On CTL Response against Mycobacterium tuberculosis

Size: px
Start display at page:

Download "On CTL Response against Mycobacterium tuberculosis"

Transcription

1 Applied Mathematical Sciences, Vol. 8, 2014, no. 48, HIKARI Ltd, On CTL Response against Mycobacterium tuberculosis Eduardo Ibargüen-Mondragón Departamento de Matemáticas y Est., Facultad de Ciencias Exactas y Nat. Universidad de Nariño, Pasto, Colombia Lourdes Esteva Departamento de Matemáticas, Facultadad de Ciencias Universidad Nacional Autónoma de México, México DF, México Copyright c 2014 Eduardo Ibargüen-Mondragón and Lourdes Esteva. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper we formulate a mathematical model trying to describe basic aspects into the dynamics of the Mycobacterium tuberculosis infection. The purpose of this study is to evaluate the impact of the response of T cells in the control of Mtb. Mathematics Subject Classification: 34D23, 93D20, 65L05 Keywords: Mathematical model, Tuberculosis, Stability, Innate immunology, Equilibrium solutions 1 Introduction Tuberculosis TB) is an infectious disease whose etiological agent is Mycobacterium tuberculosis Mtb). The World Health Organization WHO) reports 9.2 million new cases and 1.7 million death each year [3, 9]. However, only 10% of infected individuals with Mtb develop the disease in their lifetime [9]. This indicates that in most cases the host immune system is able to control replication of the pathogen. The Mtb bacteria may affect different tissues, but usually develop pulmonary TB. After the entrance of the bacilli into the

2 2384 E. Ibargüen-Mondragón and L. Esteva lung, phagocytosis of the bacteria by alveolar macrophages takes place. Cell mediated immune response develops within 2 to 6 weeks, this leads to the activation and recruitment of other immune cell populations, such as CD4 + T or CD8 + T lymphocytes. These cells secrete cytokines that help to kill the infected macrophages [1]. In most cases the initial infection progresses to a latent form which can be maintained for the lifetime of the host with no clinical symptoms. The reactivation of the latent infection can be due to aging, malnutrition, infection with HIV, and other factors. The immune response that occurs after the first exposure to Mtb is multifaceted and complex. Animal models have been extensively used to explain the mechanisms involved in this response, however, these models have limitations, since cellular response may vary between species [8]. In this sense, mathematical models have been applied to understand the celular immunology of TB. Among them we have G. Magombedze et al. [2], E. Ibargüen-Mondragón et al. [4, 5, 6]. 2 The basiodel of Mtb infection dynamics with CTL response In this section we formulate a model on cytotoxic T cells CTL) response against Mtb. We consider the following population; uninfected macrophages, infected macrophages, Mtb bacteria and T cells which are denoted by x, y, b and c, respectively. We assume that uninfected macrophages reproduce at constant rate λ, and die at a per capita constant rate μ. Uninfected macrophages become infected at a rate proportional to the product of x and b, with constant of proportionality β. Infected macrophage die at per capita constant rate ν, where ν μ. Mtb bacteria multiply inside infected macrophages up to a limit at which the macrophage bursts, and releases bacteria. For this reason, we assume that infected macrophages produce Mtb bacteria at a rate proportional to the population, ρy. Infected macrophages die at a rate νy and Mtb bacteria are removed from the system at a rate γb. Let us explore the effect of a CTL response, which provides a maximum amount of CTL to eliminate infected macrophages. In the presence of bacteria and infected macrophages, the supply of specific T cells is given by σ 1 c/ax ) y, where σ is the recruitment rate of T cells, and is the maximum T cell population level. Finally, the T cells die at per capita rate δ. The assumptions above lead to the following

