Differential Equations and Linear Algebra - Fall 2017

Size: px
Start display at page:

Download "Differential Equations and Linear Algebra - Fall 2017"

Transcription

1 NAME: Differential Equations and Linear Algebra - Fall 27 Final Exam, December 4, 27 GRADING:. In multiple choice problems -3 you don t have to show your work. Consequently, no partial credit will be given. 2. In multiple choice problems 4-8: (a) If your answer is correct and you show all important steps, you ll get full credit for this problem. (b) If your answer is correct, but you show only few important steps, you ll get 9% for this problem. (c) If your answer is correct, but you show no or little or irrelevant work, you ll get 8% for this problem. (d) If your answer is incorrect, you ll get for this problem. Average 7.9% Max % (2 students) Min 38% (3 students)

2 . Let W be the set of singular 2 2 matrices under the usual operations. Then A W is not a vector space, since it is not closed under addition. correct B W is not a vector space, since is not in W. C W is not a vector space, since it is not closed under multiplication by a scalar. D W is not a vector space, since it is not a subspace of the vector space of 2 2 matrices. Info: The average in the class for this problem was 34.3%. 2. Let Find A. [ ] 3 π A πe 3 2 e 2 [ ] 2 e B 3 2 πe π 3 [ ] 2 e C πe 3 2 π 3 [ ] 3 π D 3 2 πe e 2 [ 2 π A = e 3 correct ] Info: The average in the class for this problem was 77.5%. 3. Vectors v,...,v p are said to be linearly dependent if A there exist scalars c,...,c p, such that c v +...+c p v p =. B there exist scalars c,...,c p, not all zero, such that c v +...+c p v p. C there exist scalars c,...,c p, such that c v +...+c p v p. D the vector equation c v +...+c p v p = has only the trivial solution. E there exist scalars c,...,c p, not all zero, such that c v c p v p =. correct F the vector equation c v +...+c p v p = has the trivial solution. G None of the above Info: The average in the class for this problem was 65.7%.

3 4. Solve (+y 2 ) dy dx = xcosx. A y 3 +3y = 3(xsinx cosx)+c B y 3 +3y = 3(xsinx+cosx)+c correct C y 3 +3y = 3(xsinx+cosx)+c D y 3 +3y = 3(xsinx cosx)+c Info: The average in the class for this problem was 95.%. 5. Solve dy dx y = e2x. A y = e x (e 2x +c) B y = e 2x (e x +c) C y = e x (e x +c) correct D y = e 2x (e 2x +c) Info: The average in the class for this problem was 96.%. 2

4 6. Solve [+ln(xy)]dx+xy dy =. A yln(xy) = c B xyln(xy) = c C xlny = c D ylnx = c E x ln(xy) = c correct F xylnx = c G xylny = c H None of the above Info: The average in the class for this problem was 49%. 3

5 7. Solve ydx (2x+y 4 )dy =. A xy 2 +y 2 /2 = c B xy 2 y 2 /2 = c correct C x 2 y y 2 /2 = c D x 2 y +y 2 /2 = c Info: The average in the class for this problem was 55.9%. 4

6 8. Compute the second Picard iteration for the initial-value problem dy dx A y 2 (x) = 3+4x 2 +6x 4 B y 2 (x) = 3+4x 2 6x 4 C y 2 (x) = 3 4x 2 +6x 4 D y 2 (x) = 3 4x 2 6x 4 correct y 2 (x) = 3+6x 2 +6x 4 = 4xy, y() = 3. Info: The average in the class for this problem was 47.%. 9. Solve y y 2y =. A y = c e x +c 2 xe 2x B y = c e x +c 2 xe 2x C y = c e x +c 2 xe 2x D y = c e x +c 2 xe 2x correct Info: The average in the class for this problem was 72.6%. 5

7 . Find a solution of the equation y +2y +y = 5sin3t. A y = 4sin3t+3cos3t B y = 4sin3t 3cos3t C y = 4sin3t 3cos3t correct D y = 4sin3t+3cos3t Solution: We first note that the right-hand side of y +2y +y = 5sin3t is the imaginary part of 5e i3t = 5cos3t+5isin3t Therefore we will find a particular solution ψ(t) of the given equation as the imaginary part of a complex-valued solution φ(t) of the equation L[y] = d2 y dt 2 +2dy dt +y = 5e3it () To this end, observe that α = 3i is not a root of the the characteristic equation r 2 +2r + = Therefore we set We have φ(t) = A e 3it (2) φ = (A e 3it ) = A (e 3it ) = A e 3it (3it) = A e 3it (3i) = 3A e 3it i and therefore φ = (3A e 3it i) = 3A i(e 3it ) = 3A ie 3it (3it) = 3A ie 3it (3i) = 9A i 2 e 3it = 9A e 3it Using this in () gives L[φ](t) = φ +2φ +φ = 9A e 3it +6A e 3it i+a e 3it = 8A e 3it +6A e 3it i = A e 3it ( 8+6i) A e 3it ( 8+6i) = 5e 3it A ( 8+6i) = 5 A = i

