Homogeneous Linear Systems and Their General Solutions

Size: px
Start display at page:

Download "Homogeneous Linear Systems and Their General Solutions"

Transcription

1 37 Homogeneous Linear Systems and Their General Solutions We are now going to restrict our attention further to the standard first-order systems of differential equations that are linear, with particular attention being given to developing the theory for solving those linear systems that are also homogeneous Fortunately, this theory is very similar to that for single linear differential equations developed in chapters 3 and 4 In fact, to some extent, our discussion will be guided by what we already know about general solutions to N th -order linear differential equations You should also expect to see significant use of a few results from basic linear algebra Will we finally actually solve a few systems in this chapter? No, not really, but we will need the theory developed here when we finally do start solving systems in the next chapter 37 Basic Terminology and Notation Basic Definitions A standard first-order N N system x x 2 = x N f (t, x, x 2,, x N ) f 2 (t, x, x 2,, x N ) f N (t, x, x 2,, x N ) is said to be linear if and only if each component function f k can be written as f k (t, x, x 2,, x N ) = p k x + p k2 x p k N x N + g k where the p k j s and g k s are either constants or functions of t only If, in addition, all the g k s are zero, so that our system looks like x p x + p 2 x p N x N x 2 = p 2 x + p 22 x p 2N x N, (37) x N p N x + p N2 x p N N x N

2 Chapter & Page: 37 2 Homogeneous Linear Systems and Their General Solutions then we say our linear system is homogeneous If, on the other hand, we have x p x + p 2 x p N x N g x 2 = p 2 x + p 22 x p 2N x N + g 2 x N p N x + p N2 x p N N x N g N (372) with one or more of the g k s being nonzero, then we say that the linear system is nonhomogeneous Matrix/Vector Notation for Linear Systems Letting P = p p 2 p N p 2 p 22 p 2N p N p N2 p N N g g 2 g N and g =, and using the standard rules of matrix multiplication, p p 2 p N x p x + p 2 x p N x N p 2 p 22 p 2N x 2 Px = = p 2 x + p 22 x p 2N x N, p N p N2 p N N x N p N x + p N2 x p N N x N we can rewrite homogeneous linear system (37) and nonhomogeneous linear system (372), respectively, as and x = Px (37 ) x = Px + g (372 ) Keep in mind that the components of both P and g may be functions of t, but not of any of the x k s Also note that the system is automatically a regular autonomous system if all the components of P and g are constants As with vectors, we will refer to any matrix P as being a constant matrix or a matrix-valued function (on some interval) according to whether the components of P are all constants or can be functions (on the given interval) If, in addition, all the components of P are continuous functions on some interval, then we will say P is a continuous matrix-valued function on that interval Let us also agree that (unless otherwise indicated) all components of our matrices and vectors are real-valued If it seems particularly relevant, we ll explicitly say that a given matrix is real or real-valued to indicate that its components are real values or real-valued functions Expanding on our conventions from the previous chapter, we will, as much as possible, use bold-faced capital letters to denote generic N N matrices, with the corresponding lower-case, nonbold letters, suitably subscripted, to denote the corresponding components of the matrix So if we have a matrix A, then (unless otherwise indicated) a a 2 a N a 2 a 22 a 2N A = a N a N2 a N N

3 Basic Terminology and Notation Chapter & Page: 37 3 Let us also agree that, when discussing a standard N N linear system, every vector and matrix under discussion consisting of a single row or column has N components, and that every matrix under discussion not consisting of a single row or column is a N N matrix Sets of Vectors Keep in mind that the x in the above discussion denotes a vector-valued function on some interval, x(t) = [ x (t), x 2 (t),, x N (t) ] T Often, in what follows, we will have several such vector-valued functions When we do, we may use superscripts to distinguish the different vector-valued functions; that is, we will write the set of vector-valued functions as either { x, x 2,, x M } or { } x (t), x 2 (t),, x M (t), with x (t) = x (t) x 2 (t) xn (t), x 2 (t) = x 2 (t) x 2 2(t) xn 2 (t), and x M (t) = x M (t) x 2 M(t) xn M(t)! Example 37: Consider the system [ x ] = y [ ] x + 2y x 2y This is easily seen to be a homogeneous linear 2 2 system of differential equations, and since [ ] [ ][ ] x + 2y 2 x =, x 2y 2 y we see that we can rewrite it as either [ x ] = or even as where x = [ ] x y y [ ][ 2 x 2 y x = Px and P = ] [ ] 2 2 In this case P is a constant matrix and, hence, is automatically a continuous 2 2 matrix-valued function over the interval (, ) It is easily verified (see example 32 and exercise 34) that one pair of solutions { x, x 2} to the above system is given by [ ] [ ] e x 3t 2e (t) = and x 2 4t (t) =, e 3t e 4t which we can write more simply as [ ] [ ] 2 x (t) = e 3t and x 2 (t) = e 4t

4 Chapter & Page: 37 4 Homogeneous Linear Systems and Their General Solutions 372 More Terminology and Some Basic Results Let us now focus on determining the basic nature of the general solutions to a homogeneous N N linear system x = Px where, for some positive integer N, p (t) p 2 (t) p N (t) p 2 (t) p 22 (t) p 2N (t) P = P(t) = (373) p N (t) p N2 (t) p N N (t) is a continuous N N matrix-valued function on some interval (α, β) Our goal is to extend the basic notions and results developed back in chapters 3 and 4 of the text for single N th -order homogeneous linear equations The main results of our development are summarized in theorem 379 on page 37 2 You can go ahead and look at this theorem Even though some of the terminology has not yet been formally defined in the context of systems, the terminology and theorem are so similar to that already developed in chapter 3 of the text that you will probably be able to understand the gist of the theorem That said, if we are to intelligently use theorem 379, we need to fully understand and verify the claims in this theorem We will develop that understanding and verify those claims, piece by piece, in this section This will include developing some of the concepts and terminology used in that theorem Many of these will be concepts and terms that you should recall from your study of linear algebra By the way, in the following, we will also be referring to constants, vectors and, maybe, constant vectors Just to be clear, when we refer to something as being just a constant (not constant vector), then we mean that something is a single real number And if we refer to something as just a vector or constant vector then that something is a column vector whose N components are constants So a is a vector means a = [a, a 2,, a N ] T with each a k being some single real number Immediate Results on Existence and Uniqueness Let us start with the basic theorem on the existence and uniqueness of solutions to linear systems of differential equations Theorem 37 (existence and uniqueness for linear systems) Assume P is a continuous N N matrix-valued function over the interval (α, β) and g is a continuous vector-valued function over (α, β), and let t and a be, respectively, a point in (α, β) and a constant vector Then the initial-value problem x = Px + g with x(t ) = a, has exactly one solution over the interval (α, β) Moreover, this solution and its derivative are continuous over that interval The above theorem is actually a corollary of an earlier theorem on the existence and uniqueness of solutions to systems with sufficiently continuous component functions The verification is left to you It is worth recalling that the set of all such column vectors with N components (with the standard definitions of vector addition and scalar multiplication) is an N-dimensional vector space

5 More Terminology and Some Basic Results Chapter & Page: 37? Exercise 37: Verify the claims in theorem 37 by verifying that the component functions of the system in the theorem 37 satisfy the requirements given in theorem 32 on page 76 of the published text, and then applying theorem 32 By letting g = in the above theorem, we get the result we will actually use in this chapter: Lemma 372 (existence and uniqueness for homogeneous linear systems) Assume P is a continuous N N matrix-valued function over the interval (α, β), and let t and a be, respectively, a point in the interval (α, β) and a constant vector Then the initial-value problem x = Px with x(t ) = a, has exactly one solution over the interval (α, β) Moreover, this solution and its derivative are continuous over that interval By the way, this a good place to observe that the constant zero vector-valued function, x(t) = for all t, is always a solution to any given homogeneous linear system x = Px Consequently, the origin (,,,) is always a critical point a critical point for the given system This is analogous to the fact that the zero function is always a solution to any given single homogeneous linear differential equation This will be particularly significant in a few chapters Linear Combinations and the Principle of Superposition Recall that a linear combination of x k s from any finite set {x, x 2,, x M} of either vectors or vector-valued functions is any expression of the form c x + c 2 x c M x M where the c k s are constants Keep in mind that, if the x k s are vector-valued functions on the interval (α, β), then x = c x + c 2 x c M x M means x(t) = c x (t) + c 2 x 2 (t) + + c M x M (t) for α < t < β Now suppose we have a linear combination c x + c 2 x c M x M in which each of these x j s is a solution to our linear system of differential equations; that is, dx j dt = Px j for j =, 2,, M Because of the linearity of differentiation and matrix multiplication, we then have d [c x + c 2 x c M x M] dx = c dt dt + c 2 dx 2 dt + + c M dx M = c Px + c 2 Px c M Px M [ = P c x + c 2 x c M x M] dt