3 On CTL response against Mtb 2385 system of nonlinear differential equations x = λ μx βxb y = βxb αyc νy b = ρy γb c = σ 1 c ) y δc. 1) In this case, the set of biological interest is given by Ω= { x, y, b, c) R + 0 )4 :0 x + y λ/μ, 0 b λρ/γμ, 0 c λσ/δμ }. 2) The following lemma ensures that system 1) has biological sense, that is, all solutions starting in 2) remain there for all t 0. Lemma 2.1. The set Ω 1 defined in 2) is positively invariant for the solutions of the system 1). Proof. We begin adding the first two equations of 1) and using the fact that ν μ we obtain x + y) + μx + y) λ which implies xt)+yt) λ μ + λ μ + x 0 + y 0 ) e µ U t, where x 0 + y 0 λ/μ. In consecuence, xt)+yt) λ/μ for all t 0. Similarly it is proved that 0 bt) λρ/γμ and 0 c λσ/δμ. On the other hand, it can be easily verified that the vector field defined by 1) points to the interior of Ω. Therefore the solutions starting in Ω remain there for all t Equilibrium Solutions In this case, before infection, the system is at the equilibrium x =1,y =0, b = 0, and c = 0. Suppose that bacteria enter to the organism. The infection progression will depend of the basic reproductive number, R 0 = βλρ μνγ. 3) The parameter R 0 can be interpreted biologically as the number of secondary infections that arises from a macrophage during its lifetime if all other macrophages are uninfected. The following theorem summarizes the existence results of the equilibria. Proposition 2.2. If R 0 1, then P 1 =λ/μ, 0, 0, 0) is the only equilibrium in Ω. If R 0 > 1, in addition to P 1, there exists an infected equilibrium, P 2 = x 2,y 2,b 2,c 2 ).

4 2386 E. Ibargüen-Mondragón and L. Esteva Proof. Equilibrium solutions of 1) are given by solutions of the following algebraic system λ μx βxb =0,βxb αyc νy =0ρy γb =0,σ 1 c ) y δc =0, 4) which are the infection-free equilibrium P 1 =λ/μ, 0, 0, 0) and endemic equilibrium λ P 2 =, γ ) μ + βb 2 ρ b σγb 2 2,b 2,, γb 2 + δρ where b 2 is a solution of b 2 + [ β μ + ρβδν λ) ασ + ν)γν ] b δρr 0 ) ασ + ν)γ 3 ν 2 μ = 0. 5) Since R 0 > 1, then b 2 is the unique positive solution of 5). 2.2 Stability of equilibrium solutions In this section we analyze the stability of equilibria. We begin with the stability analysis of the infection-free equilibrium. Proposition 2.3. For R 0 < 1, P 1 is locally asymptotically stable, and for R 0 > 1, P 1 is unstable. Proof. The eigenvalues of the Jacobian of the system 1) evaluated at P 1 are given by μ, δ and the solutions of the quadratic equation ξ 2 +ν + γ)ξ νγr 0 ) = 0. 6) From Routh-Hurwitz criteria we conclude that the roots of the equation 6) have negative real part if and only if R 0 < 1. Actually, we can prove global stability of P 1 when R 0 1. Proposition 2.4. If R 0 1 then P 1 is globally asymptotically stable. Proof. The function U = ρy + νb satisfies UP 1 ) = 0 and UP ) 0 for all P Ω. Since R 0 1 implies λ/μ νγ/ρβ, then its orbital derivative satisfies U = ρβb x νγ ) ρδyc ρβb x λ ) ρδyc 0. ρβ μ

5 On CTL response against Mtb 2387 In consequence UP ) 0 for all P Ω 1. From inspection of system 1) we can see that the maximum invariant set contained in the set U = 0 is the plane y =0,b = 0. In this set, system 1) becomes x = λ μx, y =0, b =0, c = δc. Which implies that the solutions starting there tend to equilibrium P 1 as t goes to infinity. Therefore, applying the LaSalle-Lyapunov Theorem see [7]) we have that P 1 is globally asymptotically stable. In the following we will prove the asymptotic stability of P 2 when R 0 > 1. For this, we use the following Lyapunov function )] [ )] x y V = a 1 [x x 2 x 2 ln + a 2 y y 2 y 2 ln x 2 y )] [ 2 )] b c +a 3 [b b 2 b 2 ln + a 4 c c 2 c 2 ln, where a 1 is a positive constant and b 2 a 2 = a 1,a 3 = βb 2x 2 a 1 ρy 2,a 4 = c 2 αc 2 y 2 a 1 σy 2 1 c 2 / ). 7) To prove the global stability of P 2 using Lyapunov direct method we have to show that V P ) 0 and V P ) < 0 for all P Ω. For this end we need next results. Proposition 2.5. The orbital derivative V of V is equal to V = f where f is given by [ f = a 1 μx 2 w ) 2 + βx 2 b 2 w 1 w )] w 3 w 1 w [ ) 1 ] w1 w 3 +a 2 βx 2 b 2 + w 2 w 1 w 3 + αy 2 c w 2 w 4 w 2 w 4 ) w 2 ) ) w2 w2 +a 3 ρy 2 + w 3 w 2 + a 4 σy 2 + w 4 w 2 w 3 w 4 σ +a 4 y 2 c 2 w 2 w 4 +1 w 2 w 4 ), 8) where w 1 = x/x 2, w 2 = y/y 2, w 3 = b/b 2 and w 4 = c/c 2. Proof. The orbital derivative of V is given by V = a 1 1 x 2 x +a 3 1 b 2 b ) λ μx βxb)+a 2 1 y ) 2 βxb αyc νy) y ) ρy γb)+a 4 1 c ) [ 2 σ 1 c ) ] y δc. c 9)