8 Note that A can be rewritten as since A = 5 8+6i = A = 4 3i 5( 8 6i) ( 8+6i)( 8 6i) = 5( 8 6i) ( 8) 2 (6i) = 5( 8 6i) = 5( 8 6i) = 4 3i Substituting this into (2), we get φ(t) = A e 3it = ( 4 3i)e 3it = ( 4 3i)(cos3t+isin3t) = ( 4)cos3t+( 4)isin3t+( 3i)cos3t+( 3i 2 )sin3t = ( 4)cos3t+( 4)isin3t+( 3i)cos3t+3sin3t = ( 4cos3t+3sin3t)+i( 4sin3t 3cos3t) Therefore ψ(t) = Im { φ(t) } = 4sin3t 3cos3t is a particular solution of y +2y +y = 5sin3t. Info: The average in the class for this problem was 56.9%. 7

9 . Find a solution of the equation y +xy = (3n )( ) n A y(x) = x+ (3n+)! n= (2n )( ) n B y(x) = x+ (2n+)! n= (3n )( ) n C y(x) = x+ (3n+)! n= (2n )( ) n D y(x) = x+ (2n+)! n= x 3n x 2n+ x 3n+ x 2n correct Solution: We set Computing and y(x) = a +a x+a 2 x 2 +a 3 x 3 +a 4 x = y = a +2a 2 x+3a 3 x 2 +4a 4 x = y = 2a 2 +6a 3 x+2a 4 x = we see that y(x) is a solution of y +xy = if y +xy = n(n )a n x n 2 +x a n x n = a n x n na n x n n(n )a n x n 2 n(n )a n x n 2 + a n x n+ = () Our next step is to rewrite the first summation in () so that the exponent of the general term is n+, instead of n 2. We have n(n )a n x n 2 = (n+3)(n+2)a n+3 x n+ n= 3 = ( 3+3)( 3+2)a 3+3 x 3+ +( 2+3)( 2+2)a 2+3 x 2+ +( +3)( +2)a +3 x + + (n+3)(n+2)a n+3 x n+ = ++2a 2 + (n+3)(n+2)a n+3 x n+ 8

10 therefore we can rewrite () in the form 2a 2 + (n+3)(n+2)a n+3 x n+ + Therefore the coefficients must satisfy That is, a n x n+ = 2a 2 + [(n+3)(n+2)a n+3 +a n ]x n+ = a 2 = and (n+3)(n+2)a n+3 +a n = a n a 2 = and a n+3 = (n+3)(n+2) To find a solution of y +xy =, we set a =, a =. In this case, a,a 3,a 6,... and a 2,a 5,a 8,... are zero since a =, a 3 = a 3 2 = 3 2 =, a 6 = a = 6 5 = and a 2 =, a 5 = a = 5 4 =, a 8 = a = 8 7 = and so on. The coefficients a,a 4,a 7,... are determined from the relations a = a 4 = a 4 3 = 4 3 = = 2 4! a 7 = a = 2 4! 7 6 = 2 5 4! = 2 5 7! a = a 7 9 = 2 5 7! 9 = ! 9 8 = 2 5 8! a 3 = a 3 2 = 2 5 8! 3 2 = 2 5 8! 3 2 = ! and so on. Proceeding inductively, we find that Hence, is a solution of y +xy =. y 2 (x) = x 2 4! x ! = x+ n= a 3n+ = ( ) n (3n ) (3n+)! x ! ( ) n (3n ) (3n+)! Info: The average in the class for this problem was 32.4%. 9 x x ! x 3n+

11 2. Find a basis of the vector space of all solutions of the system x +x 2 +x 3 +x 4 +x 5 +x 6 = x 3 +x 4 +x 5 +x 6 = x 4 +x 5 +x 6 = A,, B,, C,, correct D,, Info: The average in the class for this problem was 58.8%.

12 3. Find the general solution of the system ẋ = Ax, where A = Hint: The eigenvalues of A are λ = and λ 2 = 2. A x(t) = c e t B x(t) = c e t +c 2 e 2t C x(t) = c e t +c 2 e 2t +c 2 e 2t +c 3 e 2t D x(t) = c e t +c 2 e 2t 3 2 +c 3 e 2t +c 3 e 2t +c 3 e 2t correct Info: The average in the class for this problem was 66.7%.

