Hadronic correlation and spectral functions in the QGP from Quenched Lattice QCD. Olaf Kaczmarek

Size: px
Start display at page:

Download "Hadronic correlation and spectral functions in the QGP from Quenched Lattice QCD. Olaf Kaczmarek"

Transcription

1 Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach Hadronic correlation and spectral functions in the QGP from Quenched Lattice QCD Olaf Kaczmarek in collaboration with: HengTong Ding (BNL), Anthony Francis (Bielefeld), Frithjof Karsch (BNL+Bielefeld), Edwin Laermann (Bielefeld) and Wolfgang Söldner (Regensburg) [Phys. Rev. D83(2011)034504, arxiv: arxiv: , arxiv: ] Seminar Instytut Fizyki UJ, Krakow 1

2 Motivation PHENIX results for the dilepton rates pp-data well understood by hadronic cocktail large enhancement in Au+Au between MeV indications for thermal effects!? Need to understand the contribution from QGP spectral functions from lattice QCD Dileptonrate directly related to vector spectral function: [PHENIX PRC81, (2010)] dw dωd 3 p = 5α2 54π 3 1 ω 2 (e ω/t 1) ρ V(ω, ~p, T)

3 Charmonium in Heavy Ion Collisions Heavy Ion Collision QGP Expansion+Cooling Hadronization J/ J/?? c J/ c J/ D D Charmonium+Bottmonium is produced (mainly) in the early stage of the collision Depending on the Dissociation Temperature - remain as bound states in the whole evolution - release their constituents in the plasma [Kaczmarek, Zantow] ψ S(J/ ) In In, SPS Pb Pb, SPS Au Au, RHIC, y < 0.35 Au Au, RHIC, y =[1.2,2.2] Charmonium yields at SPS/RHIC ε (GeV/fm 3) First estimates on Dissociation Temperatures χ c J/ψ from detailed knowledge of Ψ Heavy Quark Free 0 Energies and Potential Models F(r,T) [MeV] T=0 0.81T c 1.02T c 1.50T c r [fm] 4.01T c

4 Outline Introduction Vector correlation function on the lattice (light quarks) Temporal correlators vs. free correlators Volume and cut-off dependence Thermal moments of the spectral function Continuum extrapolation Electrical conductivity and (low mass) dilepton rates at T 1.5 T c Using an Ansatz for the spectral function in the continuum Charmonium spectral functions Heavy quark diffusion constant and dissociation in the medium Conclusions & Outlook

5 Vector correlation functions at high temperature G(τ,~p, T ) = Z d cosh ω(τ 1 2T 0 dω 2π ρ(ω,~p, T )K(τ, ω,t) cosh K(τ, ω,t)= sinh ω 2T Lattice observables: G μν( (τ,, ~x) ) = hj (τ, ~x)j ν(0,~0)i μ, ) ν (, J μ (τ,~x) = 2κZ V ψ(τ,~x)γμ ψ(τ,~x) local, non-conserved current, needs to be renormalized G μν (τ,~p) = X ~x G μν (τ,~x)e i~p~x only ~p =0 used here q Γ H Γ H (0,0) (τ,x) q

6 Vector correlation functions at high temperature G V (τ,~p) = G 00 (τ,~p)+g ii (τ,~p) J 0 is a conserved ed current G 00 is τ independent at p=0 quark number susceptibility χ q 1.2 G 00 (τ, ~p =0) -G 3 00 ( T)/T χ q T + O(a 2 ) T c x x x x T ratios of correlators free of renormalization ambiguities: R(τ) G V (τ) G 00 (τ) ; R(τ) G V (τ) G 00 (τ)g free V (τ)

7 Spectral functions at high temperature Free theory: free non-interacting vector spectral function (infinite temperature): ρ free (ω) = 2πT 2 ωδ(ω) ρ free ii (ω) = 2πT 2 ωδ(ω)+ 3 2π ω2 tanh(ω/4t ) δ-functions exactly cancel in ρ V (ω)=-ρ 00 (ω)+ρ ii (ω)

8 Spectral functions at high temperature Free theory: free non-interacting vector spectral function (infinite temperature): ρ free (ω) = 2πT 2 ωδ(ω) ρ free ii (ω) = 2πT 2 ωδ(ω)+ 3 2π ω2 tanh(ω/4t ) δ-functions exactly cancel in ρ V (ω)=-ρ 00 (ω)+ρ ii (ω) With interactions: while ρ 00 is protected, the δ-funtion in ρ ii gets smeared: Ansatz: κ = α s π at leading order ρ 00 (ω) = 2πχ q ωδ(ω) ρ ii (ω) = ωγ/2 2χ q c BW ω + (Γ/2) 2 2π (1 + κ) ω2 tanh(ω/4t ) Ansatz with 3-4 parameters: (χ q ),c BW, Γ, κ

9 Electrical Conductivity Electrical Conductivity slope of spectral function at ω=0 0 (Kubo formula) σ = C em lim ρ ii(ω,~p =0,T) T 6 ω 0 ωtt n X f C em = e 2 Q 2 = 5/9 e2 for n f =2 f 6/9 e 2 for n f = 3 f=1 Using our Ansatz for ρ ii (ω): σ T = 2 3 χ q T 2 T Γ c BW C em previous studies using staggered fermions (need to distinguish ρ even and ρ odd ): S.Gupta, PLB 597 (2004) 57: N τ =8-14, N σ 44 G.Aarts et al., PRL 99 (2007) : N τ =16,24, N σ =64

10 Vector correlation function on large & fine lattices Quenched SU(3) gauge configurations at T/T c =1.5 (separated by 500 updates) 3 Lattice size N σ N τ with N σ = N τ = 16, 24, 32, 48 Non-perturbatively O(a) clover improved Wilson fermions Non-perturbative renormalization constants Quark masses close to the chiral limit, κ ' κ c m MS /T[μ=2GeV] 0.1 Volume dependence N τ N σ β c SW κ Z V 1/a[GeV] a[fm] #conf cut-off dependence & continuum extrapolation close to continuum

11 Vector Correlation Function volume & cut-off dependence. 135 G ( T)/G free 1.35 V V ( T) x16 only small volume dependence x x x x24(i) x24(ii) x x T Vector correlation function normalized by free (non-interacting) correlator analytic in the continuum (for massless quarks): µ 2 T T V (τ) =6T 2 π(1 2τT ) 1 + cos2 (2πτT ) sin 3 +2 cos(2πτt ) (2πτT) sin 2 (2πτT) G free

12 Vector Correlation Function volume & cut-off dependence. 135 G ( T)/G free ( T) 1.35 V V x x x x48 only small volume dependence fix lattice volume V=128 3 vary N t at fixed T=1.5T c 1.2 cut-off effects are more severe G V (τ,~p) = G 00 (τ,~p)+g ii (τ,~p) T large N t needed continuum extrapolation incomplete cancelation between G 00 (τt) and BW-contribution to G ii (τt)? information on transport properties?

