π ρ ii (ω,~p =0,T) lim 3χ 00 ω 0 ωt Perturbative estimate (α s ~0.2, g~1.6): Strong coupling limit: LO: 2πTD ' πTD = 1 NLO: 2πTD ' 8.4 [Moore&Teaney, PRD71(2005)064904, [Kovtun, Son & Starinets,JHEP 0310(2004)064] Caron-Huot&Moore, PRL100(2008)052301]

32 Charmonium Spectral function momentum dependence [H.T.Ding, arxiv: ] preliminary results for the momentum dependence:

33 Charmonium Spectral function momentum dependence [H.T.Ding, arxiv: ] preliminary results for the momentum dependence:

34 Bottomonium - Lattice NRQCD [G.Aarts et al., JHEP11(2011)103] In non-relativistic QCD the Lagrangian is expanded in terms of v= p /M with L 0 = ψ µ D τ D2 2M L = L 0 + δl ψ + χ µd τ + D2 2M χ and δl = c 1 8M 3 ψ (D 2 ) 2 ψ χ (D 2 ) 2 χ ig +c 2 ψ (D E E D) ψ + χ (D E E D) χ 8M 2 g c 3 ψ σ (D E E D) ψ + χ σ (D E E D) χ 8M 2 g c 4 ψ σ Bψ χ σ Bχ 2M which is correct up to order O(v^4) [G.T.Bodwin,E.Braaten,G.P.Lepage, PRD 51 (1995) 1125]

35 Bottomonium - Lattice NRQCD [G.Aarts et al., JHEP11(2011)103] correlation function calculated as an initial value problem no costly matrix inversion no restriction by thermal boundary conditions N s N τ T (MeV) T/T c N cfg gauge configurations from n f =2 dynamical Wilson fermion action a s ' fm 1/a t ' 7.35 GeV a s /a τ =6 anisotropic lattice

36 Bottomonium - Lattice NRQCD [G.Aarts et al., JHEP11(2011)103] Kernel is T-independent, contributions at ω < 2M absent no small-ω contribution no information on transport properties G(τ) = Z 2M dω 0 2π exp( ω0 τ)ρ(ω 0 ), ω 0 = ω 2M

37 Bottomonium - Lattice NRQCD [G.Aarts et al., JHEP11(2011)103] Kernel is T-independent, contributions at ω < 2M absent no small-ω contribution no information on transport properties G(τ) = Z 2M dω 0 2π exp( ω0 τ)ρ(ω 0 ), ω 0 = ω 2M

38 Lattice cut-off effects free spectral functions [G.Aarts et al., JHEP11(2011)103] gauge configurations from n f =2 dynamical Wilson fermion action a s ' fm 1/a t ' 7.35 GeV [H.T.Ding, OK et al., arxiv: ] gauge configurations from quenched action a ' 0.01 fm 1/a ' 19 GeV vc ( )/ 2 N =24 N =32 N =48 continuum 0.6 anisotropic NRQCD cut-off effects and energy resolution determined by spatial lattice spacing isotropic Wilson /T M +1.5GeV +2.9GeV +4.4GeV 0GeV 16GeV 40GeV 73GeV no continuum limit in NRQCD, a s MÀ1 only small energy region accessible continuum limit straight forward, but expensive transport properties accessible [see also F.Karsch et al., PRD68 (2003) ]

39 Heavy Quark Momentum Diffusion Constant [A.Francis,OK,M.Laine,J.Langelage, arxiv: ] Heavy Quark Effective Theory (HQET) in the large quark mass limit leads to a (pure gluonic) color-electric correlator [J.Casalderrey-Solana, D.Teaney, PRD74(2006)085012, S.Caron-Huot,M.Laine,G.D. Moore,JHEP04(2009)053] G E (τ) 1 3 3X i=1 D h ie Re Tr U( 1 T ; τ) ge i(τ, 0) U(τ;0)gE i (0, 0) E DRe Tr[U( 1T ;0)] 2T ρ E (ω) κ =lim ω 0 ω Heavy quark (momentum) diffusion:, D = 2T 2 κ