13 4. Find the general solution of the system ẋ = Ax, where [ ] 2 A = 2 [ ] [ ] sin2t cos2t A x(t) = c +c 2 cos2t sin2t [ ] [ ] sin2t cos2t B x(t) = c +c 2 cos2t sin2t [ ] [ ] sin2t cos2t C x(t) = c +c 2 cos2t sin2t [ ] [ ] sin2t cos2t D x(t) = c +c 2 correct cos2t sin2t Info: The average in the class for this problem was 52.9%. 2

14 5. Find the general solution of the system ẋ = Ax, where Hint: The eigenvalue of A is λ = 4. A x(t) = c e 4t 3 +c 2 e 4t A = t +t B x(t) = c e 4t +c 2 e 4t t C x(t) = c e 4t D x(t) = c e 4t 3 3 +c 2 e 4t 3 3t t 3t t +c 2 e 4t t 3t c 3 e 4t +c 3 e 4t +t t 3t +c 3 e 4t c 3 e 4t correct 2 Info: The average in the class for this problem was 7.6%. 3

15 6. Let A = [ ] [ ] +4t 8t A e 2t 2t 4t [ ] +4t 8t B e 2t 2t 4t [ ] 4t 8t C e 2t 2t 4t [ ] +4t 8t D e 2t 2t +4t, then e At is correct Info: The average in the class for this problem was 62.8%. 4

16 7. Determine whether each solution x(t) of the differential equation [ ] ẋ = x 2 is stable or unstable. A Unstable, because all the eigenvalues of A have negative real part. B Stable, because at least one eigenvalue of A has positive real part. C Unstable, because at least one eigenvalue of A has positive real part. correct D Stable, because all the eigenvalues of A have negative real part. Info: The average in the class for this problem was 9.2%. 5

17 8. Expand the function in a pure sine series. Then where A b n = 4 nπ B b n = 4 nπ C b n = 4 nπ D b n = 4 nπ ( sin 2nπ ( cos 2nπ 3 ( )n 3 ( )n (cos nπ ) 3 ( )n (sin nπ 3 ( )n ) f(x) = ) ) f(x) = { for < x 2 2 for 2 < x < 3 n= b n sin nπx 3 correct Info: The average in the class for this problem was 67.7%. 6

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012 Polytechnic Institute of NYU MA Final Practice Answers Fall Studying from past or sample exams is NOT recommended. If you do, it should be only AFTER you know how to do all of the homework and worksheet

More information

June 2011 PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 262) Linear Algebra and Differential Equations

June 2011 PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 262) Linear Algebra and Differential Equations June 20 PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 262) Linear Algebra and Differential Equations The topics covered in this exam can be found in An introduction to differential equations

More information

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR:

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR: MA262 FINAL EXAM SPRING 2016 MAY 2, 2016 TEST NUMBER 01 INSTRUCTIONS: 1. Do not open the exam booklet until you are instructed to do so. 2. Before you open the booklet fill in the information below and

More information

MA 262 Spring 1993 FINAL EXAM INSTRUCTIONS. 1. You must use a #2 pencil on the mark sense sheet (answer sheet).

MA 262 Spring 1993 FINAL EXAM INSTRUCTIONS. 1. You must use a #2 pencil on the mark sense sheet (answer sheet). MA 6 Spring 993 FINAL EXAM INSTRUCTIONS NAME. You must use a # pencil on the mark sense sheet (answer sheet).. On the mark sense sheet, fill in the instructor s name and the course number. 3. Fill in your

More information

APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015.

APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015. APPM 23: Final Exam :3am :pm, May, 25. ON THE FRONT OF YOUR BLUEBOOK write: ) your name, 2) your student ID number, 3) lecture section, 4) your instructor s name, and 5) a grading table for eight questions.

More information

The Exponential of a Matrix

The Exponential of a Matrix The Exponential of a Matrix 5-8- The solution to the exponential growth equation dx dt kx is given by x c e kt It is natural to ask whether you can solve a constant coefficient linear system x A x in a

More information

Differential Equations 2280 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 2015 at 12:50pm

Differential Equations 2280 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 2015 at 12:50pm Differential Equations 228 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 25 at 2:5pm Instructions: This in-class exam is 5 minutes. No calculators, notes, tables or books. No answer check is

More information

MA2327, Problem set #3 (Practice problems with solutions)

MA2327, Problem set #3 (Practice problems with solutions) MA2327, Problem set #3 (Practice problems with solutions) 5 2 Compute the matrix exponential e ta in the case that A = 2 5 2 Compute the matrix exponential e ta in the case that A = 5 3 Find the unique

More information

Math 180 Written Homework Assignment #10 Due Tuesday, December 2nd at the beginning of your discussion class.

Math 180 Written Homework Assignment #10 Due Tuesday, December 2nd at the beginning of your discussion class. Math 18 Written Homework Assignment #1 Due Tuesday, December 2nd at the beginning of your discussion class. Directions. You are welcome to work on the following problems with other MATH 18 students, but

More information

3. Identify and find the general solution of each of the following first order differential equations.

3. Identify and find the general solution of each of the following first order differential equations. Final Exam MATH 33, Sample Questions. Fall 7. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C x is the general solution of a differential

More information

Algebraic Properties of Solutions of Linear Systems

Algebraic Properties of Solutions of Linear Systems Algebraic Properties of Solutions of Linear Systems In this chapter we will consider simultaneous first-order differential equations in several variables, that is, equations of the form f 1t,,,x n d f