13 Vector Correlation Function continuum extrapolation. 1.8 G ii ( T)/[G 00 G V free ( T)] T=0.500, lat T=0.375, lat T=0.250, lat cont cont cont 1/N τt G ii (τ, T ) Ḡ 00 G free V (τ,t) (11) (9) (7) normalization with G 2 00 χ q /T defines renormalization invariant quantity extrapolation in (at) 2 =(1/N τ ) 2 under control for τ T 0.2 extrapolation at o is independent of the chosen normalization at o extrapolation at other values use spline interpolation at fixed cut-off well defined continuum extrapolated values for this ratio

14 Vector Correlation Function curvature at τt = 1/2. Taylor expansion around the mid-point τt = 1/2 : Thermal moments of (2n) the spectral function G V (τt ) = G (0) V G (n) V = 1 n! X n=0 G (2n) V G (0) V dg V (τt ) d(τt ) n µ 1 2 τt = 1 τt =1/2 n! Z 0 dω 2π ³ ω T n ρ V (ω) sinh(ω/2t ) Ratio of midpoint subtracted correlator: (τt ) = = G V (τt ) G V (1/2) G free V (τt ) G free V (1/2) G (2) V G (2),free V Ã! 1+(R (4,2) V R (4,2) V,free ) µ 1 2 τt T 2 V ( T)/ q 128x16 128x24 128x32 128x48 cont fit [0.2:0.5] T

15 Vector Correlation Function curvature at τt = 1/2. Quadratic fit to (τt) with varying lower fit range [(τt) min, 1/2] : G (0),free V = 2T 3 G (0) V (2) f 2 G V V = 28π 5 T 3 G (2) V V = 124π4 T 3 21 V G (2),free G (4),free G (0),free = ± G (2),free = ± Ratio of midpoint subtracted correlator: (τt ) = G V (τt ) G V (1/2) G free V (τt ) G free V (1/2) T 2 V ( T)/ q 128x16 128x24 128x32 128x48 cont fit [0.2:0.5] = G (2) V G (2),free V Ã! 1+(R (4,2) V R (4,2) V,free ) µ 1 2 τt normalized curvature close to that of the free vector correlator 1.15 T

16 Vector Correlation Function continuum extrapolation Use our Ansatz for the spectral function 1.45 ρ 00 (ω) = 2πχ q ωδ(ω) ρ ii (ω) = 2χ q c BW ωγ/2 ω 2 +(Γ/2) π (1 + κ) ω2 tanh(ω/4t ) and fit to the continuum extrapolated values free T G V ( T)/[ q G V ( T)] x x x x48 Extrapolation fit [0.2:0.5] G V (τ, T) Ḡ 00 G free V (τ, T) & G (2) V C BW χ q Γ = 1.098(27) Γ T = 2.235(75) κ = (27) T 2 G V ( T)/( q G V free ( T)) 2Tc BW / =1.098 /2T= T T

17 Spectral function and electrical conductivity Use our Ansatz for the spectral function ρ 00 (ω) = 2πχ q ωδ(ω) ρ ii (ω) = 2χ q c BW ωγ/2 ω 2 +(Γ/2) π (1 + κ) ω2 tanh(ω/4t ) shaded area by varying Γ/T within its errorband ii ( T 2C BW χ q Γ = 1.098(27) Γ T = 2.235(75) κ = (27) BW+continuum free /T electrical conductivity σ T =(0.37 ± 0.01)C em

18 Spectral function and electrical conductivity Use our Ansatz for the spectral function ρ 00 (ω) = 2πχ q ωδ(ω) ρ ii (ω) = 2χ q c BW ωγ/2 ω 2 +(Γ/2) π (1 + κ) ω2 tanh(ω/4t ) Θ(ω 0, ω ) ii ( T Analysis of the systematic errors using truncation of the large ω contribution (ω2 ω 2 Θ(ω ω 1 0, ω ) = ³1 + e 0 ω )/ω /T=0, /T=0 0 /T=1.5, /T=0.5 HTL free Hard thermal loop (HTL) E.Braaten, R.D.Pisarski, NP B337 (1990) electrical conductivity /T 1/3 1 σ C em T 1

19 Dilepton rates and electrical conductivity Dileptonrate directly related to vector spectral function: dw dωd 3 p = 5α2 54π 3 1 ω 2 (e ω/t 1) ρ V(ω, ~p, T) 1e-05 1e-06 dn l + l -/d d 3 p T/T c =1.5 p=0 1e-07 BW+continuum: 0 /T=0, /T=0 0 /T=1.5, /T=0.5 1e-08 HTL Born 1e-09 1e-10 1e-11 Hard thermal loop (HTL) E.Braaten, R.D.Pisarski, NP B337 (1990) 569 /T 1e

20 Spectral Functions Maximum Entropy Method How to obtain continuous spectral function σ(ω,t) from discrete (and small) number of correlators? G(τ, T ) = Z dωk(τ, ω, T )σ(ω, T ) 1 K(τ, ω,t) = cosh ω(τ 2T sinh ω 2T 0 Best method on the market: Maximum Entropy Method (MEM) based on Bayesian theorem [Asakawa et al. 01] most probable spectral function properly renormalized correlators as input non-perturbative renormalization constants for vector [Lüscher et al. 1997] TI perturbative renormalization constants for pseudo-scalar prior knowledge needed as input default model m(ω) result should be independent of default model usually not the case

21 Maximum Entropy Method Maximize the conditional probability P[σ GH] exp(αs - L) G is the input correlator and H the additional prior information L is the standard chi 2 S is the Shannon-Jaynes entropy: S = Z 0 σ(ω) m(ω) σ(ω) log( σ(ω) m(ω) ) prior knowledge through default model m(ω) α is the relative weight of S and L, integrated t out at the end Prior information necessary and important Should have the correct large ω behavior and funtional form