40 Heavy Quark Momentum Diffusion Constant [A.Francis,OK,M.Laine,J.Langelage, arxiv: ] due to the gluonic nature of the operator, signal is extremely noisy multilevel combined with link-integration techniques used to improve the signal tree-level improvement (right figure) to reduce discretization effects [similar studies by H.B.Meyer, New J.Phys.13 (2011) and D.Banerjee,S.Datta,R.Gavai,P.Majumdar,PRD85(2012)014510]

41 Heavy Quark Momentum Diffusion Constant [A.Francis,OK,M.Laine,J.Langelage, arxiv: ] D ( )/T Model spectral function: transport contribution + NLO [Y.Burnier et al. JHEP 1008 (2010) 094)] n ρ model (ω) max ρ NLO (ω), ωκ o 2T Z dω G model (τ) 0 π ρ model(ω) cosh 1 2 τt ω T sinh ω 2T Still large uncertainties but very promising thermodynamic+continuum limit needed more constraints on the spectral function other operators and observables from EFT?

42 Conclusions Charmonium: [F.Karsch, E.Laermann, S.Mukherjee, P.Petreczky, arxiv: ]: the change in the behavior of the charmonium screening masses around T=1.5T c is likely due to the melting of the meson states. [H.T.Ding, OK et al., arxiv: ]: Detailed knowledge of the vector correlation function at various T in quenched QCD continuum extrapolation of correlation function still needed! Results so far depend on MEM analysis Ansätze more difficult due to m q dependence Heavy quark diffusion constant: 2πDT 2 No signs for bound states at and above 1.46 T c

43 Conclusions Effective Field Theory on the Lattice: [FASTSUM Collaboration, G.Aarts et al., JHEP11(2011)103]: NRQCD study of bottomonium: survival of ground state till 2 T c melting of excited states above T c qualitative agreement with CMS results [A.Francis,OK,M.Laine,J.Langelage, arxiv: and Banerjee et al., PRD85(2012)014510]: HQET operator for Heavy Quark Momentum Diffusion constant first results promising Need to understand systematic uncertainties in both approaches in more detail

Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach. Olaf Kaczmarek. University of Bielefeld

Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach. Olaf Kaczmarek. University of Bielefeld Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach (some selected) Recent Developments in Lattice Studies for Quarkonia Olaf Kaczmarek University of Bielefeld Hard Probes 2012

More information

Spectral functions and transport properties from lattice QCD. Olaf Kaczmarek

Spectral functions and transport properties from lattice QCD. Olaf Kaczmarek Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach Spectral functions and transport properties from lattice QCD Olaf Kaczmarek University of Bielefeld 8th International Workshop

More information

Hadronic correlation and spectral functions in the QGP from Quenched Lattice QCD. Olaf Kaczmarek

Hadronic correlation and spectral functions in the QGP from Quenched Lattice QCD. Olaf Kaczmarek Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach Hadronic correlation and spectral functions in the QGP from Quenched Lattice QCD Olaf Kaczmarek in collaboration with: HengTong

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Momentum diffusion of heavy quarks from Lattice QCD

Momentum diffusion of heavy quarks from Lattice QCD Momentum diffusion of heavy quarks from Lattice QCD in collaboration with Saumen Datta, Rajiv Gavai, Pushan Majumdar Phys.Rev. D85 (2012) 014510 Debasish Banerjee Albert Einstein Center for Fundamental

More information

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Masayuki Asakawa Department of Physics, Osaka University September 2011 @ EMMI Workshop QCD Phase Diagram T LHC RHIC QGP (quark-gluon

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

Bottomonium and transport in the QGP

Bottomonium and transport in the QGP Bottomonium and transport in the QGP Gert Aarts (FASTSUM collaboration) Kyoto, December 201 p. 1 Introduction QCD thermodynamics euclidean formulation lattice QCD pressure, entropy, fluctuations,... this