6 2388 E. Ibargüen-Mondragón and L. Esteva From the equilibrium equations 4) we have λ = μx 2 + βx 2 b 2,ν= βx 2b 2 αy 2c 2,γ= ρy 2,δ= y 2 y 2 b 2 Replacing λ, ν, γ and δ in 9) we obtain x V = a 1 [μx 2 + x ) 2 xb x 2 x 2 + βx 2 b 2 + x 2 x 2 b [ 2 xby2 a 2 βx 2 b 2 x 2 b 2 y + y xb ) y 2 x 2 b 2 b2 y a 3 ρy 2 + b y ) by 2 b 2 y 2 c2 y a 4 σy 2 + c y ) cy 2 c 2 y 2 ) σ 1 c 2 y 2. c 2 x b )] b 2 + αc 2 y 2 cy c 2 y 2 +1 y y 2 c c 2 σ cy a 4 y 2 c 2 +1 c y ). c 2 y 2 c 2 y 2 )] 10) In the variables w 1 = x/x 2, w 2 = y/y 2, w 3 = b/b 2 and w 4 = c/c 2, we have V w 1,w 2,w 3,w 4 )= fw 1,w 2,w 3,w 3 ). Proposition 2.6. The function f is nonnegative. Proof. From the following equalities σ a 1 βx 2 b 2 = a 2 βx 2 b 2 = a 3 ρb 2,a 4 σy 2 = a 3 αc 2 y 2 + a 4 y 2 c 2, we obtain the constants defined in 7). Replacing the equilibrium equation ρy 2 = γb 2 and the constants 7) in the function f we have fw 1,w 2,w 3,w 4 ) = a 2 μx 2 w ) ) a 4 σy 2 w 2 + w 4 2 w 1 w 4 w1 w 3 +a 2 + a 3 )βx 2 b 2 + w ) 3, 11) w 2 w 3 w 1 It can be seen that the expressions inside the parenthesis of 11) are nonnegative, and therefore f is nonnegative. Theorem 2.7. If R 0 > 1 then nontrivial equilibrium P 2 is globally asymptotically stable. Proof. It is clear that V P 2 ) = 0 and V P ) 0 for all P Ω. From Proposition 2.5 we have V = f and from Proposition 2.6 we have f is nonnegative, therefore V P ) 0 for all P Ω. Further V = 0 if and only if x = x 2, y = y 2, b = b 2 and c = c 2 which implies all trajectories inside Ω approach P 2 when t goes to infinity.

7 On CTL response against Mtb Discussion In this paper we formulated a mathematical model on the immune response to Mtb in order to evaluate the efectiveness of T cells in controlling TB. Although our model is quite simple compared to the complexity of the immune response to Mtb, it predicts in terms of the basic reproductive number R 0, when the bacteria is cleared or infection progresses to disease. References [1] AM. Gallegos, EG. Pamer, MS. Glickman, Delayed protection by ESAT- 6-specific effector CD4+ T cells after airborne M. tuberculosis infection. J. Exp. Med Sep 29;20510): [2] G. Magombedze, W. Garira, E. Mwenje, Modellingthe human immune response mechanisms to mycobacterium tuberculosis infection in the lungs, J. Mathematical Biosciences and engineering, 32006) [3] Global tuberculosis control: surveillance, planning, financing: WHO report WHO/HTM/TB/ [4] E. Ibargüen-Mondragón, L. Esteva, L. Chávez-Galán, A mathematical model for cellular immunology of tuberculosis. J. Mathematical Eiosciences and Engineering, 82011) [5] E. Ibargüen-Mondragón, L. Esteva, L., Un modelo matematico sobre la dinamica del Mycobacterium tuberculosis en el granuloma. Revista Colombiana de Matematicas, ) [6] E. Ibargüen-Mondragón, L. Esteva, L., On the interactions of sensitive and resistant Mycobacterium tuberculosis to antibiotics. Mathematical Biosciences, ) [7] J. Hale, Ordinary Differential Equations, Wiley, New York, [8] M. Tsai, S. Chakravarty, G. Zhu, J. Xu, K. Tanaka, C. Koch, J. Tufariello, J. Flynn and J. Chan, Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension, Cell Microbiology, ), [9] Palomino-Leo-Ritacco, Tuberculosis 2007, From basic science to patient care. TuberculosisTextbook.com, first edition. Received: March 4, 2014