22 Free spectral functions lattice vs. continuum Free (non-interacting) spectral function [Karsch et al. 03, Aarts et al. 05] σ H = N c 8π 2 Θ(ω2 4m 2 ) ω 2 tanh( ω 4T ) r 1 ( 2m h 2 ω )2 a H +( 2m i ω )2 b H T 2 + N c ωδ(ω) 3 2 f H ( )

23 Free spectral functions lattice vs. continuum Free (non-interacting) spectral function [Karsch et al. 03, Aarts et al. 05] σ H = N c 8π 2 Θ(ω2 4m 2 ) ω 2 tanh( ω 4T ) r 1 ( 2m h 2 ω )2 a H +( 2m i ω )2 b H Lattice cut-off effects: T 2 + N c ωδ(ω) 3 2 f H ( ) ω max =2log(7+ma) 0.18 V ( )/ Cont x x x48 1/a=19 GeV /a=13 GeV /a=6.5 GeV 0.02 /T

24 Free spectral functions lattice vs. continuum Free (non-interacting) spectral function [Karsch et al. 03, Aarts et al. 05] σ H = N c 8π 2 Θ(ω2 4m 2 ) ω 2 tanh( ω 4T ) r 1 ( 2m h 2 ω )2 a H +( 2m i ω )2 b H T 2 with interactions: + N c ωδ(ω) 1 η 3 2 f H ( ) δ(ω) πω2 + η 2 zero mode contribution at ω ' 0 [Umeda 07] [Petreczky+Teaney 06 Aarts et al. 05]

25 Maximum Entropy Method (MEM) Results so far based on correlator level Use results of our fit as default model in MEM analysis MEM analysis of N τ =48 data τ (i) fitted BW and continuum parameters (ii) fitted BW and lattice free spectral function 5 4 fit vs. MEM fit MEM:BW+continuum MEM:BW+lattice /T

26 Conclusions and Outlook - Light Quarks Conclusions: Detailed knowledge of the vector correlation function at T=1.5T c in quenched QCD continuum extrapolation of correlation function and thermal moments G V (τ T) well reproduced by Breit-Wigner plus continuum Ansatz for σ V (ω) Electrical conductivity: 1/3 1 C em σ T 1 Dilepton rate approaches leading order Born rate for ω/t 4 enhancement at small ω/t Outlook: include HTL result for σ V (ω) at large ω/t in the Ansatz vector correlation function at other temperatures and non-zero momentum

27 Charmonium in Heavy Ion Collisions Heavy Ion Collision QGP Expansion+Cooling Hadronization J/ J/?? c J/ c J/ D D Charmonium+Bottmonium is produced (mainly) in the early stage of the collision Depending on the Dissociation Temperature - remain as bound states in the whole evolution - release their constituents in the plasma [Kaczmarek, Zantow] ψ S(J/ ) In In, SPS Pb Pb, SPS Au Au, RHIC, y < 0.35 Au Au, RHIC, y =[1.2,2.2] Charmonium yields at SPS/RHIC ε (GeV/fm 3) First estimates on Dissociation Temperatures χ c J/ψ from detailed knowledge of Ψ Heavy Quark Free 0 Energies and Potential Models F(r,T) [MeV] T=0 0.81T c 1.02T c 1.50T c r [fm] 4.01T c

28 Lattice set-up Quenched SU(3) gauge g configurations (separated by 500 updates) at 4 temperatures 3 Lattice size N σ N τ with N σ = 128 N τ = 16, 24, 32, 48, 96 Non-perturbatively O(a) clover improved Wilson fermions Non-perturbative renormalization constants Quark masses close to charm quark mass cut-off dependence volume dependence close to continuum (m c a 1) Temperature dependence

29 Charmonium Correlators Temporal Correlators 1e+07 G ( )/T 3 1e+06 vector G ( )/T 3 vector 1e+06 pesudo-scalar pesudo-scalar scalar scalar axial-vector axial-vector T=0.75 T c x96 T=1.5 T c x [fm] [fm] non-degenerate states still at 1.50 T c (almost) close to free correlators at (very) small separations largest distance 0.25 fm due to compact temporal direction only small distance regime ( fm) relevant for thermal effects and bound state effects

30 Charmonium Correlators vs Free Correlators T G( )/G free ( ) c PS 1.46 T c ,2020 T c 2.93 T c [fm] T G( )/G free ( ) c V 1.46 T ii c ,2020 T c 2.93 T c [fm] small temperature effects visible in both channels relevant distance regime compressed to smaller distances largest distance 1/(2T) due to compact temporal direction only small distance regime relevant for thermal effects and bound state effects Problem: quark mass dependence of free correlation function!

31 Charmonium Correlators cut-off dependence 1.15 G(,1.49T c )/G rec (,1.49T c ) V ii PS 1 [fm] G rec (τ,t) = Z σ 0 (ω, 0.75T c )K(ω, τ,t) only small cut-off/volume dependence in vector and pseudo-scalar channel G μμ (τ,t) = G ii (τ,t)+g 00 (τ,t) at 1.5 T c

32 Charmonium Correlators vs Free Correlators G(,T)/G rec (,T) PS 1.46 T c 220T 2.20 c 2.93 T c 1.25 G(,T)/G V ii 1.46 T rec (,T) c 2.20 T c T 2.93 c [fm] [fm] Z G rec (τ,t) = σ 0 (ω, 0.75T c )K(ω, τ,t) G μμ (τ,t) = G ii (τ,t)+g 00 (τ,t) main T-effect due to zero-mode contribution well described by small ω-part of σ T (ω,t) explains the rise in the vector channel no zero-mode contribution in PS-channel (similar to discussions by Umeda, Petreczky)

33 Charmonium Correlators vs Free Correlators G(,T)/G rec (,T) PS 1.46 T c 2.20 T c 2.93 T c diff sub V ii G(,T)/G rec (,T) diff sub 1.46 T c 2.20 T c 2.93 T c [fm] [fm] G rec (τ,t) = Z σ 0 (ω, 0.75T c )K(ω, τ,t) G μμ (τ,t) = G ii (τ,t)+g 00 (τ,t) G diff (τ,t) = G(τ,T) G(τ +1,T) G sub (τ,t) = G(τ,T) G(τ = N t /2,T) main T-effect due to zero-mode contribution effectively removed by diff/sub correlators almost constant t small-ω contribution tib ti similar T-dependence in PS and V channel in the large frequency part of spectral fct.