More information

Q1 Q2 Q3 Q4 Tot Letr Xtra

Q1 Q2 Q3 Q4 Tot Letr Xtra Mathematics 54.1 Final Exam, 12 May 2011 180 minutes, 90 points NAME: ID: GSI: INSTRUCTIONS: You must justify your answers, except when told otherwise. All the work for a question should be on the respective

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

3. Identify and find the general solution of each of the following first order differential equations.

3. Identify and find the general solution of each of the following first order differential equations. Final Exam MATH 33, Sample Questions. Fall 6. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C is the general solution of a differential

More information

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section: MATH 5 Final Examination December 6, 5 FORM A Name: Student Number: Section: This exam has 7 questions for a total of 5 points. In order to obtain full credit for partial credit problems, all work must

More information

Series Solution of Linear Ordinary Differential Equations

Series Solution of Linear Ordinary Differential Equations Series Solution of Linear Ordinary Differential Equations Department of Mathematics IIT Guwahati Aim: To study methods for determining series expansions for solutions to linear ODE with variable coefficients.

More information

2.3. VECTOR SPACES 25

2.3. VECTOR SPACES 25 2.3. VECTOR SPACES 25 2.3 Vector Spaces MATH 294 FALL 982 PRELIM # 3a 2.3. Let C[, ] denote the space of continuous functions defined on the interval [,] (i.e. f(x) is a member of C[, ] if f(x) is continuous

More information

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4. Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the

More information

Name: ID.NO: Fall 97. PLEASE, BE NEAT AND SHOW ALL YOUR WORK; CIRCLE YOUR ANSWER. NO NOTES, BOOKS, CALCULATORS, TAPE PLAYERS, or COMPUTERS.

Name: ID.NO: Fall 97. PLEASE, BE NEAT AND SHOW ALL YOUR WORK; CIRCLE YOUR ANSWER. NO NOTES, BOOKS, CALCULATORS, TAPE PLAYERS, or COMPUTERS. MATH 303-2/6/97 FINAL EXAM - Alternate WILKERSON SECTION Fall 97 Name: ID.NO: PLEASE, BE NEAT AND SHOW ALL YOUR WORK; CIRCLE YOUR ANSWER. NO NOTES, BOOKS, CALCULATORS, TAPE PLAYERS, or COMPUTERS. Problem

More information

M GENERAL MATHEMATICS -2- Dr. Tariq A. AlFadhel 1 Solution of the First Mid-Term Exam First semester H

M GENERAL MATHEMATICS -2- Dr. Tariq A. AlFadhel 1 Solution of the First Mid-Term Exam First semester H M 4 - GENERAL MATHEMATICS -- Dr. Tariq A. AlFadhel Solution of the First Mid-Term Exam First semester 435-436 H Q. Let A ( ) 4 and B 3 3 Compute (if possible) : AB and BA ( ) 4 AB 3 3 ( ) ( ) ++ 4+4+ 4

More information

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section: MATH 251 Final Examination December 19, 2012 FORM A Name: Student Number: Section: This exam has 17 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA MATH 33 Sample Questions for Exam 3. Find x and y so that x 4 3 5x 3y + y = 5 5. x = 3/7, y = 49/7. Let A = 3 4, B = 3 5, C = 3 Perform the indicated operations, if possible: a AC b AB c B + AC d CBA AB

More information

Math Exam 2, October 14, 2008

Math Exam 2, October 14, 2008 Math 96 - Exam 2, October 4, 28 Name: Problem (5 points Find all solutions to the following system of linear equations, check your work: x + x 2 x 3 2x 2 2x 3 2 x x 2 + x 3 2 Solution Let s perform Gaussian

More information

Math 304 Answers to Selected Problems

Math 304 Answers to Selected Problems Math Answers to Selected Problems Section 6.. Find the general solution to each of the following systems. a y y + y y y + y e y y y y y + y f y y + y y y + 6y y y + y Answer: a This is a system of the

More information

MA 262, Fall 2017, Final Version 01(Green)

MA 262, Fall 2017, Final Version 01(Green) INSTRUCTIONS MA 262, Fall 2017, Final Version 01(Green) (1) Switch off your phone upon entering the exam room. (2) Do not open the exam booklet until you are instructed to do so. (3) Before you open the

More information

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016 Math 4B Notes Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: T 2:45 :45pm Last updated 7/24/206 Classification of Differential Equations The order of a differential equation is the

More information

MATH 307: Problem Set #3 Solutions

MATH 307: Problem Set #3 Solutions : Problem Set #3 Solutions Due on: May 3, 2015 Problem 1 Autonomous Equations Recall that an equilibrium solution of an autonomous equation is called stable if solutions lying on both sides of it tend

More information

Math 240 Calculus III

Math 240 Calculus III DE Higher Order Calculus III Summer 2015, Session II Tuesday, July 28, 2015 Agenda DE 1. of order n An example 2. constant-coefficient linear Introduction DE We now turn our attention to solving linear

More information

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you.