More information

Heavy quark free energies, screening and the renormalized Polyakov loop

Heavy quark free energies, screening and the renormalized Polyakov loop Heavy quark free energies, screening and the renormalized Polyakov loop Olaf Kaczmarek Felix Zantow Universität Bielefeld October 6, 26 VI Workshop III, Rathen, October, 26 p./9 Charmonium suppression..75.5

More information

Lattice QCD and transport coefficients

Lattice QCD and transport coefficients International Nuclear Physics Conference, Adelaide, Australia, 13 Sep. 2016 Cluster of Excellence Institute for Nuclear Physics Helmholtz Institute Mainz Plan Strongly interacting matter at temperatures

More information

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s Quark matter probed by dileptons Olena Linnyk July 02, 2010 Information from photons and dileptons 14 12 10 ε/t 4 8 6 4 2 Lattice QCD: µ B =0 µ B =530 MeV 0 0.5 1.0 1.5 2.0 2.5 3.0 T/T c But what are the

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

Heavy quarkonium physics from Euclidean correlators

Heavy quarkonium physics from Euclidean correlators Heavy quarkonium physics from Euclidean correlators Yannis Burnier Albert Einstein Center for Fundamental Physics, Bern University Talk at ECT*, based on [YB, M. Laine, JHEP 1211 (2012) 086] [YB, A.Rothkopf,

More information

arxiv: v1 [hep-lat] 24 Oct 2013

arxiv: v1 [hep-lat] 24 Oct 2013 arxiv:30.646v [hep-lat] 24 Oct 203 Lattice NRQCD study of in-medium bottomonium states using N f = 2+,48 3 2 HotQCD configurations Department of Physics, Sejong University, Seoul 43-747, Korea E-mail:

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Justus-Liebig Universität Gießen October 13, 29 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Heavy-Quark

More information

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1 Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction

More information

Spectral functions in QCD

Spectral functions in QCD Spectral functions in QCD Gert Aarts ECT*, May 2016 p. 1 Strongly interacting matter: transport and response aim of the meeting common questions for diverse systems cold atomic gases hadronic and quark-gluon

More information

arxiv: v1 [hep-ph] 24 Oct 2012

arxiv: v1 [hep-ph] 24 Oct 2012 Screening Masses of Scalar and Pseudo-scalar Excitations in Quark-gluon Plasma P. Czerski The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, arxiv:1210.6531v1

More information

Spectral functions and hadron spectroscopy in lattice QCD

Spectral functions and hadron spectroscopy in lattice QCD Spectral functions and hadron spectroscopy in lattice QCD Anthony Francis Jefferson Laboratory 06.01.2014 Outline Biography Pre-academia Academia Spectral functions in lattice QCD at finite temperature

More information

Static quark correlators on the 2+1 flavor TUMQCD lattices

Static quark correlators on the 2+1 flavor TUMQCD lattices Static quark correlators on the 2+1 flavor TUMQCD lattices J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Heavy quark free energies and screening from lattice QCD

Heavy quark free energies and screening from lattice QCD Heavy quark free energies and screening from lattice QCD Olaf Kaczmarek Universität Bielefeld February 9, 29 RBC-Bielefeld collaboration O. Kaczmarek, PoS CPOD7 (27) 43 RBC-Bielefeld, Phys.Rev.D77 (28)

More information

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez 51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016 Manuel Calderón de la Barca Sánchez Heavy Flavors in Heavy Ions Heavy quarks produced early: initial hard parton collision

More information

Flavoured aspects of the QCD thermodynamics

Flavoured aspects of the QCD thermodynamics Journal of Physics: Conference Series PAPER OPEN ACCESS Flavoured aspects of the QCD thermodynamics To cite this article: O. Kaczmarek 2016 J. Phys.: Conf. Ser. 668 012003 View the article online for updates

More information

Prospects with Heavy Ions at the LHC

Prospects with Heavy Ions at the LHC Prospects with Heavy Ions at the LHC The Quark-Gluon Plasma at RHIC & LHC So far at RHIC: Elliptic Flow Near-perfect Fluid High p T Suppression Strongly-coupled QGP R AA! d 2 N AA dydp T d 2 N pp!!! AA