6 Chapter & Page: 37 6 Homogeneous Linear Systems and Their General Solutions Cutting out the middle yields the systems version of the superposition principle: Lemma 373 (principle of superposition for systems) If x, x 2, and x M are all solutions to a homogeneous linear system x = Px, then so is any linear combination of these x k s Observe that, if {x, x 2,, x M } is a set of solutions to our system x = Px, and x is any single solution equaling some linear combination of the x k s at one single point t in (α, β), then x(t ) = c x (t ) + c 2 x 2 (t ) + + c M x M (t ), (374) x and c x + c 2 x c M x M are both solutions to x = Px satisfying the same initial condition at t But lemma 372 tells us that there is only one solution to this initial-value problem Hence, x and this linear combination must be the same That is, x(t) = c x (t) + c 2 x 2 (t) + + c M x M (t) for every value t in (α, β) (37) This, along with the obvious fact that equation (37) implies equation (374), gives us our next lemma Lemma 374 Let { x, x 2,, x M} be any set of solutions to x = Px, where P is a continuous N N matrixvalued function on the interval (α, β) Also let {c, c 2,, c M } be a set of constants, and let t be a point in the interval (α, β) Then, for any solution x to x = Px, if and only if x(t ) = c x (t ) + c 2 x 2 (t ) + + c M x M (t ) for one value t in (α, β) x(t) = c x (t) + c 2 x 2 (t) + + c M x M (t) for every value t in (α, β) An application using the above lemmas is now in order It will give you an idea of where we are heading! Example 372: We already know from exercise 37 that [ ] x (t) = e 3t and x 2 (t) = [ ] 2 e 4t are both solutions (over (, ) ) to x = Px with P = [ ] 2 2 The principle of superposition now assures us that, for any pair c and c 2 of constants, the linear combination [ ] [ ] 2 c x (t) + c 2 x 2 (t) = c e 3t + c 2 e 4t is also a solution to our homogeneous system

7 More Terminology and Some Basic Results Chapter & Page: 37 7 The obvious question now is whether every solution is given by a linear combination of x and x 2 To answer that, let x(t) = [x(t), y(t)] T be any single solution to x = Px, and consider the problem of finding constants c and c 2 such that x(t) = c x (t) + c 2 x 2 (t) for < t < According to our last lemma, this problem is completely equivalent to the problem of finding constants c and c 2 such that x(t ) = c x (t ) + c 2 x 2 (t ) for some t in (, ) Letting t =, and using the formulas for x and x 2, the last equation becomes [ ] [ ] [ ] x() 2 = c e 3 + c 2 e 4, y() which we can rewrite as pair of linear algebraic equations, x() = c 2c 2 y() = c + c 2 But you can easily solve this algebraic system and verify that, for each choice of x() and y(), the one and only one solution (c, c 2 ) to this system is given by c = 7 [y() x()] and c 2 = [6x() + y()] 7 Thus, using these values for c and c 2, we have x(t) = c x (t) + c 2 x 2 (t) for < t < So, at least for the system of differential equations being considered here, the answer to the question of whether every solution is given by a linear combination of x and x 2 is yes The above shows that, given any solution x, we can find one (and only one) corresponding pair of constants (c, c 2 ) such that [ ] [ ] 2 x(t) = c x (t) + c 2 x 2 (t) = c e 3t + c 2 e 4t In other words, the above expression is a general solution to our system x = Px As suggested in the above example, our goal is to show that, for any given P, every solution x to x = Px can be written as a linear combination of solutions from some fundamental set of solutions, { x, x 2,, x M } Moreover, as illustrated in the above example, we can use lemma 374 us to convert the problem of finding that linear combination x(t) = c x (t) + c 2 x 2 (t) + + c M x M (t) for α < t < β to the problem of finding constants c, c 2, and c M such that x(t ) = c x (t ) + c 2 x 2 (t ) + + c M x M (t )

8 Chapter & Page: 37 8 Homogeneous Linear Systems and Their General Solutions for a single t But remember that another lemma, lemma 372, assures us that there is a solution x to our system of differential equations satisfying x(t ) = a for each vector a and each t in (α, β) Combining this fact with the results from lemma 374 gives our next lemma Lemma 37 Assume P be a continuous N N matrix-valued function on the interval (α, β) Let t be a point in this interval, and let {x, x 2,, x M} be any set of solutions to x = Px Then every solution x to x = Px can be written as a linear combination of the x k s if and only if every vector a can be written as a linear combination of vectors from the set { } x (t ), x 2 (t ),, x M (t ) This lemma, along with a similar lemma concerning linear independence, will play a major role in our final derivations So let s now bring back the basic notion of linear (in)dependence Linear Independence Let { x, x 2,, x M } be either a set of vectors or a set of vector-valued functions on (α, β) We say that this set is linearly independent if and only if none these x k s can be written as as linear combination of the other x k s Otherwise, we say this set is linearly dependent; that is, the set is linearly dependent if and only if at least one these x k s can be written as as linear combination of the other x k s Two quick observations: Any constant multiple of a single x k is a (very simple) linear combination of that x k In particular, since = x k, any set containing the zero vector or the zero vector-valued function is automatically linearly dependent 2 If we just have a pair { x, x 2}, the concept of linear independence simplifies to the pair being linearly independent if and only if neither x nor x 2 is a constant multiple of the other! Example 373: where Consider the set { x, x 2} of vector-valued functions from the last example, x (t) = [ ] e 3t and x 2 (t) = [ ] 2 e 4t Clearly, there is no constant C such that either [ ] [ ] 2 e 3t = C e 4t for < t < or [ ] [ ] 2 e 4t = C e 3t for < t < So this set of two vector-valued functions is linearly independent Similarly, consider the set of vectors { b, b 2} given by the above vector-valued functions at t =, b = [ ] e 3 = [ ] and b 2 = [ 2 ] e 4 = [ ] 2

9 More Terminology and Some Basic Results Chapter & Page: 37 9 Again, it should be clear that there is no constant C such that either [ ] [ ] 2 = C or [ ] 2 = C [ ] So this set of two vectors is linearly independent Now suppose { x, x 2,, x M } is a set of solutions over (α, β) to our system x = Px, and let t be in (α, β) Lemma 374 tells us that any one solution x j is a linear combination of the other x k s if and only if the corresponding vector x j (t ) is a linear combination of the other x k (t ) s This observation is worth writing down as a lemma in terms of linear independence Lemma 376 Assume P is a continuous N N matrix-valued function on the interval (α, β) Let t be a point in this interval, and let { x, x 2,, x M } be any set of M solutions to x = Px Then this set is a linearly independent set of vector-valued functions if and only if { } x (t ), x 2 (t ),, x M (t ) is a linearly independent set of vectors Compare the above lemma with lemma 37 Both will play a major role in the following It will also be helpful to recall a test for linear independence that you should recall from your study of linear algebra 2 Lemma 377 (a basic test for linear independence) A set { x, x 2,, x M} of vectors or vector-valued functions is linearly independent if and only if the only choice of constants c, c 2, and c M such that is c x + c 2 x c M x M = c = c 2 = = c M = then Observe that if we have two linear combinations of the same x k s equaling the same a, a = c x + c 2 x c M x M and a = C x + C 2 x C M x M, (c C )x + (c 2 C 2 )x (c M C M)x M = a a = From this, you should have no problem in verifying that the above test for linear independence is equivalent to the following test 2 If you don t recall this test, see exercise 37 at the end of the chapter

10 Chapter & Page: 37 Homogeneous Linear Systems and Their General Solutions Lemma 378 (alternative test for linear independence) Let { x, x 2,,x M} be a set of vectors or vector-valued functions This set is linearly independent if and only if, for each a that can be written as a linear combination of the x k s, there is only one choice of constants c, c 2, and c M such that a = c x + c 2 x c M x N Fundamental Sets of Solutions Basic Definition We now define a fundamental set of solutions for x = Px to be any linearly independent set of solutions to x = Px { x, x 2,, x M } such that every solution to x = Px can be written as a linear combination of the x j s in this set Note that, if the above is a fundamental set of solutions for x = Px, then x = c x + c 2 x c N x M (with the c k s being arbitrary constants) is a general solution for x = Px Describing Fundamental Sets of Solutions It turns out that there are several other ways to describe fundamental sets To see this, let { } X = x, x 2,, x M be a set of solutions to x = Px where, as usual, P is a continuous N N matrix-valued function on an interval (α, β) Take any point t in the interval, and let { } B = b, b 2,, b M be the set of vectors given by b k = x k (t ) for k =, 2,, M From our basic definition of a fundamental set of solutions we know: The set X is a fundamental set of solutions to x = Px if and only if X is a linearly independent set of vector-valued functions such that any solution to x = Px can be written as a linear combination of the x k s From lemmas 37 and 376, we know this last statement is completely equivalent to: The set X is a fundamental set of solutions to x = Px if and only if B is a linearly independent set of vectors such that any vector can be written as a linear combination of the b k s Throwing in lemma 378 we get another equivalent statement: The set X is a fundamental set of solutions to x = Px if and only if, for each vector a = [a, a 2,,a N ] T, there is one and only one choice of constants c, c 2, and c M such that a = c b + c 2 b c M b M