A Stability Test for Non Linear Systems of Ordinary Differential Equations Based on the Gershgorin Circles

A Stability Test for Non Linear Systems of Ordinary Differential Equations Based on the Gershgorin Circles Contemporary Engineering Sciences, Vol. 11, 2018, no. 91, 4541-4548 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.89504 A Stability Test for Non Linear Systems of Ordinary Differential

More information

A Mathematical Model for Transmission of Dengue

A Mathematical Model for Transmission of Dengue Applied Mathematical Sciences, Vol. 10, 2016, no. 7, 345-355 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.510662 A Mathematical Model for Transmission of Dengue Luis Eduardo López Departamento

More information

Stability Analysis of a SIS Epidemic Model with Standard Incidence

Stability Analysis of a SIS Epidemic Model with Standard Incidence tability Analysis of a I Epidemic Model with tandard Incidence Cruz Vargas-De-León Received 19 April 2011; Accepted 19 Octuber 2011 leoncruz82@yahoo.com.mx Abstract In this paper, we study the global properties

More information

GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS

GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS CANADIAN APPIED MATHEMATICS QUARTERY Volume 13, Number 4, Winter 2005 GOBA DYNAMICS OF A MATHEMATICA MODE OF TUBERCUOSIS HONGBIN GUO ABSTRACT. Mathematical analysis is carried out for a mathematical model

More information

Aedes aegypti Population Model with Integrated Control

Aedes aegypti Population Model with Integrated Control Applied Mathematical Sciences, Vol. 12, 218, no. 22, 175-183 HIKARI Ltd, www.m-hiari.com https://doi.org/1.12988/ams.218.71295 Aedes aegypti Population Model with Integrated Control Julián A. Hernández

More information

A Delayed HIV Infection Model with Specific Nonlinear Incidence Rate and Cure of Infected Cells in Eclipse Stage

A Delayed HIV Infection Model with Specific Nonlinear Incidence Rate and Cure of Infected Cells in Eclipse Stage Applied Mathematical Sciences, Vol. 1, 216, no. 43, 2121-213 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.216.63128 A Delayed HIV Infection Model with Specific Nonlinear Incidence Rate and

More information

A New Mathematical Approach for. Rabies Endemy

A New Mathematical Approach for. Rabies Endemy Applied Mathematical Sciences, Vol. 8, 2014, no. 2, 59-67 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.39525 A New Mathematical Approach for Rabies Endemy Elif Demirci Ankara University

More information

Global Analysis of a HCV Model with CTL, Antibody Responses and Therapy

Global Analysis of a HCV Model with CTL, Antibody Responses and Therapy Applied Mathematical Sciences Vol 9 205 no 8 3997-4008 HIKARI Ltd wwwm-hikaricom http://dxdoiorg/02988/ams20554334 Global Analysis of a HCV Model with CTL Antibody Responses and Therapy Adil Meskaf Department

More information

GLOBAL STABILITY OF THE ENDEMIC EQUILIBRIUM OF A TUBERCULOSIS MODEL WITH IMMIGRATION AND TREATMENT

GLOBAL STABILITY OF THE ENDEMIC EQUILIBRIUM OF A TUBERCULOSIS MODEL WITH IMMIGRATION AND TREATMENT CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 19, Number 1, Spring 2011 GLOBAL STABILITY OF THE ENDEMIC EQUILIBRIUM OF A TUBERCULOSIS MODEL WITH IMMIGRATION AND TREATMENT HONGBIN GUO AND MICHAEL Y. LI

More information

Mathematical Model of Tuberculosis Spread within Two Groups of Infected Population

Mathematical Model of Tuberculosis Spread within Two Groups of Infected Population Applied Mathematical Sciences, Vol. 10, 2016, no. 43, 2131-2140 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.63130 Mathematical Model of Tuberculosis Spread within Two Groups of Infected

More information

Global Analysis of a Mathematical Model of HCV Transmission among Injecting Drug Users and the Impact of Vaccination

Global Analysis of a Mathematical Model of HCV Transmission among Injecting Drug Users and the Impact of Vaccination Applied Mathematical Sciences, Vol. 8, 2014, no. 128, 6379-6388 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.48625 Global Analysis of a Mathematical Model of HCV Transmission among

More information

Dynamics of a Hepatitis B Viral Infection Model with Logistic Hepatocyte Growth and Cytotoxic T-Lymphocyte Response