More information

News on Hadrons in a Hot Medium

News on Hadrons in a Hot Medium News on Hadrons in a Hot Medium Mikko Laine (University of Bielefeld, Germany) 1 How to interpret the title? Hot Medium : 50 MeV T 1000 MeV; µ πt. Hadrons : In this talk only those which maintain their

More information

Critical Behavior of heavy quarkonia in medium from QCD sum rules

Critical Behavior of heavy quarkonia in medium from QCD sum rules Critical Behavior of heavy quarkonia in medium from QCD sum rules Kenji Morita Institute of Physics and Applied Physics, Yonsei University in Collaboration with Su Houng Lee Aim of this talk: 1. Practical

More information

Quarkonium production in CMS

Quarkonium production in CMS Quarkonium production in CMS Hyunchul Kim (Korea University For the CMS collaboration Content CMS detector@lhc Quarkonia physics motivation Result from CMS Charmonia : J/ψ Bottomonia : ϒ Summary HIM@Pyeongchang,

More information

Quarkonium Results from Fermilab and NRQCD

Quarkonium Results from Fermilab and NRQCD Quarkonium Results from Fermilab and NRQCD Paul Mackenzie mackenzie@fnal.gov International Workshop on Heavy Quarkonium Fermilab Sept. 20-22 2003 Thanks Christine Davies (HPQCD), Jim Simone Recent progress

More information

J/Ψ-suppression in the hadron resonance gas

J/Ψ-suppression in the hadron resonance gas J/Ψ-suppression in the hadron resonance gas Dariusz Prorok Institute of Theoretical Physics University of Wroc law Wroc law, 17 February 2014 HECOLS workshop and XXXII Max-Born Symposium Dariusz Prorok

More information

Thermal width and quarkonium dissociation in an EFT framework

Thermal width and quarkonium dissociation in an EFT framework Thermal width and quarkonium dissociation in an EFT framework Antonio Vairo Technische Universität München in collaboration with N. Brambilla, M. A. Escobedo and J. Ghiglieri based on arxiv:1303.6097 and

More information

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y.

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y. Calculation of decay constant using gradient flow, towards the Kaon bag parameter University of Tsukuba, A. Suzuki and Y. Taniguchi Contents Goal : Calculation of B K with Wilson fermion using gradient

More information

Color screening in 2+1 flavor QCD

Color screening in 2+1 flavor QCD Color screening in 2+1 flavor QCD J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität München 2 Michigan State

More information

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions The ALICE experiment at LHC Experimental conditions at LHC The ALICE detector Some physics observables Conclusions ALICE @ LHC PbPb collisions at 1150 TeV = 0.18 mj Experimental conditions @LHC 2007 start

More information

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma T-Matrix approach to heavy quarks in the Quark-Gluon Plasma Hendrik van Hees Justus-Liebig-Universität Gießen June 1, 28 with M. Mannarelli, V. Greco, and R. Rapp Institut für Theoretische Physik JUSTUS-LIEBIG-

More information

QCD thermodynamics OUTLINE:

QCD thermodynamics OUTLINE: QCD thermodynamics Frithjof Karsch, BNL OUTLINE: Equation of state and transition temperature QCD phase diagram close to the chiral limit Charge fluctuations and the RHIC search for the critical point

More information

arxiv: v1 [hep-lat] 19 Dec 2013

arxiv: v1 [hep-lat] 19 Dec 2013 emerature deendence of electrical conductivity and dileton rates from hot quenched lattice QCD arxiv:32.5609v [he-lat] 9 Dec 203 and Marcel Müller Fakultät für Physik, Universität Bielefeld, D-3365 Bielefeld,

More information

Dynamical equilibration of stronglyinteracting

Dynamical equilibration of stronglyinteracting Dynamical equilibration of stronglyinteracting infinite parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein, W.Cassing CPOD, Wuhan, China 11 November 2011 1 Motivation