34 Charmonium Correlators vs Free Correlators 0.1 (G( T) - G rec ( T))/T T c PS 2.20 T c 0 293T 2.93 c 0.5 (G( T) - G rec ( T))/T T c V ii 2.20 T c T 2.93 c T T negative difference for all T positive diff. due to small-ω contr. indications for thermal modifications positive slope indicates modifications in the bound state t frequency region in the bound state t frequency region remember: no transport contribution remember: small-ω contribution in this channel determines transport coefficient First estimate from fit to vector channel: 2πT D

35 Charmonium Spectral function below T c ( )/ 2 V 0.73 T c DM 1 spf 1 DM 2 spf 2 DM 3 spf [GeV] [GeV] N σ =128 and N τ =96 (a GeV) cut-off effects well separated Pronounced ground state peak close to J/ψ mass no zero-mode/transport contribution observed below T c in any channel structure at small and intermediate ω independent of default model

36 Charmonium Spectral function above T c 0.25 ( )/ T c 2.20 T c 2.93 T c 0.2 DM 1 spf 1 DM 2 spf DM 3 spf 3 DM spf [GeV] [GeV] [GeV] various default models used to understand systematic uncertainties small default model dependence only in small-ω region no strong default model dependence in the intermediate ω region no zero-mode contribution in pseudo-scalar scalar channel observed no pronounced peak bound states melted? / threshold enhancement?

37 Charmonium Spectral function above T c 0.25 ( )/ 2 V 1.46 T c DM spf 1 DM 2 spf DM 3 spf 3 DM 4 spf V 2.20 T c V 2.93 T c [GeV] [GeV] [GeV] small-ω region accessible hope to extract transport properties small default model dependence only in small-ω region no strong default model dependence in the intermediate ω region unique transport contribution in vector channel observed no pronounced peak bound states melted? / threshold enhancement?

38 Charmonium Spectral function Transport Peak 0.35 ( )/( T) 1.46 Tc 2.20 Tc Vii DM 1 spf 1 DM 2 spf 2 DM 3 spf 3 DM 4 spf 2.93 Tc 0.05 /T /T /T vary the large-ω behavior of the default models transport peak is a unique feature for all DMs increases with increasing temperature at least lower and upper limits for transport coefficients should be possible

39 Charmonium Spectral function Transport Peak 0.5 ( )/( T) V 1.46 T c V 2.20 T c V 2.93 T c DM 1 spf 1 DM 2 spf 2 DM 3 spf /T /T /T vary the low-ω behavior of the default models transport peak is a unique feature for all DMs increases with increasing temperature at least lower and upper limits for transport coefficients should be possible

40 Charmonium Spectral function our current best guess: statistical error band from Jackknife analysis no clear signal for bound states t above 1.46 T c systematic uncertainties still need to be analyzed in more detail!

41 Charmonium Spectral function our current best guess: statistical error band from Jackknife analysis no clear signal for bound states t above 1.46 T c systematic uncertainties still need to be analyzed in more detail!

42 Charmonium Spectral function Transport Peak TD T/T c D = π ρ ii (ω,~p =0,T) lim 3χ 00 ω 0 ωt Perturbative estimate (α s ~0.2, g~1.6): Strong coupling limit: LO: 2πTD ' πTD = 1 NLO: 2πTD ' 8.4 [Moore&Teaney, PRD71(2005)064904, [Kovtun, Son & Starinets,JHEP 0310(2004)064] Caron-Huot&Moore, PRL100(2008)052301]

43 Heavy Quark Diffusion constant TD Charm Light PHENIX Francis et al. NLO pqcd estimate from HQ momentum diffusion Francis, OK, Laine, Langelage, arxiv: (see talk by Mikko Laine) estimate t from charmonium correlation fct. Ding, Francis, OK, Karsch, Satz, Soeldner, arxiv: AdS/CFT T/T c estimate from light quark correlation fct. Ding, Francis, OK, Karsch, Laermann, Soeldner, PRD83 (2011) OK, Francis, arxiv: (see also Aarts et al. PRL 99 (2007) ) * LOPT similar calculation on HQ momentum diffusion by Banerjee, Datta, Gavai, Majumdar, arxiv: (see also Meyer, New J.Phys. 13 (2011) ) DT PHENIX T/T c There is improvement in extracting transport coefficients from LQCD! still more improvement needed to reduce systematic uncertainties and to move from estimates to real numbers!

44 Conclusions and Outlook Charm Quarks Conclusions: Detailed knowledge of the vector correlation function at various T in quenched QCD continuum extrapolation of correlation function still needed! Results so far depend on MEM analysis Ansätze more difficult due to m q dependence Heavy quark diffusion constant: 2πDT 2 No signs for bound states at and above 1.46 T c Outlook: understand systematic uncertainties in more detail need more sophisticated t Ansätze for the spectral function vector correlation function at non-zero momentum

Spectral functions and transport properties from lattice QCD. Olaf Kaczmarek

Spectral functions and transport properties from lattice QCD. Olaf Kaczmarek Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach Spectral functions and transport properties from lattice QCD Olaf Kaczmarek University of Bielefeld 8th International Workshop

More information

Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach. Olaf Kaczmarek. University of Bielefeld

Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach. Olaf Kaczmarek. University of Bielefeld Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach (some selected) Recent Developments in Lattice Studies for Quarkonia Olaf Kaczmarek University of Bielefeld Hard Probes 2012

More information

Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach. Olaf Kaczmarek. University of Bielefeld

Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach. Olaf Kaczmarek. University of Bielefeld Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach (some selected) Recent Developments in Lattice Studies for Quarkonia Olaf Kaczmarek University of Bielefeld 5th International

More information

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Masayuki Asakawa Department of Physics, Osaka University September 2011 @ EMMI Workshop QCD Phase Diagram T LHC RHIC QGP (quark-gluon

More information

Momentum diffusion of heavy quarks from Lattice QCD

Momentum diffusion of heavy quarks from Lattice QCD Momentum diffusion of heavy quarks from Lattice QCD in collaboration with Saumen Datta, Rajiv Gavai, Pushan Majumdar Phys.Rev. D85 (2012) 014510 Debasish Banerjee Albert Einstein Center for Fundamental