Dynamics of a Hepatitis B Viral Infection Model with Logistic Hepatocyte Growth and Cytotoxic T-Lymphocyte Response Nonlinear Analysis and Differential Equations, Vol. 4, 16, no. 3, 19-1 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/nade.16.5164 Dynamics of a Hepatitis B Viral Infection Model with Logistic Hepatocyte

More information

Thursday. Threshold and Sensitivity Analysis

Thursday. Threshold and Sensitivity Analysis Thursday Threshold and Sensitivity Analysis SIR Model without Demography ds dt di dt dr dt = βsi (2.1) = βsi γi (2.2) = γi (2.3) With initial conditions S(0) > 0, I(0) > 0, and R(0) = 0. This model can

More information

Stability Analysis of Plankton Ecosystem Model. Affected by Oxygen Deficit

Stability Analysis of Plankton Ecosystem Model. Affected by Oxygen Deficit Applied Mathematical Sciences Vol 9 2015 no 81 4043-4052 HIKARI Ltd wwwm-hikaricom http://dxdoiorg/1012988/ams201553255 Stability Analysis of Plankton Ecosystem Model Affected by Oxygen Deficit Yuriska

More information

Global Stability of a Computer Virus Model with Cure and Vertical Transmission

Global Stability of a Computer Virus Model with Cure and Vertical Transmission International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume 3, Issue 1, January 016, PP 16-4 ISSN 349-4840 (Print) & ISSN 349-4859 (Online) www.arcjournals.org Global

More information

Mathematical Analysis of HIV/AIDS Prophylaxis Treatment Model

Mathematical Analysis of HIV/AIDS Prophylaxis Treatment Model Applied Mathematical Sciences, Vol. 12, 2018, no. 18, 893-902 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.8689 Mathematical Analysis of HIV/AIDS Prophylaxis Treatment Model F. K. Tireito,

More information

Approximation to the Dissipative Klein-Gordon Equation

Approximation to the Dissipative Klein-Gordon Equation International Journal of Mathematical Analysis Vol. 9, 215, no. 22, 159-163 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.5236 Approximation to the Dissipative Klein-Gordon Equation Edilber

More information

Global Stability Analysis on a Predator-Prey Model with Omnivores

Global Stability Analysis on a Predator-Prey Model with Omnivores Applied Mathematical Sciences, Vol. 9, 215, no. 36, 1771-1782 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.215.512 Global Stability Analysis on a Predator-Prey Model with Omnivores Puji Andayani

More information

Mathematical Analysis of Epidemiological Models III

Mathematical Analysis of Epidemiological Models III Intro Computing R Complex models Mathematical Analysis of Epidemiological Models III Jan Medlock Clemson University Department of Mathematical Sciences 27 July 29 Intro Computing R Complex models What

More information

The E ect of Occasional Smokers on the Dynamics of a Smoking Model

The E ect of Occasional Smokers on the Dynamics of a Smoking Model International Mathematical Forum, Vol. 9, 2014, no. 25, 1207-1222 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.46120 The E ect of Occasional Smokers on the Dynamics of a Smoking Model

More information

Solutions for the Combined sinh-cosh-gordon Equation

Solutions for the Combined sinh-cosh-gordon Equation International Journal of Mathematical Analysis Vol. 9, 015, no. 4, 1159-1163 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.015.556 Solutions for the Combined sinh-cosh-gordon Equation Ana-Magnolia

More information

Linearization of Two Dimensional Complex-Linearizable Systems of Second Order Ordinary Differential Equations

Linearization of Two Dimensional Complex-Linearizable Systems of Second Order Ordinary Differential Equations Applied Mathematical Sciences, Vol. 9, 2015, no. 58, 2889-2900 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.4121002 Linearization of Two Dimensional Complex-Linearizable Systems of

More information

Diophantine Equations. Elementary Methods

Diophantine Equations. Elementary Methods International Mathematical Forum, Vol. 12, 2017, no. 9, 429-438 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.7223 Diophantine Equations. Elementary Methods Rafael Jakimczuk División Matemática,

More information

Stability Analysis and Numerical Solution for. the Fractional Order Biochemical Reaction Model

Stability Analysis and Numerical Solution for. the Fractional Order Biochemical Reaction Model Nonlinear Analysis and Differential Equations, Vol. 4, 16, no. 11, 51-53 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/nade.16.6531 Stability Analysis and Numerical Solution for the Fractional

More information

A Stochastic Viral Infection Model with General Functional Response

A Stochastic Viral Infection Model with General Functional Response Nonlinear Analysis and Differential Equations, Vol. 4, 16, no. 9, 435-445 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/nade.16.664 A Stochastic Viral Infection Model with General Functional Response