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you. Math 54 Fall 2017 Practice Final Exam Exam date: 12/14/17 Time Limit: 170 Minutes Name: Student ID: GSI or Section: This exam contains 9 pages (including this cover page) and 10 problems. Problems are

More information

Solution to Review Problems for Midterm II

Solution to Review Problems for Midterm II Solution to Review Problems for Midterm II Midterm II: Monday, October 18 in class Topics: 31-3 (except 34) 1 Use te definition of derivative f f(x+) f(x) (x) lim 0 to find te derivative of te functions

More information

Math 2233 Homework Set 7

Math 2233 Homework Set 7 Math 33 Homework Set 7 1. Find the general solution to the following differential equations. If initial conditions are specified, also determine the solution satisfying those initial conditions. a y 4

More information

2.10 Saddles, Nodes, Foci and Centers

2.10 Saddles, Nodes, Foci and Centers 2.10 Saddles, Nodes, Foci and Centers In Section 1.5, a linear system (1 where x R 2 was said to have a saddle, node, focus or center at the origin if its phase portrait was linearly equivalent to one

More information

Math 216 Final Exam 14 December, 2012

Math 216 Final Exam 14 December, 2012 Math 216 Final Exam 14 December, 2012 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Math 2930 Worksheet Final Exam Review

Math 2930 Worksheet Final Exam Review Math 293 Worksheet Final Exam Review Week 14 November 3th, 217 Question 1. (* Solve the initial value problem y y = 2xe x, y( = 1 Question 2. (* Consider the differential equation: y = y y 3. (a Find the

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information

Math 114: Make-up Final Exam. Instructions:

Math 114: Make-up Final Exam. Instructions: Math 114: Make-up Final Exam Instructions: 1. Please sign your name and indicate the name of your instructor and your teaching assistant: A. Your Name: B. Your Instructor: C. Your Teaching Assistant: 2.

More information

2.2 Separable Equations

2.2 Separable Equations 2.2 Separable Equations Definition A first-order differential equation that can be written in the form Is said to be separable. Note: the variables of a separable equation can be written as Examples Solve

More information

Math 308 Final Exam Practice Problems

Math 308 Final Exam Practice Problems Math 308 Final Exam Practice Problems This review should not be used as your sole source for preparation for the exam You should also re-work all examples given in lecture and all suggested homework problems

More information

Q1 /10 Q2 /10 Q3 /10 Q4 /10 Q5 /10 Q6 /10 Q7 /10 Q8 /10 Q9 /10 Q10 /10 Total /100

Q1 /10 Q2 /10 Q3 /10 Q4 /10 Q5 /10 Q6 /10 Q7 /10 Q8 /10 Q9 /10 Q10 /10 Total /100 Midterm Maths 240 - Calculus III July 23, 2012 Name: Solutions Instructions You have the entire period (1PM-3:10PM) to complete the test. You can use one 5.5 8.5 half-page for formulas, but no electronic

More information

6 Linear Equation. 6.1 Equation with constant coefficients

6 Linear Equation. 6.1 Equation with constant coefficients 6 Linear Equation 6.1 Equation with constant coefficients Consider the equation ẋ = Ax, x R n. This equating has n independent solutions. If the eigenvalues are distinct then the solutions are c k e λ

More information

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination August 14, 2015 FORM A Name: Student Number: Section: This exam has 11 questions for a total of 150 points. Show all your work! In order to obtain full credit for partial credit

More information

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations:

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations: Homework Exercises 1 1 Find the complete solutions (if any!) to each of the following systems of simultaneous equations: (i) x 4y + 3z = 2 3x 11y + 13z = 3 2x 9y + 2z = 7 x 2y + 6z = 2 (ii) x 4y + 3z =

More information

MATH 251 Examination II April 7, 2014 FORM A. Name: Student Number: Section:

MATH 251 Examination II April 7, 2014 FORM A. Name: Student Number: Section: MATH 251 Examination II April 7, 2014 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work must

More information

(a) x cos 3x dx We apply integration by parts. Take u = x, so that dv = cos 3x dx, v = 1 sin 3x, du = dx. Thus

(a) x cos 3x dx We apply integration by parts. Take u = x, so that dv = cos 3x dx, v = 1 sin 3x, du = dx. Thus Math 128 Midterm Examination 2 October 21, 28 Name 6 problems, 112 (oops) points. Instructions: Show all work partial credit will be given, and Answers without work are worth credit without points. You

More information

MATH 2250 Final Exam Solutions

MATH 2250 Final Exam Solutions MATH 225 Final Exam Solutions Tuesday, April 29, 28, 6: 8:PM Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the exam

More information

NAME: MA Sample Final Exam. Record all your answers on the answer sheet provided. The answer sheet is the only thing that will be graded.