More information

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk Beijing Charmed hadron signals of partonic medium Olena Linnyk Our goal properties of partonic matter Hadron-string models Experiment QGP models Observables Hadron abundances J/Ψ anomalous suppression

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential Partha Bagchi Institute Of Physics December 9, 2014 XXI DAE-BRNS High Energy Physics Symposium 2014, 8-12 December 2014, IIT Guwahati,

More information

The strange degrees of freedom in QCD at high temperature. Christian Schmidt

The strange degrees of freedom in QCD at high temperature. Christian Schmidt The strange degrees of freedom in QCD at high temperature Christian Schmidt Christian Schmidt LAT 213 1 Abstract We use up to fourth order cumulants of net strangeness fluctuations and their correlations

More information

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV + High p T with ATLAS and CMS in Heavy-Ion Collisions @ 2.76TeV Lamia Benhabib On behalf of ATLAS and CMS HCP 2011, Paris lamia.benhabib@llr.in2p3.fr +Outlook Introduction : hard probes Strongly interacting

More information

Heavy quarkonium in a weaky-coupled plasma in an EFT approach

Heavy quarkonium in a weaky-coupled plasma in an EFT approach Heavy quarkonium in a weaky-coupled plasma in an EFT approach Jacopo Ghiglieri TU München & Excellence Cluster Universe in collaboration with N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo 474th WE

More information

High Temperature/Density QCD

High Temperature/Density QCD High Temperature/Density QCD Frithjof Karsch, BNL and Bielefeld University Temperature ~17 MeV Early Universe Future LHC Experiments Crossover Current RHIC Experiments RHIC Energy Scan Critical Point 1

More information

Lepton and Charm Measurements in the First Two Years of RHIC: An Experimental Overview

Lepton and Charm Measurements in the First Two Years of RHIC: An Experimental Overview Lepton and Charm Measurements in the First Two Years of RHIC: An Experimental Overview Ralf Averbeck State University of New York at Stony Brook INT/RHIC Winter Workshop, Seattle, December 13-15, 2002

More information

Heavy flavor with

Heavy flavor with Heavy flavor with CBM@FAIR Hendrik van Hees Goethe University Frankfurt and FIAS April 21, 2015 Hendrik van Hees (GU Frankfurt/FIAS) Heavy flavor with CBM@FAIR April 21, 2015 1 / 22 Outline 1 Motivation:

More information

arxiv:hep-lat/ v2 17 Jun 2005

arxiv:hep-lat/ v2 17 Jun 2005 BI-TP 25/8 and BNL-NT-5/8 Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding Olaf Kaczmarek Fakultät für Physik,

More information

Thermal EM Radiation in Heavy-Ion Collisions

Thermal EM Radiation in Heavy-Ion Collisions Thermal EM Radiation in Heavy-Ion Collisions Ralf Rapp Cyclotron Institute + Dept of Phys & Astro Texas A&M University College Station, USA Symposium on Jet and Electromagnetic Tomography of Dense Matter

More information

strong coupling Antonio Vairo INFN and University of Milano

strong coupling Antonio Vairo INFN and University of Milano potential Non-Relativistic QCD strong coupling Antonio Vairo INFN and University of Milano For most of the quarkonium states: 1/r mv Λ QCD (0) V (r) (GeV) 2 1 Υ Υ Υ Υ η ψ c χ ψ ψ 2 0 1 2 r(fm) -1 weak

More information

A prediction from string theory, with strings attached

A prediction from string theory, with strings attached A prediction from string theory, with strings attached Hong Liu Massachusetts Institute of Technology HL, Krishna Rajagopal, Urs. Wiedemann hep-ph/0607062, hep-ph/0612168 Qudsia Ejaz, Thomas Faulkner,

More information

Lattice calculation of static quark correlators at finite temperature

Lattice calculation of static quark correlators at finite temperature Lattice calculation of static quark correlators at finite temperature J. Weber in collaboration with A. Bazavov 2, N. Brambilla, M.Berwein, P. Petrezcky 3 and A. Vairo Physik Department, Technische Universität