More information

Understanding the incremental value of novel diagnostic tests for tuberculosis

Understanding the incremental value of novel diagnostic tests for tuberculosis Understanding the incremental value of novel diagnostic tests for tuberculosis Nimalan Arinaminpathy & David Dowdy Supplementary Information Supplementary Methods Details of the transmission model We use

More information

Research Article Nonlinear Dynamics and Chaos in a Fractional-Order HIV Model

Research Article Nonlinear Dynamics and Chaos in a Fractional-Order HIV Model Mathematical Problems in Engineering Volume 29, Article ID 378614, 12 pages doi:1.1155/29/378614 Research Article Nonlinear Dynamics and Chaos in a Fractional-Order HIV Model Haiping Ye 1, 2 and Yongsheng

More information

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients Contemporary Engineering Sciences, Vol. 11, 2018, no. 16, 779-784 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.8262 Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable

More information

The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model

The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model Journal of Physics: Conference Series PAPER OPEN ACCESS The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model Related content - Anomalous ion conduction from toroidal

More information

Dynamics of Disease Spread. in a Predator-Prey System

Dynamics of Disease Spread. in a Predator-Prey System Advanced Studies in Biology, vol. 6, 2014, no. 4, 169-179 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/asb.2014.4845 Dynamics of Disease Spread in a Predator-Prey System Asrul Sani 1, Edi Cahyono

More information

Global Analysis for an HIV Infection Model with CTL Immune Response and Infected Cells in Eclipse Phase

Global Analysis for an HIV Infection Model with CTL Immune Response and Infected Cells in Eclipse Phase Article Global Analysis for an HIV Infection Model with CTL Immune Response and Infected Cells in Eclipse Phase Karam Allali 1 ID Jaouad Danane 1 ID and Yang Kuang 2 * ID 1 Laboratory of Mathematics and

More information

Poincaré`s Map in a Van der Pol Equation

Poincaré`s Map in a Van der Pol Equation International Journal of Mathematical Analysis Vol. 8, 014, no. 59, 939-943 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.014.411338 Poincaré`s Map in a Van der Pol Equation Eduardo-Luis

More information

Mathematical Analysis of Visceral Leishmaniasis Model

Mathematical Analysis of Visceral Leishmaniasis Model vol. 1 (2017), Article I 101263, 16 pages doi:10.11131/2017/101263 AgiAl Publishing House http://www.agialpress.com/ Research Article Mathematical Analysis of Visceral Leishmaniasis Model F. Boukhalfa,

More information

Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type Equation

Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type Equation Contemporary Engineering Sciences Vol. 11 2018 no. 16 785-791 HIKARI Ltd www.m-hikari.com https://doi.org/10.12988/ces.2018.8267 Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type

More information

Hopf Bifurcation Analysis of a Dynamical Heart Model with Time Delay

Hopf Bifurcation Analysis of a Dynamical Heart Model with Time Delay Applied Mathematical Sciences, Vol 11, 2017, no 22, 1089-1095 HIKARI Ltd, wwwm-hikaricom https://doiorg/1012988/ams20177271 Hopf Bifurcation Analysis of a Dynamical Heart Model with Time Delay Luca Guerrini

More information

Introduction: What one must do to analyze any model Prove the positivity and boundedness of the solutions Determine the disease free equilibrium

Introduction: What one must do to analyze any model Prove the positivity and boundedness of the solutions Determine the disease free equilibrium Introduction: What one must do to analyze any model Prove the positivity and boundedness of the solutions Determine the disease free equilibrium point and the model reproduction number Prove the stability

More information

The Solution of the Truncated Harmonic Oscillator Using Lie Groups

The Solution of the Truncated Harmonic Oscillator Using Lie Groups Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 7, 327-335 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.7521 The Solution of the Truncated Harmonic Oscillator Using Lie Groups

More information

A Solution of the Spherical Poisson-Boltzmann Equation

A Solution of the Spherical Poisson-Boltzmann Equation International Journal of Mathematical Analysis Vol. 1, 018, no. 1, 1-7 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ijma.018.71155 A Solution of the Spherical Poisson-Boltzmann quation. onseca

More information

Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree Polynomial Forcing Function

Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree Polynomial Forcing Function Advanced Studies in Theoretical Physics Vol., 207, no. 2, 679-685 HIKARI Ltd, www.m-hikari.com https://doi.org/0.2988/astp.207.7052 Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree

More information

Research Article On the Stability Property of the Infection-Free Equilibrium of a Viral Infection Model