NAME: MA Sample Final Exam. Record all your answers on the answer sheet provided. The answer sheet is the only thing that will be graded. NAME: MA 300 Sample Final Exam PUID: INSTRUCTIONS There are 5 problems on 4 pages. Record all your answers on the answer sheet provided. The answer sheet is the only thing that will be graded. No books

More information

Math Midterm 2

Math Midterm 2 Math 2374 - Midterm 2 Name: Section: Student ID: Signature: ˆ This exam consists of 6 pages (including this one) and 5 questions. ˆ Do not give numerical approximations to quantities such as sin 5, π,

More information

Second-Order Homogeneous Linear Equations with Constant Coefficients

Second-Order Homogeneous Linear Equations with Constant Coefficients 15 Second-Order Homogeneous Linear Equations with Constant Coefficients A very important class of second-order homogeneous linear equations consists of those with constant coefficients; that is, those

More information

1.1 Limits and Continuity. Precise definition of a limit and limit laws. Squeeze Theorem. Intermediate Value Theorem. Extreme Value Theorem.

1.1 Limits and Continuity. Precise definition of a limit and limit laws. Squeeze Theorem. Intermediate Value Theorem. Extreme Value Theorem. STATE EXAM MATHEMATICS Variant A ANSWERS AND SOLUTIONS 1 1.1 Limits and Continuity. Precise definition of a limit and limit laws. Squeeze Theorem. Intermediate Value Theorem. Extreme Value Theorem. Definition

More information

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination May 4, 2015 FORM A Name: Student Number: Section: This exam has 16 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all work must

More information

Solutions to Dynamical Systems 2010 exam. Each question is worth 25 marks.

Solutions to Dynamical Systems 2010 exam. Each question is worth 25 marks. Solutions to Dynamical Systems exam Each question is worth marks [Unseen] Consider the following st order differential equation: dy dt Xy yy 4 a Find and classify all the fixed points of Hence draw the

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #2 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #2 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 3. M Test # Solutions. (8 pts) For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For this

More information

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

PH.D. PRELIMINARY EXAMINATION MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY Dept. of Civil and Environmental Engineering FALL SEMESTER 2014 Structural Engineering, Mechanics and Materials NAME PH.D. PRELIMINARY EXAMINATION MATHEMATICS Problem

More information

Systems of Linear ODEs

Systems of Linear ODEs P a g e 1 Systems of Linear ODEs Systems of ordinary differential equations can be solved in much the same way as discrete dynamical systems if the differential equations are linear. We will focus here

More information

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Name Section Math 51 December 14, 5 Answer Key to Final Exam There are 1 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning

More information

MAT 311 Midterm #1 Show your work! 1. The existence and uniqueness theorem says that, given a point (x 0, y 0 ) the ODE. y = (1 x 2 y 2 ) 1/3

MAT 311 Midterm #1 Show your work! 1. The existence and uniqueness theorem says that, given a point (x 0, y 0 ) the ODE. y = (1 x 2 y 2 ) 1/3 MAT 3 Midterm # Show your work!. The existence and uniqueness theorem says that, given a point (x 0, y 0 ) the ODE y = ( x 2 y 2 ) /3 has a unique (local) solution with initial condition y(x 0 ) = y 0

More information

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12 First Name: Student-No: Last Name: Section: Grade: The remainder of this page has been left blank for your workings. Midterm D: Page of 2 Indefinite Integrals. 9 marks Each part is worth marks. Please

More information

Ph.D. Katarína Bellová Page 1 Mathematics 2 (10-PHY-BIPMA2) EXAM - Solutions, 20 July 2017, 10:00 12:00 All answers to be justified.

Ph.D. Katarína Bellová Page 1 Mathematics 2 (10-PHY-BIPMA2) EXAM - Solutions, 20 July 2017, 10:00 12:00 All answers to be justified. PhD Katarína Bellová Page 1 Mathematics 2 (10-PHY-BIPMA2 EXAM - Solutions, 20 July 2017, 10:00 12:00 All answers to be justified Problem 1 [ points]: For which parameters λ R does the following system

More information

Review for Exam 2. Review for Exam 2.

Review for Exam 2. Review for Exam 2. Review for Exam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Exam covers: Regular-singular points (5.5). Euler differential equation

More information

RED. Math 113 (Calculus II) Final Exam Form A Fall Name: Student ID: Section: Instructor: Instructions:

RED. Math 113 (Calculus II) Final Exam Form A Fall Name: Student ID: Section: Instructor: Instructions: Name: Student ID: Section: Instructor: Math 3 (Calculus II) Final Exam Form A Fall 22 RED Instructions: For questions which require a written answer, show all your work. Full credit will be given only

More information

Ma 221 Final Exam Solutions 5/14/13

Ma 221 Final Exam Solutions 5/14/13 Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes

More information

Final Exam. Linear Algebra Summer 2011 Math S2010X (3) Corrin Clarkson. August 10th, Solutions