More information

Energy-momentum tensor correlators in hot Yang-Mills theory

Energy-momentum tensor correlators in hot Yang-Mills theory Energy-momentum tensor correlators in hot Yang-Mills theory Aleksi Vuorinen University of Helsinki Micro-workshop on analytic properties of thermal correlators University of Oxford, 6.3.017 Mikko Laine,

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

Heavy Flavor Results from STAR

Heavy Flavor Results from STAR Heavy Flavor Results from STAR Wei Xie for STAR Collaboration (PURDUE University, West Lafayette) Open Heavy Flavor Production D meson direct measurement Non-photonic electron Heavy Quarkonia Production

More information

Ultra-Relativistic Heavy Ion Collision Results

Ultra-Relativistic Heavy Ion Collision Results Ultra-Relativistic Heavy Ion Collision Results I. Overview of Effects Observed in Large Nucleus-Nucleus Collision Systems (Au+Au, Pb+Pb) High p T Hadrons Are Suppressed at LHC & RHIC Central Pb-Pb and

More information

Dileptons in NN and AA collisions

Dileptons in NN and AA collisions Dileptons in NN and AA collisions Hendrik van Hees Goethe-Universität Frankfurt November 28, 2011 Hendrik van Hees (GU Frankfurt) The Dilepton Probe November 28, 2011 1 / 24 Outline 1 Electromagnetic probes

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information

The Dilepton Probe from SIS to RHIC

The Dilepton Probe from SIS to RHIC The Dilepton Probe from SIS to RHIC Hendrik van Hees Justus-Liebig Universität Gießen April 14, 2010 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) The

More information

arxiv: v1 [hep-lat] 10 Oct 2015

arxiv: v1 [hep-lat] 10 Oct 2015 BI-TP /6 A stochastic approach to the reconstruction of spectral functions in lattice QCD arxiv:.9v [hep-lat] Oct, Heng-Tong Ding Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle

More information

Jet and bulk observables within a partonic transport approach

Jet and bulk observables within a partonic transport approach Jet and bulk observables within a partonic transport approach Florian Senzel with J. Uphoff, O. Fochler, C. Wesp, Z. Xu and C. Greiner based on Phys.Rev.Lett. 4 (25) 23 Transport meeting, 29.4.25 Outline

More information

Heavy Quarks in Heavy-Ion Collisions

Heavy Quarks in Heavy-Ion Collisions Heavy Quarks in Heavy-Ion Collisions Hendrik van Hees with T. Lang, J. Steinheimer, M. Bleicher Goethe University Frankfurt and FIAS July 18, 213 Hendrik van Hees (GU Frankfurt/FIAS) Heavy Quarks in HICs

More information

The Dilepton Probe from SIS to RHIC

The Dilepton Probe from SIS to RHIC The Dilepton Probe from SIS to RHIC Hendrik van Hees Justus-Liebig Universität Gießen May 13, 2011 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) The

More information

Heavy Ion Physics Lecture 3: Particle Production

Heavy Ion Physics Lecture 3: Particle Production Heavy Ion Physics Lecture 3: Particle Production HUGS 2015 Bolek Wyslouch echniques to study the plasma Radiation of hadrons Azimuthal asymmetry and radial expansion Energy loss by quarks, gluons and other

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

Quarkonium Free Energy on the lattice and in effective field theories

Quarkonium Free Energy on the lattice and in effective field theories Quarkonium Free Energy on the lattice and in effective field theories J. H. Weber 1,2 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische

More information

Hagedorn States in Relativistic Heavy Ion Collisions

Hagedorn States in Relativistic Heavy Ion Collisions Hagedorn States in Relativistic Heavy Ion Collisions Jacquelyn Noronha-Hostler Frankfurt Institute for Advanced Studies, Frankfurt am Main Excited Hadrons : February 25 th, 211 : Jefferson Lab Newport

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

Charm production at RHIC

Charm production at RHIC 1 Charm production at RHIC Charm 2007 Conference Cornell University, Ithaca, NY 5 August 2007 2 The Quark Gluon Plasma T c Early universe quark-gluon plasma LHC RHIC Tri-critical point? Quark deconfinement