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

Heavy quarkonium physics from Euclidean correlators

Heavy quarkonium physics from Euclidean correlators Heavy quarkonium physics from Euclidean correlators Yannis Burnier Albert Einstein Center for Fundamental Physics, Bern University Talk at ECT*, based on [YB, M. Laine, JHEP 1211 (2012) 086] [YB, A.Rothkopf,

More information

QCD thermodynamics OUTLINE:

QCD thermodynamics OUTLINE: QCD thermodynamics Frithjof Karsch, BNL OUTLINE: Equation of state and transition temperature QCD phase diagram close to the chiral limit Charge fluctuations and the RHIC search for the critical point

More information

Bottomonium and transport in the QGP

Bottomonium and transport in the QGP Bottomonium and transport in the QGP Gert Aarts (FASTSUM collaboration) Kyoto, December 201 p. 1 Introduction QCD thermodynamics euclidean formulation lattice QCD pressure, entropy, fluctuations,... this

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Lattice QCD and transport coefficients

Lattice QCD and transport coefficients International Nuclear Physics Conference, Adelaide, Australia, 13 Sep. 2016 Cluster of Excellence Institute for Nuclear Physics Helmholtz Institute Mainz Plan Strongly interacting matter at temperatures

More information

arxiv: v1 [hep-lat] 10 Oct 2015

arxiv: v1 [hep-lat] 10 Oct 2015 BI-TP /6 A stochastic approach to the reconstruction of spectral functions in lattice QCD arxiv:.9v [hep-lat] Oct, Heng-Tong Ding Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

arxiv: v1 [hep-lat] 19 Dec 2013

arxiv: v1 [hep-lat] 19 Dec 2013 emerature deendence of electrical conductivity and dileton rates from hot quenched lattice QCD arxiv:32.5609v [he-lat] 9 Dec 203 and Marcel Müller Fakultät für Physik, Universität Bielefeld, D-3365 Bielefeld,

More information

Spectral functions and hadron spectroscopy in lattice QCD

Spectral functions and hadron spectroscopy in lattice QCD Spectral functions and hadron spectroscopy in lattice QCD Anthony Francis Jefferson Laboratory 06.01.2014 Outline Biography Pre-academia Academia Spectral functions in lattice QCD at finite temperature

More information

The strange degrees of freedom in QCD at high temperature. Christian Schmidt

The strange degrees of freedom in QCD at high temperature. Christian Schmidt The strange degrees of freedom in QCD at high temperature Christian Schmidt Christian Schmidt LAT 213 1 Abstract We use up to fourth order cumulants of net strangeness fluctuations and their correlations

More information

High Temperature/Density QCD

High Temperature/Density QCD High Temperature/Density QCD Frithjof Karsch, BNL and Bielefeld University Temperature ~17 MeV Early Universe Future LHC Experiments Crossover Current RHIC Experiments RHIC Energy Scan Critical Point 1

More information

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s Quark matter probed by dileptons Olena Linnyk July 02, 2010 Information from photons and dileptons 14 12 10 ε/t 4 8 6 4 2 Lattice QCD: µ B =0 µ B =530 MeV 0 0.5 1.0 1.5 2.0 2.5 3.0 T/T c But what are the

More information

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1 Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction

More information

Thermodynamics of (2+1)-flavor QCD from the lattice

Thermodynamics of (2+1)-flavor QCD from the lattice INT Seattle, December 7, 2006 Thermodynamics of (2+1)-flavor QCD from the lattice Christian Schmidt for the RBC-Bielefeld Collaboration --- results from QCDOC --RIKEN BNL Saumen Datta Frithjof Karsch Chulwoo

More information

Heavy quark free energies, screening and the renormalized Polyakov loop

Heavy quark free energies, screening and the renormalized Polyakov loop Heavy quark free energies, screening and the renormalized Polyakov loop Olaf Kaczmarek Felix Zantow Universität Bielefeld October 6, 26 VI Workshop III, Rathen, October, 26 p./9 Charmonium suppression..75.5

More information

QCD thermodynamics with two-flavours of Wilson fermions on large lattices

QCD thermodynamics with two-flavours of Wilson fermions on large lattices QCD thermodynamics with two-flavours of Wilson fermions on large lattices Bastian Brandt Institute for nuclear physics In collaboration with A. Francis, H.B. Meyer, O. Philipsen (Frankfurt) and H. Wittig

More information

Spectral functions in QCD

Spectral functions in QCD Spectral functions in QCD Gert Aarts ECT*, May 2016 p. 1 Strongly interacting matter: transport and response aim of the meeting common questions for diverse systems cold atomic gases hadronic and quark-gluon

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

Static quark correlators on the 2+1 flavor TUMQCD lattices

Static quark correlators on the 2+1 flavor TUMQCD lattices Static quark correlators on the 2+1 flavor TUMQCD lattices J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität

More information

Reorganizing the QCD pressure at intermediate coupling

Reorganizing the QCD pressure at intermediate coupling Reorganizing the QCD pressure at intermediate coupling Michael Strickland Gettysburg College and Frankfurt Institute for Advanced Studies (FIAS) Collaborators: Nan Su (FIAS) and Jens Andersen (NTNU) Reference:

More information

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 1/27 Lattice QCD at High Temperature and Density Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 2/27 Towards A New State of Matter

More information

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies Nan Su p. 1 QCD Thermodynamics at Intermediate Coupling Nan Su Frankfurt Institute for Advanced Studies Collaborators: Jens O. Andersen & Lars E. Leganger (NTNU), Michael Strickland (Gettysburg) Phys.