11 More Terminology and Some Basic Results Chapter & Page: 37 At this point, you probably realize that the last two statements are saying that the set of x k s is a fundamental set of solutions if and only if the set of b k s is a basis for the vector space of all column vectors with N components, and, from linear algebra, we know that M, the number of vectors in the set B must equal N the number of components in each column vector Moreover, from linear algebra, we know that any set of N linearly independent vectors will be a basis for this space of column vectors 3 So either of the last two statements about X can be rephrased as The set X is a fundamental set of solutions to x = Px if and only if M = N and B is a linearly independent set of vectors Applying lemma 376 once again with the last yields: The set X is a fundamental set of solutions to x = Px if and only if M = N and X is linearly independent All of the above could be considered pieces of one big lemma Rather than state that lemma here, we will summarize the most relevant pieces in a major theorem in the next section, after making a final observation on the existence of fundamental solution sets Existence of Fundamental Sets of Solutions Let us observe that fundamental sets of solutions clearly do exist After all, no matter what N is, we can always find a linearly independent set of N vectors with N components, { b, b 2,, b N } For example, if N = 3 we can use b =, b 2 = and b 3 =, if N = 4 we can use b =, b 2 =, b 3 = and b 4 =, and so on Lemma 372 then assures us that, for any point t in (α, β) and every b k, there is a solution x k to x = Px satisfying x k (t ) = b k As noted in the last subsection above, it then follows that { x, x 2,, x N } is a fundamental set of solutions to our system of differential equations 3 An alternative derivation not using basis of the fact that M = N is given in section 374

12 Chapter & Page: 37 2 Homogeneous Linear Systems and Their General Solutions 373 The Main Result on General Solutions to Linear Systems Looking back over the discussion on fundamental sets of solutions in the last section, you will see that we have verified the following major theorem on general solutions to linear systems of differential equations Theorem 379 (general solutions to homogenous systems) Let P be a continuous N N matrix-valued function on an interval (α, β), and consider the system of differential equations x = Px Then all the following statements hold: Fundamental sets of solutions over (α, β) for this system exist 2 Every fundamental set of solutions consists of exactly N solutions 3 If { x, x 2,, x N} is any linearly independent set of N solutions to x = Px on (α, β), then (a) {x, x 2,, x N } is a fundamental set of solutions for x = Px on (α, β) (b) A general solution to x = Px on (α, β) is given by x(t) = c x (t) + c 2 x 2 (t) + + c N x N (t) (c) where c, c 2, and c N are arbitrary constants Given any single point t in (α, β) and any constant vector a, there is exactly one ordered set of constants {c, c 2,,c N } such that x(t) = c x (t) + c 2 x 2 (t) + + c N x N (t) satisfies the initial condition x(t ) = a This theorem is the systems analog of theorem 3 on page 272 concerning general solutions to single N th -order homogeneous linear differential equations In fact, theorem 3 can be considered a corollary to the above We verify that in section Wronskians and Identifying Fundamental Sets As illustrated in the previous examples, determining whether a set of solutions is a fundamental set for our problem x = Px is fairly easy when P is 2 2 Our goal now is to come up with a method for identifying a fundamental set of solutions that be easily applied when P is N N even when N > 2 Let us start by assuming we have a set { x, x 2,, x M }

13 Wronskians and Identifying Fundamental Sets Chapter & Page: 37 3 of vector-valued functions on the interval (α, β), each with N components, x (t) = x (t) x 2 (t) xn (t), x 2 (t) = x 2 (t) x 2 2(t) xn 2 (t), and x M (t) = x M (t) x 2 M(t) xn M(t) For the moment, we need not assume the x k s are solutions to our N N system of differential equations, nor will we assume N = M A Matrix/Vector Formula for Linear Combinations Observe: x c x + c 2 x c M x M 2 x 2 2 x M = c + c c M 2 x x 2 x M x N x 2 N x M N = = x c + x 2c x Mc M x2 c + x2 2c x2 Mc M xn c + xn 2 c xn Mc M x x 2 x M x2 x2 2 x M 2 xn xn 2 xn M c c 2 c M That is, for α < t < β, c x (t) + c 2 x 2 (t) + + c M x M (t) = [X(t)]c where X(t) = x (t) x2 (t) x M(t) x2 (t) x2 2 (t) x 2 M(t) xn (t) x2 N (t) x N M(t) and c = c c 2 c M The above N M matrix-valued function X will be important to us In general, we ll simply call it the matrix whose k th column is given by x k! Example 374: The matrix whose k th column is given by x k when [ ] [ ] e x 3t 2e (t) = and x 2 4t (t) = e 3t e 4t

14 Chapter & Page: 37 4 Homogeneous Linear Systems and Their General Solutions is [ ] e 3t 2e 4t X(t) = e 3t e 4t Observe that, indeed, [ ] e 3t 2e 4t [c ] [X(t)]c = e 3t e 4t c 2 = [ ] c e 3t + c 2 ( 2)e 4t [ ] e 3t = c c e 3t + c 2 e 4t e 3t [ ] 2e 4t + c 2 e 4t = c x (t) + c 2 x 2 (t) Deriving that Simple Test Now assume these x k s are solutions to our system x = Px, and let t be any single value in (α, β) From lemmas 37, 376 and 378, we know (as noted on page 37 using slightly different notation) that: The set { x, x 2,,x M} is a fundamental set of solutions to x = Px if and only if, for each vector a = [a, a 2,, a N ] T, there is one and only one choice of constants c, c 2, and c M such that c x (t ) + c 2 x 2 (t ) + + c M x M (t ) = a (376) However, from the observations made just before our last example, we know that equation (376) is equivalent to the algebraic system of N equations and M unknowns x (t )c + x 2 (t )c x M (t )c M = a x 2 (t )c + x 2 2 (t )c x M 2 (t )c M = a 2, (377) x N (t )c + x 2 N (t )c x M N (t )c M = a N which can also be written as the matrix/vector equation [X(t )] c = a (378) where c = [c, c 2,,c M ] T and X(t) is the N M matrix whose k th column is given by x k (t) But solving either algebraic system (377) or matrix/vector equation (378) is a classic problem in linear algebra, and from linear algebra we know there is one and only one solution c for each a if and only if M = N and X(t ) is invertible If these two conditions are both satisfied, then c can be determined from each a by c = [X(t )] a where [X(t )] is the inverse of matrix X(t ) (In practice, though, a row reduction method may be a more efficient way to find c )

15 Wronskians and Identifying Fundamental Sets Chapter & Page: 37 Now, to make life even easier, recall that there is a relatively simple test for determining if a given square matrix M is invertible 4 based on the matrix s determinant, det(m) ; namely, M is invertible det(m) = Thus, our set of M solutions is a fundamental set of solutions if and only if M = N and det(x(t )) = Wronskians and Identifying Fundamental Sets The last line above gives us a useful test for determining if a given set of solutions is a fundamental set of solutions It also gives the author an excuse for introducing additional terminology concerning any set {x, x 2,, x N} of N vector-valued functions on an interval (α, β), with each x k Wronskian, W, of this set is the function on (α, β) given by having N components The W(t) = det(x(t)) where X is the matrix whose k th column is given by x k Using the Wronskian, we can now properly state the test we have just derived above Theorem 37 (Identifying Fundamental Sets of Solutions) Let { x, x 2,, x M} be a set of M solutions to x = Px, with P being a continuous N N matrix-valued function on an interval (α, β) Then this set is a fundamental set of solutions for x = Px if and only if both of the following hold: M = N 2 For any single t in (α, β), W(t ) =, where W is the Wronskian of { x, x 2,, x M}! Example 37: are x = It is not hard to verify that three solutions (on (, ) to x = Px with P = e 2t, x 2 = 3 e 2t and x 3 = e 2t More terminology you should recall: M is singular M is not invertible M is nonsingular M is invertible