Research Article On the Stability Property of the Infection-Free Equilibrium of a Viral Infection Model Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume, Article ID 644, 9 pages doi:.55//644 Research Article On the Stability Property of the Infection-Free Equilibrium of a Viral

More information

Introduction to SEIR Models

Introduction to SEIR Models Department of Epidemiology and Public Health Health Systems Research and Dynamical Modelling Unit Introduction to SEIR Models Nakul Chitnis Workshop on Mathematical Models of Climate Variability, Environmental

More information

A Mathematical Analysis on the Transmission Dynamics of Neisseria gonorrhoeae. Yk j N k j

A Mathematical Analysis on the Transmission Dynamics of Neisseria gonorrhoeae. Yk j N k j North Carolina Journal of Mathematics and Statistics Volume 3, Pages 7 20 (Accepted June 23, 2017, published June 30, 2017 ISSN 2380-7539 A Mathematical Analysis on the Transmission Dynamics of Neisseria

More information

Lie Symmetries Analysis for SIR Model of Epidemiology

Lie Symmetries Analysis for SIR Model of Epidemiology Applied Mathematical Sciences, Vol. 7, 2013, no. 92, 4595-4604 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.36348 Lie Symmetries Analysis for SIR Model of Epidemiology A. Ouhadan 1,

More information

Qualitative Analysis of a Discrete SIR Epidemic Model

Qualitative Analysis of a Discrete SIR Epidemic Model ISSN (e): 2250 3005 Volume, 05 Issue, 03 March 2015 International Journal of Computational Engineering Research (IJCER) Qualitative Analysis of a Discrete SIR Epidemic Model A. George Maria Selvam 1, D.

More information

General Model of the Innate Immune Response

General Model of the Innate Immune Response General Model of the Innate Immune Response Katherine Reed, Kathryn Schalla, Souad Sosa, Jackie Tran, Thuy-My Truong, Alicia Prieto Langarica, Betty Scarbrough, Hristo Kojouharov, James Grover Technical

More information

Chaos Control for the Lorenz System

Chaos Control for the Lorenz System Advanced Studies in Theoretical Physics Vol. 12, 2018, no. 4, 181-188 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2018.8413 Chaos Control for the Lorenz System Pedro Pablo Cárdenas Alzate

More information

Qualitative Theory of Differential Equations and Dynamics of Quadratic Rational Functions

Qualitative Theory of Differential Equations and Dynamics of Quadratic Rational Functions Nonl. Analysis and Differential Equations, Vol. 2, 2014, no. 1, 45-59 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2014.3819 Qualitative Theory of Differential Equations and Dynamics of

More information

Variational Theory of Solitons for a Higher Order Generalized Camassa-Holm Equation

Variational Theory of Solitons for a Higher Order Generalized Camassa-Holm Equation International Journal of Mathematical Analysis Vol. 11, 2017, no. 21, 1007-1018 HIKAI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2017.710141 Variational Theory of Solitons for a Higher Order Generalized

More information

STABILITY ANALYSIS OF A GENERAL SIR EPIDEMIC MODEL

STABILITY ANALYSIS OF A GENERAL SIR EPIDEMIC MODEL VFAST Transactions on Mathematics http://vfast.org/index.php/vtm@ 2013 ISSN: 2309-0022 Volume 1, Number 1, May-June, 2013 pp. 16 20 STABILITY ANALYSIS OF A GENERAL SIR EPIDEMIC MODEL Roman Ullah 1, Gul

More information

On modeling two immune effectors two strain antigen interaction

On modeling two immune effectors two strain antigen interaction Ahmed and El-Saka Nonlinear Biomedical Physics 21, 4:6 DEBATE Open Access On modeling two immune effectors two strain antigen interaction El-Sayed M Ahmed 1, Hala A El-Saka 2* Abstract In this paper we

More information

On a Certain Representation in the Pairs of Normed Spaces

On a Certain Representation in the Pairs of Normed Spaces Applied Mathematical Sciences, Vol. 12, 2018, no. 3, 115-119 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.712362 On a Certain Representation in the Pairs of ormed Spaces Ahiro Hoshida

More information

GLOBAL STABILITY OF A VACCINATION MODEL WITH IMMIGRATION

GLOBAL STABILITY OF A VACCINATION MODEL WITH IMMIGRATION Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 92, pp. 1 10. SSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu GLOBAL STABLTY