More information

The Lambda parameter and strange quark mass in two-flavor QCD

The Lambda parameter and strange quark mass in two-flavor QCD The Lambda parameter and strange quark mass in two-flavor QCD Patrick Fritzsch Institut für Physik, Humboldt-Universität zu Berlin, Germany talk based on [arxiv:1205.5380] in collaboration with F.Knechtli,

More information

Viscosity Correlators in Improved Holographic QCD

Viscosity Correlators in Improved Holographic QCD Bielefeld University October 18, 2012 based on K. Kajantie, M.K., M. Vepsäläinen, A. Vuorinen, arxiv:1104.5352[hep-ph]. K. Kajantie, M.K., A. Vuorinen, to be published. 1 Motivation 2 Improved Holographics

More information

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma T-Matrix approach to heavy quarks in the Quark-Gluon Plasma Hendrik van Hees Justus-Liebig-Universität Gießen June 1, 28 with M. Mannarelli, V. Greco, and R. Rapp Institut für Theoretische Physik JUSTUS-LIEBIG-

More information

arxiv: v1 [hep-ph] 24 Oct 2012

arxiv: v1 [hep-ph] 24 Oct 2012 Screening Masses of Scalar and Pseudo-scalar Excitations in Quark-gluon Plasma P. Czerski The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, arxiv:1210.6531v1

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

The QCD equation of state at high temperatures

The QCD equation of state at high temperatures The QCD equation of state at high temperatures Alexei Bazavov (in collaboration with P. Petreczky, J. Weber et al.) Michigan State University Feb 1, 2017 A. Bazavov (MSU) GHP2017 Feb 1, 2017 1 / 16 Introduction

More information

Energy-momentum tensor correlators in hot Yang-Mills theory

Energy-momentum tensor correlators in hot Yang-Mills theory Energy-momentum tensor correlators in hot Yang-Mills theory Aleksi Vuorinen University of Helsinki Micro-workshop on analytic properties of thermal correlators University of Oxford, 6.3.017 Mikko Laine,

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

A Minimal Composite Goldstone Higgs model

A Minimal Composite Goldstone Higgs model A Minimal Composite Goldstone Higgs model Lattice for BSM Physics 2017, Boston University Plan of the talk Introduction to composite Goldstone Higgs models Lattice results for the SU(2) Goldstone Higgs

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Justus-Liebig Universität Gießen October 13, 29 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Heavy-Quark

More information

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Probing the Extremes of Matter with Heavy Ions - Erice, 34th Course Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Frithjof Karsch Brookhaven National Laboratory &

More information

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Pasi Huovinen J. W. Goethe Universität, Frankfurt Quantifying the properties of Hot QCD matter June 11, 1, Institute

More information

Meson wave functions from the lattice. Wolfram Schroers

Meson wave functions from the lattice. Wolfram Schroers Meson wave functions from the lattice Wolfram Schroers QCDSF/UKQCD Collaboration V.M. Braun, M. Göckeler, R. Horsley, H. Perlt, D. Pleiter, P.E.L. Rakow, G. Schierholz, A. Schiller, W. Schroers, H. Stüben,

More information

Medium Modifications of Hadrons and Electromagnetic Probe

Medium Modifications of Hadrons and Electromagnetic Probe Medium Modifications of Hadrons and Texas A&M University March 17, 26 Outline QCD and Chiral Symmetry QCD and ( accidental ) Symmetries Theory for strong interactions: QCD L QCD = 1 4 F a µν Fµν a + ψ(i

More information

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Meifeng Lin for the RBC and UKQCD Collaborations Department of Physics Columbia University July 29 - August 4, 2007 / Lattice 2007 @ Regensburg

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

arxiv: v1 [hep-lat] 14 Oct 2015

arxiv: v1 [hep-lat] 14 Oct 2015 Calculation of free baryon spectral densities at finite temperature arxiv:151.469v1 [hep-lat] 14 Oct 15 and Gert Aarts Department of Physics, College of Science, Swansea University, Swansea, United Kingdom

More information

Flavoured aspects of the QCD thermodynamics

Flavoured aspects of the QCD thermodynamics Journal of Physics: Conference Series PAPER OPEN ACCESS Flavoured aspects of the QCD thermodynamics To cite this article: O. Kaczmarek 2016 J. Phys.: Conf. Ser. 668 012003 View the article online for updates

More information

Lattice calculation of static quark correlators at finite temperature

Lattice calculation of static quark correlators at finite temperature Lattice calculation of static quark correlators at finite temperature J. Weber in collaboration with A. Bazavov 2, N. Brambilla, M.Berwein, P. Petrezcky 3 and A. Vairo Physik Department, Technische Universität

More information

Strong Coupling and Heavy Ion Collisions

Strong Coupling and Heavy Ion Collisions Strong Coupling and Heavy Ion Collisions Derek Teaney SUNY Stony Brook and RBRC Fellow Simon Caron-Huot, DT, Paul Chesler; PRD, arxiv:2.73 Paul Chesler and DT; arxiv:2.696 Paul Chesler and DT; arxiv:2

More information

Quark Number Susceptibilities & The Wróblewski Parameter

Quark Number Susceptibilities & The Wróblewski Parameter Quark Number Susceptibilities & The Wróblewski Parameter Rajiv V. Gavai T. I. F. R., Mumbai, India In collaboration with Sourendu Gupta, TIFR, Mumbai Hard Probes 2004, Ericeira, Portugal, November 9, 2004

More information

Heavy quark free energies and screening from lattice QCD

Heavy quark free energies and screening from lattice QCD Heavy quark free energies and screening from lattice QCD Olaf Kaczmarek Universität Bielefeld February 9, 29 RBC-Bielefeld collaboration O. Kaczmarek, PoS CPOD7 (27) 43 RBC-Bielefeld, Phys.Rev.D77 (28)

More information

arxiv: v1 [hep-lat] 5 Nov 2007

arxiv: v1 [hep-lat] 5 Nov 2007 arxiv:0711.0661v1 [hep-lat] 5 Nov 2007 Recent lattice results on finite temperature and density QCD, part II Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: karsch@bnl.gov

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

Outline: Introduction

Outline: Introduction Electromagnetic radiation in hadronic interactions: from pp to AA collisions Outline: Introduction Lijuan Ruan (Brookhaven National Laboratory) Recent results on dileptons (dielectrons) Recent results

More information

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y.