16 Chapter & Page: 37 6 Homogeneous Linear Systems and Their General Solutions The corresponding matrix whose k th columm given by x k is e 2t 2e 2t 3e 2t X(t) = e 2t 3e 2t e 2t 3e 2t e 2t 3e 2t and the Wronskian is W(t) = det(x(t)) = e 2t 2e 2t 3e 2t e 2t 3e 2t e 2t 3e 2t e 2t 3e 2t Computing out this determinant is not difficult, but not necessary All we need is to compute is W(t ) for some convenient value t, say t =, e 2 2e 2 3e 2 W() = det(x()) = e 2 3e 2 e 2 3e 2 e 2 3e 2 = = = [9 + ] 2[3 3] + 3[ 9] = 2 Since W() =, the above theorem tells us that the set { x, x 2, x 3} is a fundamental set of solutions for the above system of differential equations And that means 2 3 x(t) = c e 2t + c 2 3 e 2t + c 3 e 2t 3 3 is a general solution to the 3 3 system x = Px being considered here By the way, the fact that we can choose t arbitrarily in (α, β) tells us that whether W(t ) is zero or not is totally independent of the choice of t That gives us the following corollary Corollary 37 Assume P is a continuous N N matrix-valued function on an interval (α, β), and let W be the Wronskian of a set of N solutions to x = Px Then if and only if W(t ) = for one value t in (α, β) W(t) = for every value t in (α, β)

17 General Solutions for a Single N th -order Linear Differential Equation Chapter & Page: Fundamental Matrices In the last section, we introduced the matrix-valued function X whose k th column is given by the k th vector-valued function in a set { x, x 2,, x N} In the future, we will refer to X as a fundamental matrix for x = Px if and only if the above set is a fundamental set of solutions for x = Px Fundamental matrices will play a role in some of our later discussions! Example 376: In example 37, just above, we considered the problem x = Px with P = 2 3, and saw that the set {x, x 2, x 3 } with 2 x = e 2t, x 2 = 3 e 2t and x 3 = e 2t 3 is a fundamental set of solutions to the given problem x = Px Hence, the matrix whose k th columm given by x k, e 2t 2e 2t 3e 2t X(t) = e 2t 3e 2t e 2t, 3e 2t e 2t 3e 2t is a fundamental matrix for this problem For future reference, let us note that the following lemma follows immediately from the discussion in the previous section: Lemma 372 If X is a fundamental matrix for x = Px where P is a continuous matrix-valued function on an interval (α, β), then X(t) is an invertible matrix for each t in (α, β) 376 General Solutions for a Single N th -order Linear Differential Equation In chapter 3 we presented two important theorems concerning single N th -order linear differential equations the main theorem on general solutions, theorem 3 on page 272, and a theorem The material in this section plays no role in later developments, and can be safely skipped by those more interested in learning more about systems of differential equations than in verifying theorems for single equations

18 Chapter & Page: 37 8 Homogeneous Linear Systems and Their General Solutions on using Wronskians to identify fundamental sets of solutions, theorem 36 on page 274 Those theorems were proven in that and the following chapter for the case where N = 2, but were not completely verified assuming N > 2 Using the results just derived in the chapter, we can now do so Let us see how The Basic Assumptions Throughout this section, we are concerned with a fairly general N th -order linear differential equation over an interval (α, β) a y (N) + a y (N ) + + a N 2 y + a N y + a N y = (379a) where each a k is a continuous function over (α, β) and with a (t) never being zero in that interval Solving for y (N), we see that this equation can also be written as y (N) = p N y + p N2 y + + p N N y (N ) (379b) where p N = a N a, p N2 = a N a, and p N N = a a Observe that the assumptions made on the a k s ensure that each of these p Nk s is a continuous function on (α, β) On occasion, we will also be interested in a solution to the above differential equation that satisfies some N th -order set of initial conditions y(t ) = a, y (t ) = a 2, y (t ) = a 3, and y (N ) (t ) = a N where t is some point in (α, β) and the A k s are real numbers (37) The Analysis As discussed in section 36 of the published text, we can convert equation (379b) to an equivalent standard N N system x = F(t, x) by introducing N new unknown functions x, x 2, and x N related to y and each other by x 3 = x 2 x = y, x 2 = x = y = y, and x N = x N = y (N ), and observing that, because of differential equation (379b), x N = y N = p N x + p N2 x p N N x N This gives us the standard system x x 2 = x N x N x 2 x 3 x N p N x + p N2 x p N N x N,

19 General Solutions for a Single N th -order Linear Differential Equation Chapter & Page: 37 9 which we immediately recognize as being a homogeneous linear system x = Px with P = p N p N2 p N3 p N4 p N N Moreover, since the p Nk s are continuous functions on (α, β), it should be clear that P is a continuous matrix-valued function on (α, β) In addition, because of the relations between the x k s and the derivatives of y, set (37) of initial conditions becomes the initial condition x(t ) = a where It should further be clear that: a = [a, a 2,,, a N ] T If y is a solution to differential equation (379a) which satisfies initial condition set (37), and x = [ y y y y (N )] T, then x is a solution to x = Px satisfying initial condition x(t ) = a 2 If x = [x, x 2,, x N ] T is a solution to x = Px which satisfies initial condition x(t ) = a, and y = x, then (a) x = [y, y, y,, y N ) ] T, and (b) y is a solution to differential equation (379a) satisfying initial condition (37) Thus, for each solution y to differential equation (37) there is a single corresponding solution x to x = Px Likewise, for each solution x to x = Px there is a corresponding solution y to differential equation (37) Moreover, these corresponding pairs are related by So now let x = [ y y y y (N )] T { y, y 2,, y M } and { x, x 2,, x M } be, respectively, a set of functions and vector-valued functions on (α, β) with each y k and x k related as just described, x k = [ y y k y k y k (N ) ] T Further assume that either all the y k s are solutions to differential equation (37) OR that all the x k s are solutions to x = Px Then the above assures us that, in fact, all the y k s are solutions to differential equation (37) AND that all the x k s are solutions to x = Px Moreover, you should have little trouble in verifying each of the following: Let y and x be a corresponding pair of solutions to differential equation (37) and x = Px (as described above), respectively, and let c, c 2, nad c M be some collection of constants Then y = c y + c 2 y c M y M if and only if x = c x + c 2 x c M x M

20 Chapter & Page: 37 2 Homogeneous Linear Systems and Their General Solutions 2 Let c, c 2, and c M be some collection of constants, and let and y = c y + c 2 y c M y M x = c x + c 2 x c M x M Then y satisfies the initial condition set (37) if and only if x(t ) = a 3 Every solution of differential equation (37) can be written as a linear combination of the y k s if and only if every solution of x = Px can be written as a linear combination of the x k s 4 The set of y k s is linearly independent if and only if the set of x k s is linearly independent The set of y k s is a fundamental set of solution to differential equation (37) if and only if the set of x k s is a fundamental set of solutions to x = Px? Exercise 372: Justify each of the five claims made above It should now be very clear why theorems 3 and 379 are so similar, and why it was claimed that theorem 3 (which we did not actually prove) can be derived from theorem 379 (which we did prove) Why don t you do that derivation yourself?? Exercise 373: Using the above results and theorem 379, verify the claims in theorem 3 Finally, let s deal with the claims made in chapter 3 concerning Wronskians Let { y, y 2,, y N } be any set of N solutions to differential equation (37), and let { x, x 2,, x N } be the corresponding set of solutions to x = Px with each y k and x k related by x k = [ y y k y k y k (N ) ] T Starting with the definition of Wronskian given in chapter 3, we see that y y 2 y 3 y N y y 2 y 3 y N Wronskian of {y, y 2,, y N } = y y 2 y 3 y N y (N ) y (N ) 2 y (N ) 3 y (N ) N x x 2 x N x2 x2 2 x N 2 = xn xn 2 xn N { = Wronskian of x, x 2,, x N}

21 Additional Exercises Chapter & Page: 37 2 Using this, it is a simple matter to show that the general results on Wronskians given in chapter 3 (theorem 36 on page 274) follow from the results concerning Wronskians proven in this chapter (theorem 37 and corollary 37) Additional Exercises 374 Rewrite each of the following linear systems of differential equations in matrix/vector form a x = 3x + y y = x + 7y b x = x 2 x 2 = x 3 x 3 = 4x + 3x 2 2x 3 c x = 2x y + 2z + 4 y = 2y 4z + z = 9x 3z + 6 d x = 2x 2 t 2 x 3 + sin(t) x 2 = (t + )x + tx 3 cos(t) x 3 = 3t 3 x 2 + t 37 Consider the two equations x M = C x + C 2 x C M x M (37) and c x + c 2 x c M x M = (372) where {x, x 2,,x M } is a set of vector-valued functions on an interval (α, β) a Using simple algebra, show that equation (37) holds for some constants C, C 2, and C M if and only if equation (372) holds for some constants c, c 2, and c M with c M = b Expand on the above and explain how it follows that at least one of the x k s must be a linear combination of the other x k s if and only if equation (372) holds with at least one of the c k s being nonzero c Finish proving lemma 377 on page Consider the system x = y y = 4t 2 x + 3t y a Rewrite this system in matrix/vector form b What are the largest intervals over which we can be sure solutions to this system exist? c Verify that [ t x 2] (t) = 2t are both solutions to this system and x 2 (t) = [ t 2 ] ln t t( + 2 ln t )