More information

Parton dynamics in heavy-ion collisions from FAIR to LHC

Parton dynamics in heavy-ion collisions from FAIR to LHC Parton dynamics in heavy-ion collisions from FAIR to LHC Wolfgang Cassing Erice, 21.09.2012 The holy grail: Search for the critical point The phase diagram of QCD Study of the phase transition from hadronic

More information

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa Bottomonium melting at T >> Tc Pedro Bicudo CFTP, IST, Lisboa Motivation The finite T string tension The quark mass gap equation with finite T and finite quark mass Chiral symmetry and confinement crossovers

More information

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Lawrence Berkeley National Laboratory Berkeley, US 1 Introduction: Heavy Ion Physics Today t = 5 10 17 sec T=1

More information

Quarkonium results in pa & AA: from RHIC to LHC

Quarkonium results in pa & AA: from RHIC to LHC International School of Nuclear Physics 38 th course Nuclear matter under extreme conditions relativistic heavy-ion collisions September 2016 Quarkonium results in pa & AA: from RHIC to LHC Roberta Arnaldi

More information

Outline: Introduction

Outline: Introduction Electromagnetic radiation in hadronic interactions: from pp to AA collisions Outline: Introduction Lijuan Ruan (Brookhaven National Laboratory) Recent results on dileptons (dielectrons) Recent results

More information

Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions.

Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions. Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions. Cesar L. da Silva 1, 1 Los Alamos National Lab - USA Abstract. The use of probes containing heavy quarks is one of the pillars

More information

The direct photon puzzle

The direct photon puzzle The direct photon puzzle Jean-François Paquet January 16, 2017 ALICE Journal Club Jean-François Paquet (Stony Brook) 2 What is the direct photon puzzle? > Background

More information

Shingo Sakai Univ. of California, Los Angeles

Shingo Sakai Univ. of California, Los Angeles Shingo Sakai Univ. of California, Los Angeles Non-photonic e result in AuAu b/c separation in non-photonic electron by electron-hadron correlations @ pp Bottom production Discuss heavy flavor energy loss

More information

Outline: Open charm in heavy-ion collisions. A Heavy-Ion Seminar talk by Szymon Harabasz

Outline: Open charm in heavy-ion collisions. A Heavy-Ion Seminar talk by Szymon Harabasz Open charm in heavy-ion collisions A Heavy-Ion Seminar talk by Szymon Harabasz Outline: Charmed hadrons Why charm physics? How to do charm physics Open questions on open charm: D mesons R AA at low p T

More information

Medium Modifications of Hadrons and Electromagnetic Probe

Medium Modifications of Hadrons and Electromagnetic Probe Medium Modifications of Hadrons and Texas A&M University March 17, 26 Outline QCD and Chiral Symmetry QCD and ( accidental ) Symmetries Theory for strong interactions: QCD L QCD = 1 4 F a µν Fµν a + ψ(i

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

Relativistic correction to the static potential at O(1/m)

Relativistic correction to the static potential at O(1/m) Relativistic correction to the static potential at O(1/m) Miho Koma (Inst. f. Kernphysik, Mainz Univ.) Yoshiaki Koma, Hartmut Wittig Lattice 2007, Regensburg, 30 July 2007 We investigate the relativistic

More information

Heavy-quark hybrid mesons and the Born-Oppenheimer approximation

Heavy-quark hybrid mesons and the Born-Oppenheimer approximation Heavy-quark hybrid mesons and the Born-Oppenheimer approximation Colin Morningstar Carnegie Mellon University Quarkonium Workshop, Fermilab Sept 20, 2003 9/20/2003 Hybrid mesons (C. Morningstar) 1 Outline!