Final Exam. Linear Algebra Summer 2011 Math S2010X (3) Corrin Clarkson. August 10th, Solutions Final Exam Linear Algebra Summer Math SX (3) Corrin Clarkson August th, Name: Solutions Instructions: This is a closed book exam. You may not use the textbook, notes or a calculator. You will have 9 minutes

More information

Problem set 7 Math 207A, Fall 2011 Solutions

Problem set 7 Math 207A, Fall 2011 Solutions Problem set 7 Math 207A, Fall 2011 s 1. Classify the equilibrium (x, y) = (0, 0) of the system x t = x, y t = y + x 2. Is the equilibrium hyperbolic? Find an equation for the trajectories in (x, y)- phase

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information

Math 266, Midterm Exam 1

Math 266, Midterm Exam 1 Math 266, Midterm Exam 1 February 19th 2016 Name: Ground Rules: 1. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use

More information

ODE Homework 1. Due Wed. 19 August 2009; At the beginning of the class

ODE Homework 1. Due Wed. 19 August 2009; At the beginning of the class ODE Homework Due Wed. 9 August 2009; At the beginning of the class. (a) Solve Lẏ + Ry = E sin(ωt) with y(0) = k () L, R, E, ω are positive constants. (b) What is the limit of the solution as ω 0? (c) Is

More information

Spring 2017 Midterm 1 04/26/2017

Spring 2017 Midterm 1 04/26/2017 Math 2B Spring 2017 Midterm 1 04/26/2017 Time Limit: 50 Minutes Name (Print): Student ID This exam contains 10 pages (including this cover page) and 5 problems. Check to see if any pages are missing. Enter

More information

MATH 251 Examination II November 5, 2018 FORM A. Name: Student Number: Section:

MATH 251 Examination II November 5, 2018 FORM A. Name: Student Number: Section: MATH 251 Examination II November 5, 2018 FORM A Name: Student Number: Section: This exam has 14 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work

More information

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS.

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS. MATH 1 TEST ON CHAPTER ANSWER ALL QUESTIONS. TIME 1. HRS. M1c Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Use the summation formulas to rewrite the

More information

1 Linear Algebra Problems

1 Linear Algebra Problems Linear Algebra Problems. Let A be the conjugate transpose of the complex matrix A; i.e., A = A t : A is said to be Hermitian if A = A; real symmetric if A is real and A t = A; skew-hermitian if A = A and

More information

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29 Practice problems for Exam.. Given a = and b =. Find the area of the parallelogram with adjacent sides a and b. A = a b a ı j k b = = ı j + k = ı + 4 j 3 k Thus, A = 9. a b = () + (4) + ( 3)

More information

π 1 = tr(a), π n = ( 1) n det(a). In particular, when n = 2 one has

π 1 = tr(a), π n = ( 1) n det(a). In particular, when n = 2 one has Eigen Methods Math 246, Spring 2009, Professor David Levermore Eigenpairs Let A be a real n n matrix A number λ possibly complex is an eigenvalue of A if there exists a nonzero vector v possibly complex

More information

Homogeneous Linear Systems of Differential Equations with Constant Coefficients

Homogeneous Linear Systems of Differential Equations with Constant Coefficients Objective: Solve Homogeneous Linear Systems of Differential Equations with Constant Coefficients dx a x + a 2 x 2 + + a n x n, dx 2 a 2x + a 22 x 2 + + a 2n x n,. dx n = a n x + a n2 x 2 + + a nn x n.

More information

MATH 1241 Common Final Exam Fall 2010

MATH 1241 Common Final Exam Fall 2010 MATH 1241 Common Final Exam Fall 2010 Please print the following information: Name: Instructor: Student ID: Section/Time: The MATH 1241 Final Exam consists of three parts. You have three hours for the

More information

Homogeneous Linear Systems and Their General Solutions

Homogeneous Linear Systems and Their General Solutions 37 Homogeneous Linear Systems and Their General Solutions We are now going to restrict our attention further to the standard first-order systems of differential equations that are linear, with particular

More information

Math 1310 Final Exam

Math 1310 Final Exam Math 1310 Final Exam December 11, 2014 NAME: INSTRUCTOR: Write neatly and show all your work in the space provided below each question. You may use the back of the exam pages if you need additional space

More information

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything.

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Examination in MAT2440 Differential equations and optimal control theory Day of examination: 11 June 2015 Examination hours: 0900 1300 This

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Spring Exam 3 Review Solutions Exercise. We utilize the general solution to the Dirichlet problem in rectangle given in the textbook on page 68. In the notation used there

More information

CALCULUS MATH*2080 SAMPLE FINAL EXAM

CALCULUS MATH*2080 SAMPLE FINAL EXAM CALCULUS MATH*28 SAMPLE FINAL EXAM Sample Final Exam Page of 2 Prof. R.Gentry Print Your Name Student No. SIGNATURE Mark This exam is worth 45% of your final grade. In Part I In Part II In part III In

More information

(3) Let Y be a totally bounded subset of a metric space X. Then the closure Y of Y