22 Chapter & Page: Homogeneous Linear Systems and Their General Solutions d Compute the Wronskian W(t) of the set of the above x k s at some convenient nonzero point t = t (part of this problem is to choose a convenient point) What does this value of W(t ) tell you? e Using the above, find the solution to the above system satisfying i x() = [, ] T ii x() = [, ] T 377 Consider the system x = x + 2y 2z y = 2x + 4y 2z z = a Rewrite this system in matrix/vector form 2x + 2y 4z b What is the largest interval over which we are sure solutions to this system exist? c Verify that x(t) =, y(t) = e 2t and z(t) = 2 e 2t 2 are all solutions to this system d Compute the Wronskian W(t) of the set {x, y, z} some convenient point t = t (choosing a convenient point is part of the problem), and verify that the above {x, y, z} is a fundamental set of solutions to the above system of differential equations 378 Four solutions to 2 x = x 2 are cos(2t) sin(2t) sin 2 (t) x (t) = sin(2t), x 2 (t) = cos(2t), x 3 (t) = sin(t) cos(t) cos(2t) sin(2t) cos 2 (t) and x 4 (t) = Given this, determine which of the following are fundamental sets of solutions to the given system: { a x, x 2} { b x, x 4} c {x, x 2, x 3} { d x, x 2, x 4} { e x, x 3, x 4} f {x, x 2, x 3, x 4} 379 Four solutions to x = x 4

23 Additional Exercises Chapter & Page: are and x (t) = 2 e 3t, x 2 (t) = e 3t, x 3 (t) = 2 x 4 (t) = 2 e t 3 4 e 3t 4 Given this, determine which of the following are fundamental sets of solutions to the given system: { a x, x 2} { b x, x 4} c {x, x 2, x 3} { d x, x 2, x 4} { e x, x 3, x 4} f {x, x 2, x 3, x 4} 37 Traditionally (ie, in most other texts), corollary 37 on page 37 6 is usually proven by showing that the Wronskian W of a set of N solutions to an N N system x = Px satisfies the differential equation W = [ p, + p 2,2 + + p N,N ] W, and then solving this differential equation and verifying that the solution is nonzero over the interval of interest if and only if it is nonzero at one point in the interval Do this yourself for the case where N = 2

24 Chapter & Page: Homogeneous Linear Systems and Their General Solutions Some Answers to Some of the Exercises WARNING! Most of the following answers were prepared hastily and late at night They have not been properly proofread! Errors are likely! [ ] 4a x y = [ ][ 3 xy ] 7 [ x ] [ ][ x ] 4b x 2 = x 2 x x 3 [ x ] [ ] 2 2 [ xy ] [ 4c x 4 ] 2 = x z 6 [ x ] [ ] 2 t 2 [ xy ] [ sin(t) ] 4d x 2 = t+ t + cos(t) x 3 3t 3 z [ ] [ ] t 6a x [ y = xy ] 4t 2 3t 6b (, ) and (, ) 6d W() = = (Hence {x [, x 2 } is a fundamental set of solutions) 6e i x(t) = x (t) 2x 2 t (t) = 2 ] ( 2 ln t ) 4t ln t [ 6e ii x(t) = x 2 t (t) = 2 ] ln t t( + 2 ln t ) [ ] ] x [ xy ] 7a y = z [ z 7b (, ) 7d W() = 8a It is not a fundamental set since the set is too small 8b It is not a fundamental set since the set is too small 8c It is a fundamental set there are three solutions in the set, and W() = 8d Is a fundamental set there are three solutions in the set, and W() = 8e Is not a fundamental set there are three solutions in the set, but W() = 8f Is not a fundamental set the set is too large 9a It is not a fundamental set the set is too small 9b It is not a fundamental set the set is too small 9c It is not a fundamental set there are three solutions in the set, but W() = 9d It is a fundamental set there are three solutions in the set, and W() = 9e It is a fundamental set there are three solutions in the set, and W() = 9f It is not a fundamental set the set is too large

Homogeneous Constant Matrix Systems, Part II

Homogeneous Constant Matrix Systems, Part II 4 Homogeneous Constant Matrix Systems, Part II Let us now expand our discussions begun in the previous chapter, and consider homogeneous constant matrix systems whose matrices either have complex eigenvalues

More information

Boundary-Value Problems

Boundary-Value Problems 46 We are now switching back to problems involving solitary differential equations. For the most part, these differential equations will be linear and second order. And, for various reasons, we will switch

More information

Eigenvectors and Hermitian Operators

Eigenvectors and Hermitian Operators 7 71 Eigenvalues and Eigenvectors Basic Definitions Let L be a linear operator on some given vector space V A scalar λ and a nonzero vector v are referred to, respectively, as an eigenvalue and corresponding

More information

Topic 14 Notes Jeremy Orloff

Topic 14 Notes Jeremy Orloff Topic 4 Notes Jeremy Orloff 4 Row reduction and subspaces 4. Goals. Be able to put a matrix into row reduced echelon form (RREF) using elementary row operations.. Know the definitions of null and column

More information

Key Point. The nth order linear homogeneous equation with constant coefficients

Key Point. The nth order linear homogeneous equation with constant coefficients General Solutions of Higher-Order Linear Equations In section 3.1, we saw the following fact: Key Point. The nth order linear homogeneous equation with constant coefficients a n y (n) +... + a 2 y + a

More information

Higher-Order Equations: Extending First-Order Concepts

Higher-Order Equations: Extending First-Order Concepts 11 Higher-Order Equations: Extending First-Order Concepts Let us switch our attention from first-order differential equations to differential equations of order two or higher. Our main interest will be

More information

A Brief Review of Elementary Ordinary Differential Equations

A Brief Review of Elementary Ordinary Differential Equations A A Brief Review of Elementary Ordinary Differential Equations At various points in the material we will be covering, we will need to recall and use material normally covered in an elementary course on

More information

Slope Fields: Graphing Solutions Without the Solutions

Slope Fields: Graphing Solutions Without the Solutions 8 Slope Fields: Graphing Solutions Without the Solutions Up to now, our efforts have been directed mainly towards finding formulas or equations describing solutions to given differential equations. Then,

More information

Systems of Differential Equations: General Introduction and Basics

Systems of Differential Equations: General Introduction and Basics 36 Systems of Differential Equations: General Introduction and Basics Thus far, we have been dealing with individual differential equations But there are many applications that lead to sets of differential

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Concepts Paul Dawkins Table of Contents Preface... Basic Concepts... 1 Introduction... 1 Definitions... Direction Fields... 8 Final Thoughts...19 007 Paul Dawkins i http://tutorial.math.lamar.edu/terms.aspx

More information

Differential Equations

Differential Equations This document was written and copyrighted by Paul Dawkins. Use of this document and its online version is governed by the Terms and Conditions of Use located at. The online version of this document is

More information

a11 a A = : a 21 a 22

a11 a A = : a 21 a 22 Matrices The study of linear systems is facilitated by introducing matrices. Matrix theory provides a convenient language and notation to express many of the ideas concisely, and complicated formulas are

More information

LS.5 Theory of Linear Systems

LS.5 Theory of Linear Systems LS.5 Theory of Linear Systems 1. General linear ODE systems and independent solutions. We have studied the homogeneous system of ODE s with constant coefficients, (1) x = Ax, where A is an n n matrix of

More information

2.3 Terminology for Systems of Linear Equations

2.3 Terminology for Systems of Linear Equations page 133 e 2t sin 2t 44 A(t) = t 2 5 te t, a = 0, b = 1 sec 2 t 3t sin t 45 The matrix function A(t) in Problem 39, with a = 0 and b = 1 Integration of matrix functions given in the text was done with

More information

7.5 Partial Fractions and Integration

7.5 Partial Fractions and Integration 650 CHPTER 7. DVNCED INTEGRTION TECHNIQUES 7.5 Partial Fractions and Integration In this section we are interested in techniques for computing integrals of the form P(x) dx, (7.49) Q(x) where P(x) and