More information

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours 5 th International School on QGP and Heavy Ions Collisions: past, present and future Torino, 5-12 March 2011 1 Outlook: 1) Hard probes: definitions 2) High p T hadrons 3) Heavy Flavours 4) Quarkonia 1)

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

Weakly coupled QGP? Péter Petreczky

Weakly coupled QGP? Péter Petreczky Weakly coupled QGP? Péter Petreczky QGP is expected to be strongly coupled around T c : how does this features manifest itself in terms of different quantities, how do we observe it on lattice? QGP: state

More information

Outline: Introduction and Motivation

Outline: Introduction and Motivation Heavy ion collisions at lower energies: challenges and opportunities Beam Energy Scan (BES I and II) from RHIC Lijuan Ruan (Brookhaven National Laboratory) Outline: Introduction and Motivation Results

More information

Report from PHENIX. Xiaochun He Georgia State University For the PHENIX Collaboration

Report from PHENIX. Xiaochun He Georgia State University For the PHENIX Collaboration Report from PHENIX Xiaochun He Georgia State University For the PHENIX Collaboration Outline PHENIX status New PHENIX Results Jet and π 0 Heavy flavor Direct Photon & Flow 2 PHENIX Data Taking Mission

More information

arxiv: v1 [nucl-ex] 12 May 2008

arxiv: v1 [nucl-ex] 12 May 2008 1 Highlights from PHENIX - II arxiv:0805.1636v1 [nucl-ex] 12 May 2008 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Terry C. Awes (for the PHENIX Collaboration ) Oak

More information

Quarkonium production in proton-nucleus collisions

Quarkonium production in proton-nucleus collisions INT Program INT-17-1b Precision spectroscopy of QGP properties with jets and heavy quarks May 31 st 2017 Quarkonium production in proton-nucleus collisions Roberta Arnaldi INFN Torino INT Program INT-17-1b

More information

Heavy Probes in Heavy-Ion Collisions Theory Part IV

Heavy Probes in Heavy-Ion Collisions Theory Part IV Heavy Probes in Heavy-Ion Collisions Theory Part IV Hendrik van Hees Justus-Liebig Universität Gießen August 31-September 5, 21 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik

More information

Phenomenology of prompt photon production. in p A and A A collisions

Phenomenology of prompt photon production. in p A and A A collisions Phenomenology of prompt photon production in p A and A A collisions François Arleo LAPTH, Annecy LPT Orsay April 2011 Francois Arleo (LAPTH) Prompt γ in p A and A A collisions LPT Orsay April 2011 1 /

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on the CMS information server CMS CR 3-78 he Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH- GENEVA 3, Switzerland 8//9 Υ suppression in PbPb collisions at the

More information

Quarkonium as Probe of Hot QCD Medium. Ágnes Mócsy

Quarkonium as Probe of Hot QCD Medium. Ágnes Mócsy Quarkonium as Probe of Hot QCD Medium Ágnes Mócsy Quarkonium as Probe of Hot QCD Medium Ágnes Mócsy in collaboration with Peter Petreczky (BNL), Chuan Miao (Uni Mainz) QCD Expectations - Temperature effects

More information

Heavy flavour measurements with ALICE. heavy ion collisions & QGP heavy flavours & QGP ALICE detector overview selected physics channels

Heavy flavour measurements with ALICE. heavy ion collisions & QGP heavy flavours & QGP ALICE detector overview selected physics channels Heavy flavour measurements with ALICE heavy ion collisions & QGP heavy flavours & QGP ALICE detector overview selected physics channels Philippe.Crochet@clermont.in2p3.fr Excited QCD09, Zakopane, 09/02/09

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

Quark-Gluon Plasma: from lattice simulations to experimental results

Quark-Gluon Plasma: from lattice simulations to experimental results Home Search Collections Journals About Contact us My IOPscience Quark-Gluon Plasma: from lattice simulations to experimental results This content has been downloaded from IOPscience. Please scroll down

More information

Status of Heavy-Ion Physics at the LHC

Status of Heavy-Ion Physics at the LHC Status of Heavy-Ion Physics at the LHC Yvonne Pachmayer, Heidelberg University J. Jowett LHC Page 1 2 Motivation: What is the question? ALICE/LHC Pb+Pb snn = 2760 GeV What happens if you make matter Hotter

More information