(3) Let Y be a totally bounded subset of a metric space X. Then the closure Y of Y () Consider A = { q Q : q 2 2} as a subset of the metric space (Q, d), where d(x, y) = x y. Then A is A) closed but not open in Q B) open but not closed in Q C) neither open nor closed in Q D) both open

More information

dx dx 2 A B. C.- D.- E.- AA B.B C.C D.D E.E .. 3x+ 2x 2 x-003x -4x +2x 1 A B. C. 1 A.- B.- C.- E. undefined D d d 2 d 2 d 1 A.2 C. 4 D.6 E.

dx dx 2 A B. C.- D.- E.- AA B.B C.C D.D E.E .. 3x+ 2x 2 x-003x -4x +2x 1 A B. C. 1 A.- B.- C.- E. undefined D d d 2 d 2 d 1 A.2 C. 4 D.6 E. Semester Exam Review Part No Calculators d d. For the graph shown, at which point is it true that < 0 and --t > o? AA B.B C.C D.D E.E. Line L is normal to the curve defmed by xy - y = 8 at the point (,).

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

Ma 227 Final Exam Solutions 12/22/09

Ma 227 Final Exam Solutions 12/22/09 Ma 7 Final Exam Solutions //9 Name: ID: Lecture Section: Problem a) (3 points) Does the following system of equations have a unique solution or an infinite set of solutions or no solution? Find any solutions.

More information

M GENERAL MATHEMATICS -2- Dr. Tariq A. AlFadhel 1 Solution of the First Mid-Term Exam First semester H

M GENERAL MATHEMATICS -2- Dr. Tariq A. AlFadhel 1 Solution of the First Mid-Term Exam First semester H M - GENERAL MATHEMATICS -- Dr. Tariq A. AlFadhel Solution of the First Mid-Term Exam First semester 38-39 H 3 Q. Let A =, B = and C = 3 Compute (if possible) : A+B and BC A+B is impossible. ( ) BC = 3

More information

Review Problems for Exam 2

Review Problems for Exam 2 Review Problems for Exam 2 This is a list of problems to help you review the material which will be covered in the final. Go over the problem carefully. Keep in mind that I am going to put some problems

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

McGill University December Intermediate Calculus. Tuesday December 17, 2014 Time: 14:00-17:00

McGill University December Intermediate Calculus. Tuesday December 17, 2014 Time: 14:00-17:00 McGill University December 214 Faculty of Science Final Examination Intermediate Calculus Math 262 Tuesday December 17, 214 Time: 14: - 17: Examiner: Dmitry Jakobson Associate Examiner: Neville Sancho

More information

Review for Ma 221 Final Exam

Review for Ma 221 Final Exam Review for Ma 22 Final Exam The Ma 22 Final Exam from December 995.a) Solve the initial value problem 2xcosy 3x2 y dx x 3 x 2 sin y y dy 0 y 0 2 The equation is first order, for which we have techniques

More information

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems.

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems. Review Outline To review for the final, look over the following outline and look at problems from the book and on the old exam s and exam reviews to find problems about each of the following topics.. Basics

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 12. Show all your work on the standard

More information

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point Solving a Linear System τ = trace(a) = a + d = λ 1 + λ 2 λ 1,2 = τ± = det(a) = ad bc = λ 1 λ 2 Classification of Fixed Points τ 2 4 1. < 0: the eigenvalues are real and have opposite signs; the fixed point

More information

Differential Equations

Differential Equations Differential Equations Problem Sheet 1 3 rd November 2011 First-Order Ordinary Differential Equations 1. Find the general solutions of the following separable differential equations. Which equations are

More information

Differential equations

Differential equations Differential equations Math 27 Spring 2008 In-term exam February 5th. Solutions This exam contains fourteen problems numbered through 4. Problems 3 are multiple choice problems, which each count 6% of

More information

EXAMPLES OF PROOFS BY INDUCTION

EXAMPLES OF PROOFS BY INDUCTION EXAMPLES OF PROOFS BY INDUCTION KEITH CONRAD 1. Introduction In this handout we illustrate proofs by induction from several areas of mathematics: linear algebra, polynomial algebra, and calculus. Becoming

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Atoms An atom is a term with coefficient 1 obtained by taking the real and imaginary parts of x j e ax+icx, j = 0, 1, 2,...,

Atoms An atom is a term with coefficient 1 obtained by taking the real and imaginary parts of x j e ax+icx, j = 0, 1, 2,..., Atoms An atom is a term with coefficient 1 obtained by taking the real and imaginary parts of x j e ax+icx, j = 0, 1, 2,..., where a and c represent real numbers and c 0. Details and Remarks The definition

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 11. Show all your work on the standard

More information

Chapter 2. First-Order Differential Equations

Chapter 2. First-Order Differential Equations Chapter 2 First-Order Differential Equations i Let M(x, y) + N(x, y) = 0 Some equations can be written in the form A(x) + B(y) = 0 DEFINITION 2.2. (Separable Equation) A first-order differential equation

More information