More information

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections )

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections ) c Dr. Igor Zelenko, Fall 2017 1 10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections 7.2-7.4) 1. When each of the functions F 1, F 2,..., F n in right-hand side

More information

Spanning, linear dependence, dimension

Spanning, linear dependence, dimension Spanning, linear dependence, dimension In the crudest possible measure of these things, the real line R and the plane R have the same size (and so does 3-space, R 3 ) That is, there is a function between

More information

MAT1302F Mathematical Methods II Lecture 19

MAT1302F Mathematical Methods II Lecture 19 MAT302F Mathematical Methods II Lecture 9 Aaron Christie 2 April 205 Eigenvectors, Eigenvalues, and Diagonalization Now that the basic theory of eigenvalues and eigenvectors is in place most importantly

More information

The Liapunov Method for Determining Stability (DRAFT)

The Liapunov Method for Determining Stability (DRAFT) 44 The Liapunov Method for Determining Stability (DRAFT) 44.1 The Liapunov Method, Naively Developed In the last chapter, we discussed describing trajectories of a 2 2 autonomous system x = F(x) as level

More information

Algebraic Properties of Solutions of Linear Systems

Algebraic Properties of Solutions of Linear Systems Algebraic Properties of Solutions of Linear Systems In this chapter we will consider simultaneous first-order differential equations in several variables, that is, equations of the form f 1t,,,x n d f

More information

2.3. VECTOR SPACES 25

2.3. VECTOR SPACES 25 2.3. VECTOR SPACES 25 2.3 Vector Spaces MATH 294 FALL 982 PRELIM # 3a 2.3. Let C[, ] denote the space of continuous functions defined on the interval [,] (i.e. f(x) is a member of C[, ] if f(x) is continuous

More information

CHAPTER 3: THE INTEGERS Z

CHAPTER 3: THE INTEGERS Z CHAPTER 3: THE INTEGERS Z MATH 378, CSUSM. SPRING 2009. AITKEN 1. Introduction The natural numbers are designed for measuring the size of finite sets, but what if you want to compare the sizes of two sets?

More information

Chapter 13: General Solutions to Homogeneous Linear Differential Equations

Chapter 13: General Solutions to Homogeneous Linear Differential Equations Worked Solutions 1 Chapter 13: General Solutions to Homogeneous Linear Differential Equations 13.2 a. Verifying that {y 1, y 2 } is a fundamental solution set: We have y 1 (x) = cos(2x) y 1 (x) = 2 sin(2x)

More information

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This document was written and copyrighted by Paul Dawkins. Use of this document and its online version is governed by the Terms and Conditions of Use located at. The online version of this document is

More information

Topic 5 Notes Jeremy Orloff. 5 Homogeneous, linear, constant coefficient differential equations

Topic 5 Notes Jeremy Orloff. 5 Homogeneous, linear, constant coefficient differential equations Topic 5 Notes Jeremy Orloff 5 Homogeneous, linear, constant coefficient differential equations 5.1 Goals 1. Be able to solve homogeneous constant coefficient linear differential equations using the method

More information

7 Planar systems of linear ODE

7 Planar systems of linear ODE 7 Planar systems of linear ODE Here I restrict my attention to a very special class of autonomous ODE: linear ODE with constant coefficients This is arguably the only class of ODE for which explicit solution

More information

Basics of Proofs. 1 The Basics. 2 Proof Strategies. 2.1 Understand What s Going On

Basics of Proofs. 1 The Basics. 2 Proof Strategies. 2.1 Understand What s Going On Basics of Proofs The Putnam is a proof based exam and will expect you to write proofs in your solutions Similarly, Math 96 will also require you to write proofs in your homework solutions If you ve seen

More information

Number of solutions of a system

Number of solutions of a system Roberto s Notes on Linear Algebra Chapter 3: Linear systems and matrices Section 7 Number of solutions of a system What you need to know already: How to solve a linear system by using Gauss- Jordan elimination.

More information

3 The language of proof

3 The language of proof 3 The language of proof After working through this section, you should be able to: (a) understand what is asserted by various types of mathematical statements, in particular implications and equivalences;

More information

Ordinary Differential Equations Prof. A. K. Nandakumaran Department of Mathematics Indian Institute of Science Bangalore

Ordinary Differential Equations Prof. A. K. Nandakumaran Department of Mathematics Indian Institute of Science Bangalore Ordinary Differential Equations Prof. A. K. Nandakumaran Department of Mathematics Indian Institute of Science Bangalore Module - 3 Lecture - 10 First Order Linear Equations (Refer Slide Time: 00:33) Welcome

More information

Chapter 7. Homogeneous equations with constant coefficients

Chapter 7. Homogeneous equations with constant coefficients Chapter 7. Homogeneous equations with constant coefficients It has already been remarked that we can write down a formula for the general solution of any linear second differential equation y + a(t)y +

More information

Exercises Chapter II.

Exercises Chapter II. Page 64 Exercises Chapter II. 5. Let A = (1, 2) and B = ( 2, 6). Sketch vectors of the form X = c 1 A + c 2 B for various values of c 1 and c 2. Which vectors in R 2 can be written in this manner? B y

More information

c n (x a) n c 0 c 1 (x a) c 2 (x a) 2...

c n (x a) n c 0 c 1 (x a) c 2 (x a) 2... 3 CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS 6. REVIEW OF POWER SERIES REVIEW MATERIAL Infinite series of constants, p-series, harmonic series, alternating harmonic series, geometric series, tests

More information

From Lay, 5.4. If we always treat a matrix as defining a linear transformation, what role does diagonalisation play?

From Lay, 5.4. If we always treat a matrix as defining a linear transformation, what role does diagonalisation play? Overview Last week introduced the important Diagonalisation Theorem: An n n matrix A is diagonalisable if and only if there is a basis for R n consisting of eigenvectors of A. This week we ll continue

More information

Linear Independence Reading: Lay 1.7

Linear Independence Reading: Lay 1.7 Linear Independence Reading: Lay 17 September 11, 213 In this section, we discuss the concept of linear dependence and independence I am going to introduce the definitions and then work some examples and

More information

Coordinate Curves for Trajectories

Coordinate Curves for Trajectories 43 The material on linearizations and Jacobian matrices developed in the last chapter certainly expanded our ability to deal with nonlinear systems of differential equations Unfortunately, those tools

More information

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations Chapter 1: Systems of linear equations and matrices Section 1.1: Introduction to systems of linear equations Definition: A linear equation in n variables can be expressed in the form a 1 x 1 + a 2 x 2

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

Modern Algebra Prof. Manindra Agrawal Department of Computer Science and Engineering Indian Institute of Technology, Kanpur

Modern Algebra Prof. Manindra Agrawal Department of Computer Science and Engineering Indian Institute of Technology, Kanpur Modern Algebra Prof. Manindra Agrawal Department of Computer Science and Engineering Indian Institute of Technology, Kanpur Lecture 02 Groups: Subgroups and homomorphism (Refer Slide Time: 00:13) We looked

More information

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014 APPM 2360 Section Exam 3 Wednesday November 9, 7:00pm 8:30pm, 204 ON THE FRONT OF YOUR BLUEBOOK write: () your name, (2) your student ID number, (3) lecture section, (4) your instructor s name, and (5)

More information

Sec. 7.4: Basic Theory of Systems of First Order Linear Equations

Sec. 7.4: Basic Theory of Systems of First Order Linear Equations Sec. 7.4: Basic Theory of Systems of First Order Linear Equations MATH 351 California State University, Northridge April 2, 214 MATH 351 (Differential Equations) Sec. 7.4 April 2, 214 1 / 12 System of

More information

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations.

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations. POLI 7 - Mathematical and Statistical Foundations Prof S Saiegh Fall Lecture Notes - Class 4 October 4, Linear Algebra The analysis of many models in the social sciences reduces to the study of systems

More information

Isomorphisms and Well-definedness

Isomorphisms and Well-definedness Isomorphisms and Well-definedness Jonathan Love October 30, 2016 Suppose you want to show that two groups G and H are isomorphic. There are a couple of ways to go about doing this depending on the situation,

More information

Section 2.2: The Inverse of a Matrix

Section 2.2: The Inverse of a Matrix Section 22: The Inverse of a Matrix Recall that a linear equation ax b, where a and b are scalars and a 0, has the unique solution x a 1 b, where a 1 is the reciprocal of a From this result, it is natural

More information

CLASSICAL PROBABILITY MODES OF CONVERGENCE AND INEQUALITIES

CLASSICAL PROBABILITY MODES OF CONVERGENCE AND INEQUALITIES CLASSICAL PROBABILITY 2008 2. MODES OF CONVERGENCE AND INEQUALITIES JOHN MORIARTY In many interesting and important situations, the object of interest is influenced by many random factors. If we can construct

More information

Linear Algebra Handout

Linear Algebra Handout Linear Algebra Handout References Some material and suggested problems are taken from Fundamentals of Matrix Algebra by Gregory Hartman, which can be found here: http://www.vmi.edu/content.aspx?id=779979.