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y. Calculation of decay constant using gradient flow, towards the Kaon bag parameter University of Tsukuba, A. Suzuki and Y. Taniguchi Contents Goal : Calculation of B K with Wilson fermion using gradient

More information

Exploring the QCD phase diagram with conserved charge fluctuations

Exploring the QCD phase diagram with conserved charge fluctuations New Frontiers in QCD 2013 Exploring the QCD phase diagram with conserved charge fluctuations Frithjof Karsch Brookhaven National Laboratory & Bielefeld University OUTLINE conserved charge fluctuations

More information

Conserved Charge Fluctuations and Correlations from Lattice QCD and the Beam Energy Scan

Conserved Charge Fluctuations and Correlations from Lattice QCD and the Beam Energy Scan Conserved Charge Fluctuations and Correlations from Lattice QCD and the Beam Energy Scan Frithjof Karsch Brookhaven National Laboratory & Bielefeld University Bielefeld-BNL-CCNU Collaboration A. Bazavov,

More information

arxiv:hep-lat/ v2 17 Jun 2005

arxiv:hep-lat/ v2 17 Jun 2005 BI-TP 25/8 and BNL-NT-5/8 Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding Olaf Kaczmarek Fakultät für Physik,

More information

arxiv: v1 [hep-lat] 24 Oct 2013

arxiv: v1 [hep-lat] 24 Oct 2013 arxiv:30.646v [hep-lat] 24 Oct 203 Lattice NRQCD study of in-medium bottomonium states using N f = 2+,48 3 2 HotQCD configurations Department of Physics, Sejong University, Seoul 43-747, Korea E-mail:

More information

Thermal dilepton production from hot QCD

Thermal dilepton production from hot QCD Institute for Theoretical Physics, AEC, University of Bern, Sidlerstrasse 5, 301 Bern, Switzerland E-mail: laine@itp.unibe.ch NLO and LPM-resummed computations of thermal dilepton production from a hot

More information

Meson spectral function: an application of the Maximum Entropy Method

Meson spectral function: an application of the Maximum Entropy Method Meson spectral function: an application of the Maimum Entropy Method Péter Petreczky Physics Department and RIKEN-BNL Meson correlations on lattice and the spectral functions Maimum Entropy Method in lattice

More information

QCD thermodynamics. Frithjof Karsch, BNL/Bielefeld

QCD thermodynamics. Frithjof Karsch, BNL/Bielefeld QCD thermodynamics Frithjof Karsch, BNL/Bielefeld Key Questions NSAC Long Range Plan 2007 What are the phases of strongly interacting matter, and what role do they play in the cosmos? What does QCD predict

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT BI-TP 2000/41 Quark Mass and Flavour Dependence of the QCD Phase Transition F. Karsch, E. Laermann and A. Peikert Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany ABSTRACT We analyze

More information

Weakly coupled QGP? Péter Petreczky

Weakly coupled QGP? Péter Petreczky Weakly coupled QGP? Péter Petreczky QGP is expected to be strongly coupled around T c : how does this features manifest itself in terms of different quantities, how do we observe it on lattice? QGP: state

More information

arxiv: v1 [hep-lat] 19 Feb 2012

arxiv: v1 [hep-lat] 19 Feb 2012 Cent. Eur. J. Phys. -5 Author version Central European Journal of Physics Determination of Freeze-out Conditions from Lattice QCD Calculations Review Article arxiv:.473v [hep-lat] 9 Feb Frithjof Karsch,

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

Heavy Quarks in Heavy-Ion Collisions

Heavy Quarks in Heavy-Ion Collisions Heavy Quarks in Heavy-Ion Collisions Hendrik van Hees with T. Lang, J. Steinheimer, M. Bleicher Goethe University Frankfurt and FIAS July 18, 213 Hendrik van Hees (GU Frankfurt/FIAS) Heavy Quarks in HICs

More information

arxiv:hep-lat/ v2 4 Mar 2005

arxiv:hep-lat/ v2 4 Mar 2005 EPJ manuscript No. (will be inserted by the editor) Deconfinement and Quarkonium Suppression Frithjof Karsch,2 a arxiv:hep-lat/524v2 4 Mar 25 Fakultät für Physik, Universität Bielefeld, D-3365 Bielefeld,

More information

Quarkonium as Probe of Hot QCD Medium. Ágnes Mócsy

Quarkonium as Probe of Hot QCD Medium. Ágnes Mócsy Quarkonium as Probe of Hot QCD Medium Ágnes Mócsy Quarkonium as Probe of Hot QCD Medium Ágnes Mócsy in collaboration with Peter Petreczky (BNL), Chuan Miao (Uni Mainz) QCD Expectations - Temperature effects

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR CBM Meeting VECC Kolkata July 31, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken

More information

Opportunities for Lattice QCD Thermodynamics. 1 QCD at nonzero temperature and density

Opportunities for Lattice QCD Thermodynamics. 1 QCD at nonzero temperature and density Opportunities for Lattice QCD Thermodynamics Lattice QCD Executive Committee R. Brower, (Boston U.) N. Christ (Columbia U.), M. Creutz (BNL), P. Mackenzie (Fermilab), J. Negele (MIT), C. Rebbi (Boston

More information

Towards Exploring Parity Violation with Lattice QCD. Towards Exploring Parity Violation with Lattice QCD. Brian Tiburzi 30 July 2014 RIKEN BNL

Towards Exploring Parity Violation with Lattice QCD. Towards Exploring Parity Violation with Lattice QCD. Brian Tiburzi 30 July 2014 RIKEN BNL Towards Exploring Parity Violation with Lattice QCD Brian Tiburzi 30 July 2014 RIKEN BNL Research Center Towards Exploring Parity Violation with Lattice QCD Towards Exploring Parity Violation with Lattice

More information

Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation

Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation V.V. Braguta ITEP 20 April, 2017 Outline: Introduction Details of the calculation Shear viscocity Fitting of the

More information

J/Ψ-suppression in the hadron resonance gas

J/Ψ-suppression in the hadron resonance gas J/Ψ-suppression in the hadron resonance gas Dariusz Prorok Institute of Theoretical Physics University of Wroc law Wroc law, 17 February 2014 HECOLS workshop and XXXII Max-Born Symposium Dariusz Prorok

More information

News on Hadrons in a Hot Medium

News on Hadrons in a Hot Medium News on Hadrons in a Hot Medium Mikko Laine (University of Bielefeld, Germany) 1 How to interpret the title? Hot Medium : 50 MeV T 1000 MeV; µ πt. Hadrons : In this talk only those which maintain their

More information

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Nucleon form factors and moments of GPDs in twisted mass lattice QCD Nucleon form factors and moments of GPDs in twisted mass lattice QCD European Collab ora tion M. Constantinou, C. Alexandrou, M. Brinet, J. Carbonell P. Harraud, P. Guichon, K. Jansen, C. Kallidonis, T.