More information

12. Perturbed Matrices

12. Perturbed Matrices MAT334 : Applied Linear Algebra Mike Newman, winter 208 2. Perturbed Matrices motivation We want to solve a system Ax = b in a context where A and b are not known exactly. There might be experimental errors,

More information

LS.1 Review of Linear Algebra

LS.1 Review of Linear Algebra LS. LINEAR SYSTEMS LS.1 Review of Linear Algebra In these notes, we will investigate a way of handling a linear system of ODE s directly, instead of using elimination to reduce it to a single higher-order

More information

Vector Spaces. 9.1 Opening Remarks. Week Solvable or not solvable, that s the question. View at edx. Consider the picture

Vector Spaces. 9.1 Opening Remarks. Week Solvable or not solvable, that s the question. View at edx. Consider the picture Week9 Vector Spaces 9. Opening Remarks 9.. Solvable or not solvable, that s the question Consider the picture (,) (,) p(χ) = γ + γ χ + γ χ (, ) depicting three points in R and a quadratic polynomial (polynomial

More information

2nd-Order Linear Equations

2nd-Order Linear Equations 4 2nd-Order Linear Equations 4.1 Linear Independence of Functions In linear algebra the notion of linear independence arises frequently in the context of vector spaces. If V is a vector space over the

More information

Basic matrix operations

Basic matrix operations Roberto s Notes on Linear Algebra Chapter 4: Matrix algebra Section 3 Basic matrix operations What you need to know already: What a matrix is. he basic special types of matrices What you can learn here:

More information

Solving Systems of Equations Row Reduction

Solving Systems of Equations Row Reduction Solving Systems of Equations Row Reduction November 19, 2008 Though it has not been a primary topic of interest for us, the task of solving a system of linear equations has come up several times. For example,

More information

MAT 1332: CALCULUS FOR LIFE SCIENCES. Contents. 1. Review: Linear Algebra II Vectors and matrices Definition. 1.2.

MAT 1332: CALCULUS FOR LIFE SCIENCES. Contents. 1. Review: Linear Algebra II Vectors and matrices Definition. 1.2. MAT 1332: CALCULUS FOR LIFE SCIENCES JING LI Contents 1 Review: Linear Algebra II Vectors and matrices 1 11 Definition 1 12 Operations 1 2 Linear Algebra III Inverses and Determinants 1 21 Inverse Matrices

More information

0.2 Vector spaces. J.A.Beachy 1

0.2 Vector spaces. J.A.Beachy 1 J.A.Beachy 1 0.2 Vector spaces I m going to begin this section at a rather basic level, giving the definitions of a field and of a vector space in much that same detail as you would have met them in a

More information

Midterm 1 NAME: QUESTION 1 / 10 QUESTION 2 / 10 QUESTION 3 / 10 QUESTION 4 / 10 QUESTION 5 / 10 QUESTION 6 / 10 QUESTION 7 / 10 QUESTION 8 / 10

Midterm 1 NAME: QUESTION 1 / 10 QUESTION 2 / 10 QUESTION 3 / 10 QUESTION 4 / 10 QUESTION 5 / 10 QUESTION 6 / 10 QUESTION 7 / 10 QUESTION 8 / 10 Midterm 1 NAME: RULES: You will be given the entire period (1PM-3:10PM) to complete the test. You can use one 3x5 notecard for formulas. There are no calculators nor those fancy cellular phones nor groupwork

More information

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.]

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.] Math 43 Review Notes [Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty Dot Product If v (v, v, v 3 and w (w, w, w 3, then the

More information

CHANGE OF BASIS AND ALL OF THAT

CHANGE OF BASIS AND ALL OF THAT CHANGE OF BASIS AND ALL OF THAT LANCE D DRAGER Introduction The goal of these notes is to provide an apparatus for dealing with change of basis in vector spaces, matrices of linear transformations, and

More information

Lecture 31. Basic Theory of First Order Linear Systems

Lecture 31. Basic Theory of First Order Linear Systems Math 245 - Mathematics of Physics and Engineering I Lecture 31. Basic Theory of First Order Linear Systems April 4, 2012 Konstantin Zuev (USC) Math 245, Lecture 31 April 4, 2012 1 / 10 Agenda Existence

More information

Linear Algebra for Beginners Open Doors to Great Careers. Richard Han

Linear Algebra for Beginners Open Doors to Great Careers. Richard Han Linear Algebra for Beginners Open Doors to Great Careers Richard Han Copyright 2018 Richard Han All rights reserved. CONTENTS PREFACE... 7 1 - INTRODUCTION... 8 2 SOLVING SYSTEMS OF LINEAR EQUATIONS...

More information

Linear Programming and its Extensions Prof. Prabha Shrama Department of Mathematics and Statistics Indian Institute of Technology, Kanpur

Linear Programming and its Extensions Prof. Prabha Shrama Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Linear Programming and its Extensions Prof. Prabha Shrama Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Lecture No. # 03 Moving from one basic feasible solution to another,

More information

is any vector v that is a sum of scalar multiples of those vectors, i.e. any v expressible as v = c 1 v n ... c n v 2 = 0 c 1 = c 2

is any vector v that is a sum of scalar multiples of those vectors, i.e. any v expressible as v = c 1 v n ... c n v 2 = 0 c 1 = c 2 Math 225-4 Week 8 Finish sections 42-44 and linear combination concepts, and then begin Chapter 5 on linear differential equations, sections 5-52 Mon Feb 27 Use last Friday's notes to talk about linear

More information

Work sheet / Things to know. Chapter 3

Work sheet / Things to know. Chapter 3 MATH 251 Work sheet / Things to know 1. Second order linear differential equation Standard form: Chapter 3 What makes it homogeneous? We will, for the most part, work with equations with constant coefficients

More information

4.6 Bases and Dimension

4.6 Bases and Dimension 46 Bases and Dimension 281 40 (a) Show that {1,x,x 2,x 3 } is linearly independent on every interval (b) If f k (x) = x k for k = 0, 1,,n, show that {f 0,f 1,,f n } is linearly independent on every interval

More information

PRELIMINARY THEORY LINEAR EQUATIONS

PRELIMINARY THEORY LINEAR EQUATIONS 4.1 PRELIMINARY THEORY LINEAR EQUATIONS 117 4.1 PRELIMINARY THEORY LINEAR EQUATIONS REVIEW MATERIAL Reread the Remarks at the end of Section 1.1 Section 2.3 (especially page 57) INTRODUCTION In Chapter

More information

Applications to PDE Problems

Applications to PDE Problems 48 Applications to PDE Problems The use of the Sturm-iouville theory can be nicely illustrated by solving any of a number of classical problems. We will consider two: a heat flow problem and a vibrating

More information

Applications to PDE Problems

Applications to PDE Problems 53 Applications to PDE Problems The use of the Sturm-iouville theory can be nicely illustrated by solving any of a number of classical problems. We will consider two: a heat flow problem and a vibrating

More information

2. Introduction to commutative rings (continued)

2. Introduction to commutative rings (continued) 2. Introduction to commutative rings (continued) 2.1. New examples of commutative rings. Recall that in the first lecture we defined the notions of commutative rings and field and gave some examples of

More information

Lecture - 30 Stationary Processes

Lecture - 30 Stationary Processes Probability and Random Variables Prof. M. Chakraborty Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 30 Stationary Processes So,

More information

Metric spaces and metrizability

Metric spaces and metrizability 1 Motivation Metric spaces and metrizability By this point in the course, this section should not need much in the way of motivation. From the very beginning, we have talked about R n usual and how relatively

More information

Second-Order Homogeneous Linear Equations with Constant Coefficients

Second-Order Homogeneous Linear Equations with Constant Coefficients 15 Second-Order Homogeneous Linear Equations with Constant Coefficients A very important class of second-order homogeneous linear equations consists of those with constant coefficients; that is, those

More information

Introduction to Determinants

Introduction to Determinants Introduction to Determinants For any square matrix of order 2, we have found a necessary and sufficient condition for invertibility. Indeed, consider the matrix The matrix A is invertible if and only if.