More information

Lepton and Charm Measurements in the First Two Years of RHIC: An Experimental Overview

Lepton and Charm Measurements in the First Two Years of RHIC: An Experimental Overview Lepton and Charm Measurements in the First Two Years of RHIC: An Experimental Overview Ralf Averbeck State University of New York at Stony Brook INT/RHIC Winter Workshop, Seattle, December 13-15, 2002

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

Lattice QCD at non-zero temperature and density

Lattice QCD at non-zero temperature and density Lattice QCD at non-zero temperature and density Frithjof Karsch Bielefeld University & Brookhaven National Laboratory QCD in a nutshell, non-perturbative physics, lattice-regularized QCD, Monte Carlo simulations

More information

T.W. Chiu, Chung-Yuan Christian Univ, May 13, 2008 p.1/34. The Topology in QCD. Ting-Wai Chiu Physics Department, National Taiwan University

T.W. Chiu, Chung-Yuan Christian Univ, May 13, 2008 p.1/34. The Topology in QCD. Ting-Wai Chiu Physics Department, National Taiwan University T.W. Chiu, Chung-Yuan Christian Univ, May 13, 2008 p.1/34 The Topology in QCD Ting-Wai Chiu Physics Department, National Taiwan University The vacuum of QCD has a non-trivial topological structure. T.W.

More information

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: ,

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: , Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv:0907.0494, 1003.2180 Pavel Buividovich Lattice 2010 Magnetic phenomena in hadronic matter Magnetic phenomena

More information

Quarkonium Free Energy on the lattice and in effective field theories

Quarkonium Free Energy on the lattice and in effective field theories Quarkonium Free Energy on the lattice and in effective field theories J. H. Weber 1,2 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische

More information

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk Beijing Charmed hadron signals of partonic medium Olena Linnyk Our goal properties of partonic matter Hadron-string models Experiment QGP models Observables Hadron abundances J/Ψ anomalous suppression

More information

Transport Coefficients of Hadron Matter at Finite Temperature

Transport Coefficients of Hadron Matter at Finite Temperature Transport Coefficients of Hadron Matter at Finite Temperature Andres Ortiz University of Texas at El Paso Department of Physics Dr. Ralf Rapp Texas A&M University Cyclotron Institute Objectives To obtain

More information

QCD Thermodynamics on the Lattice from the Gradient Flow

QCD Thermodynamics on the Lattice from the Gradient Flow QCD Thermodynamics on the Lattice from the Gradient Flow Research Center for Nuclear Physics (RCNP), Osaka University E-mail: itou@yukawa.kyoto-u.ac.jp Sinya Aoki Yukawa Institute for Theoretical Physics,

More information

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations Mitglied der Helmholtz-Gemeinschaft Dirac and Pauli form factors from N f = 2 Clover-fermion simulations 20.1011 Dirk Pleiter JSC & University of Regensburg Outline 20.1011 Dirk Pleiter JSC & University

More information

Critical Behavior of heavy quarkonia in medium from QCD sum rules

Critical Behavior of heavy quarkonia in medium from QCD sum rules Critical Behavior of heavy quarkonia in medium from QCD sum rules Kenji Morita Institute of Physics and Applied Physics, Yonsei University in Collaboration with Su Houng Lee Aim of this talk: 1. Practical

More information

Dynamical equilibration of stronglyinteracting

Dynamical equilibration of stronglyinteracting Dynamical equilibration of stronglyinteracting infinite parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein, W.Cassing CPOD, Wuhan, China 11 November 2011 1 Motivation

More information

Heavy Ion Physics Lecture 3: Particle Production

Heavy Ion Physics Lecture 3: Particle Production Heavy Ion Physics Lecture 3: Particle Production HUGS 2015 Bolek Wyslouch echniques to study the plasma Radiation of hadrons Azimuthal asymmetry and radial expansion Energy loss by quarks, gluons and other

More information

Quarkonia in Medium: From Spectral Functions to Observables

Quarkonia in Medium: From Spectral Functions to Observables Quarkonia in Medium: From Spectral Functions to Observables Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA with: D. Cabrera (Madrid), L. Grandchamp, F. Riek

More information

Heavy flavor with

Heavy flavor with Heavy flavor with CBM@FAIR Hendrik van Hees Goethe University Frankfurt and FIAS April 21, 2015 Hendrik van Hees (GU Frankfurt/FIAS) Heavy flavor with CBM@FAIR April 21, 2015 1 / 22 Outline 1 Motivation:

More information

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape Outline: Non-central collision of spherical nuclei or central collision of deformed nuclei Overlapping zone is of almond shape Co ordinate space anisotropy is converted into momentum space anisotropy via

More information

arxiv:hep-lat/ v1 5 Oct 2006

arxiv:hep-lat/ v1 5 Oct 2006 arxiv:hep-lat/6141v1 5 Oct 26 Singlet Free Energies and the Renormalized Polyakov Loop in full QCD for RBC-Bielefeld collaboration Niels Bohr Institute E-mail: kpetrov@nbi.dk We calculate the free energy

More information

Light hadrons in 2+1 flavor lattice QCD

Light hadrons in 2+1 flavor lattice QCD Light hadrons..., Lattice seminar, KITP, Jan 26, 2005. U.M. Heller p. 1/42 Light hadrons in 2+1 flavor lattice QCD Urs M. Heller American Physical Society & BNL Modern Challenges for Lattice Field Theory

More information

Lattice QCD Evidence for Exotic Tetraquark Resonance. Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto , Japan

Lattice QCD Evidence for Exotic Tetraquark Resonance. Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto , Japan Lattice QCD Evidence for Exotic Tetraquark Resonance Λ and Kyosuke Tsumura Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto 66-85, Japan E-mail: suganuma@scphys.kyoto-u.ac.jp,

More information

Lattice Methods for Hadron Spectroscopy: new problems and challenges

Lattice Methods for Hadron Spectroscopy: new problems and challenges Lattice Methods for Hadron Spectroscopy: new problems and challenges Sinéad Ryan School of Mathematics, Trinity College Dublin, Ireland INT, Seattle, 10 th August, 2012 Sinéad Ryan (TCD) 1 / 28 Plan A

More information

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Benjamin Dönigus 03.12.2009 Seminar WS 2009/2010 Relativistische Schwerionenphysik Interface of Quark-Gluon Plasma and

More information

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations Charmonium, D s and D s from overlap fermion on domain wall fermion configurations,, Y. Chen, A. Alexandru, S.J. Dong, T. Draper, M. Gong,, F.X. Lee, A. Li, 4 K.F. Liu, Z. Liu, M. Lujan, and N. Mathur

More information