More information

Linear Algebra MATH20F Midterm 1

Linear Algebra MATH20F Midterm 1 University of California San Diego NAME TA: Linear Algebra Wednesday, October st, 9 :am - :5am No aids are allowed Be sure to write all row operations used Remember that you can often check your answers

More information

MATH 196, SECTION 57 (VIPUL NAIK)

MATH 196, SECTION 57 (VIPUL NAIK) TAKE-HOME CLASS QUIZ: DUE MONDAY NOVEMBER 25: SUBSPACE, BASIS, DIMENSION, AND ABSTRACT SPACES: APPLICATIONS TO CALCULUS MATH 196, SECTION 57 (VIPUL NAIK) Your name (print clearly in capital letters): PLEASE

More information

Math 110, Spring 2015: Midterm Solutions

Math 110, Spring 2015: Midterm Solutions Math 11, Spring 215: Midterm Solutions These are not intended as model answers ; in many cases far more explanation is provided than would be necessary to receive full credit. The goal here is to make

More information

(Refer Slide Time: 00:01:30 min)

(Refer Slide Time: 00:01:30 min) Control Engineering Prof. M. Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 3 Introduction to Control Problem (Contd.) Well friends, I have been giving you various

More information

Unit 2, Section 3: Linear Combinations, Spanning, and Linear Independence Linear Combinations, Spanning, and Linear Independence

Unit 2, Section 3: Linear Combinations, Spanning, and Linear Independence Linear Combinations, Spanning, and Linear Independence Linear Combinations Spanning and Linear Independence We have seen that there are two operations defined on a given vector space V :. vector addition of two vectors and. scalar multiplication of a vector

More information

Goals: Introduction to Systems of Differential Equations Solving systems with distinct real eigenvalues and eigenvectors

Goals: Introduction to Systems of Differential Equations Solving systems with distinct real eigenvalues and eigenvectors Week #10 : Systems of DEs Goals: Introduction to Systems of Differential Equations Solving systems with distinct real eigenvalues and eigenvectors 1 Systems of Differential Equations - Introdution - 1

More information

Chapter Two Elements of Linear Algebra

Chapter Two Elements of Linear Algebra Chapter Two Elements of Linear Algebra Previously, in chapter one, we have considered single first order differential equations involving a single unknown function. In the next chapter we will begin to

More information

2. Two binary operations (addition, denoted + and multiplication, denoted

2. Two binary operations (addition, denoted + and multiplication, denoted Chapter 2 The Structure of R The purpose of this chapter is to explain to the reader why the set of real numbers is so special. By the end of this chapter, the reader should understand the difference between

More information

EIGENVALUES AND EIGENVECTORS 3

EIGENVALUES AND EIGENVECTORS 3 EIGENVALUES AND EIGENVECTORS 3 1. Motivation 1.1. Diagonal matrices. Perhaps the simplest type of linear transformations are those whose matrix is diagonal (in some basis). Consider for example the matrices

More information

Separable First-Order Equations

Separable First-Order Equations 4 Separable First-Order Equations As we will see below, the notion of a differential equation being separable is a natural generalization of the notion of a first-order differential equation being directly

More information

17. C M 2 (C), the set of all 2 2 matrices with complex entries. 19. Is C 3 a real vector space? Explain.

17. C M 2 (C), the set of all 2 2 matrices with complex entries. 19. Is C 3 a real vector space? Explain. 250 CHAPTER 4 Vector Spaces 14. On R 2, define the operation of addition by (x 1,y 1 ) + (x 2,y 2 ) = (x 1 x 2,y 1 y 2 ). Do axioms A5 and A6 in the definition of a vector space hold? Justify your answer.

More information

Name Solutions Linear Algebra; Test 3. Throughout the test simplify all answers except where stated otherwise.

Name Solutions Linear Algebra; Test 3. Throughout the test simplify all answers except where stated otherwise. Name Solutions Linear Algebra; Test 3 Throughout the test simplify all answers except where stated otherwise. 1) Find the following: (10 points) ( ) Or note that so the rows are linearly independent, so

More information

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation LECTURE 10: REVIEW OF POWER SERIES By definition, a power series centered at x 0 is a series of the form where a 0, a 1,... and x 0 are constants. For convenience, we shall mostly be concerned with the

More information

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this.

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this. Preface Here are my online notes for my Calculus II course that I teach here at Lamar University. Despite the fact that these are my class notes they should be accessible to anyone wanting to learn Calculus

More information

Chapter 2. Matrix Arithmetic. Chapter 2

Chapter 2. Matrix Arithmetic. Chapter 2 Matrix Arithmetic Matrix Addition and Subtraction Addition and subtraction act element-wise on matrices. In order for the addition/subtraction (A B) to be possible, the two matrices A and B must have the

More information

Linear Algebra (Part II) Vector Spaces, Independence, Span and Bases

Linear Algebra (Part II) Vector Spaces, Independence, Span and Bases Linear Algebra (Part II) Vector Spaces, Independence, Span and Bases A vector space, or sometimes called a linear space, is an abstract system composed of a set of objects called vectors, an associated

More information

A primer on matrices

A primer on matrices A primer on matrices Stephen Boyd August 4, 2007 These notes describe the notation of matrices, the mechanics of matrix manipulation, and how to use matrices to formulate and solve sets of simultaneous

More information

Lecture 9. Systems of Two First Order Linear ODEs

Lecture 9. Systems of Two First Order Linear ODEs Math 245 - Mathematics of Physics and Engineering I Lecture 9. Systems of Two First Order Linear ODEs January 30, 2012 Konstantin Zuev (USC) Math 245, Lecture 9 January 30, 2012 1 / 15 Agenda General Form

More information

Lecture Notes for Math 524

Lecture Notes for Math 524 Lecture Notes for Math 524 Dr Michael Y Li October 19, 2009 These notes are based on the lecture notes of Professor James S Muldowney, the books of Hale, Copple, Coddington and Levinson, and Perko They

More information

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N.

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N. Math 410 Homework Problems In the following pages you will find all of the homework problems for the semester. Homework should be written out neatly and stapled and turned in at the beginning of class

More information

Roberto s Notes on Linear Algebra Chapter 4: Matrix Algebra Section 7. Inverse matrices

Roberto s Notes on Linear Algebra Chapter 4: Matrix Algebra Section 7. Inverse matrices Roberto s Notes on Linear Algebra Chapter 4: Matrix Algebra Section 7 Inverse matrices What you need to know already: How to add and multiply matrices. What elementary matrices are. What you can learn

More information

Last Update: March 1 2, 201 0

Last Update: March 1 2, 201 0 M ath 2 0 1 E S 1 W inter 2 0 1 0 Last Update: March 1 2, 201 0 S eries S olutions of Differential Equations Disclaimer: This lecture note tries to provide an alternative approach to the material in Sections

More information

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem.

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem. Dot Products K. Behrend April 3, 008 Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem. Contents The dot product 3. Length of a vector........................

More information

LINEAR ALGEBRA BOOT CAMP WEEK 2: LINEAR OPERATORS

LINEAR ALGEBRA BOOT CAMP WEEK 2: LINEAR OPERATORS LINEAR ALGEBRA BOOT CAMP WEEK 2: LINEAR OPERATORS Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F has characteristic zero. The following are facts

More information

Section 4.2: Mathematical Induction 1

Section 4.2: Mathematical Induction 1 Section 4.: Mathematical Induction 1 Over the next couple of sections, we shall consider a method of proof called mathematical induction. Induction is fairly complicated, but a very useful proof technique,

More information

MB4018 Differential equations

MB4018 Differential equations MB4018 Differential equations Part II http://www.staff.ul.ie/natalia/mb4018.html Prof. Natalia Kopteva Spring 2015 MB4018 (Spring 2015) Differential equations Part II 0 / 69 Section 1 Second-Order Linear

More information

Roberto s Notes on Linear Algebra Chapter 4: Matrix Algebra Section 4. Matrix products

Roberto s Notes on Linear Algebra Chapter 4: Matrix Algebra Section 4. Matrix products Roberto s Notes on Linear Algebra Chapter 4: Matrix Algebra Section 4 Matrix products What you need to know already: The dot product of vectors Basic matrix operations. Special types of matrices What you

More information

εx 2 + x 1 = 0. (2) Suppose we try a regular perturbation expansion on it. Setting ε = 0 gives x 1 = 0,

εx 2 + x 1 = 0. (2) Suppose we try a regular perturbation expansion on it. Setting ε = 0 gives x 1 = 0, 4 Rescaling In this section we ll look at one of the reasons that our ε = 0 system might not have enough solutions, and introduce a tool that is fundamental to all perturbation systems. We ll start with

More information

CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA

CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA Andrew ID: ljelenak August 25, 2018 This assignment reviews basic mathematical tools you will use throughout

More information