More information

Dynamical System of a Multi-Capital Growth Model

Dynamical System of a Multi-Capital Growth Model Applied Mathematical Sciences, Vol. 9, 2015, no. 83, 4103-4108 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.53274 Dynamical System of a Multi-Capital Growth Model Eva Brestovanská Department

More information

Quadratic Optimization over a Polyhedral Set

Quadratic Optimization over a Polyhedral Set International Mathematical Forum, Vol. 9, 2014, no. 13, 621-629 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.4234 Quadratic Optimization over a Polyhedral Set T. Bayartugs, Ch. Battuvshin

More information

Morphisms Between the Groups of Semi Magic Squares and Real Numbers

Morphisms Between the Groups of Semi Magic Squares and Real Numbers International Journal of Algebra, Vol. 8, 2014, no. 19, 903-907 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2014.212137 Morphisms Between the Groups of Semi Magic Squares and Real Numbers

More information

A Model on the Impact of Treating Typhoid with Anti-malarial: Dynamics of Malaria Concurrent and Co-infection with Typhoid

A Model on the Impact of Treating Typhoid with Anti-malarial: Dynamics of Malaria Concurrent and Co-infection with Typhoid International Journal of Mathematical Analysis Vol. 9, 2015, no. 11, 541-551 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.412403 A Model on the Impact of Treating Typhoid with Anti-malarial:

More information

Non Isolated Periodic Orbits of a Fixed Period for Quadratic Dynamical Systems

Non Isolated Periodic Orbits of a Fixed Period for Quadratic Dynamical Systems Applied Mathematical Sciences, Vol. 12, 2018, no. 22, 1053-1058 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.87100 Non Isolated Periodic Orbits of a Fixed Period for Quadratic Dynamical

More information

Microbiology BIOL 202 Lecture Course Outcome Guide (COG) Approved 22 MARCH 2012 Pg.1

Microbiology BIOL 202 Lecture Course Outcome Guide (COG) Approved 22 MARCH 2012 Pg.1 Microbiology BIOL 202 Lecture Course Outcome Guide (COG) Approved 22 MARCH 2012 Pg.1 Course: Credits: 3 Instructor: Course Description: Concepts and Issues 1. Microbial Ecology including mineral cycles.

More information

On Symmetric Bi-Multipliers of Lattice Implication Algebras

On Symmetric Bi-Multipliers of Lattice Implication Algebras International Mathematical Forum, Vol. 13, 2018, no. 7, 343-350 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2018.8423 On Symmetric Bi-Multipliers of Lattice Implication Algebras Kyung Ho

More information

Alternate Locations of Equilibrium Points and Poles in Complex Rational Differential Equations

Alternate Locations of Equilibrium Points and Poles in Complex Rational Differential Equations International Mathematical Forum, Vol. 9, 2014, no. 35, 1725-1739 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.410170 Alternate Locations of Equilibrium Points and Poles in Complex

More information

Mathematical Analysis of Epidemiological Models: Introduction

Mathematical Analysis of Epidemiological Models: Introduction Mathematical Analysis of Epidemiological Models: Introduction Jan Medlock Clemson University Department of Mathematical Sciences 8 February 2010 1. Introduction. The effectiveness of improved sanitation,

More information

Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor. August 15, 2005

Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor. August 15, 2005 Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor August 15, 2005 1 Outline 1. Compartmental Thinking 2. Simple Epidemic (a) Epidemic Curve 1:

More information

Dynamical Analysis of Plant Disease Model with Roguing, Replanting and Preventive Treatment

Dynamical Analysis of Plant Disease Model with Roguing, Replanting and Preventive Treatment 4 th ICRIEMS Proceedings Published by The Faculty Of Mathematics And Natural Sciences Yogyakarta State University, ISBN 978-62-74529-2-3 Dynamical Analysis of Plant Disease Model with Roguing, Replanting

More information

2D-Volterra-Lotka Modeling For 2 Species

2D-Volterra-Lotka Modeling For 2 Species Majalat Al-Ulum Al-Insaniya wat - Tatbiqiya 2D-Volterra-Lotka Modeling For 2 Species Alhashmi Darah 1 University of Almergeb Department of Mathematics Faculty of Science Zliten Libya. Abstract The purpose

More information

Monetary Risk Measures and Generalized Prices Relevant to Set-Valued Risk Measures

Monetary Risk Measures and Generalized Prices Relevant to Set-Valued Risk Measures Applied Mathematical Sciences, Vol. 8, 2014, no. 109, 5439-5447 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.43176 Monetary Risk Measures and Generalized Prices Relevant to Set-Valued

More information

arxiv: v2 [q-bio.pe] 3 Oct 2018

arxiv: v2 [q-bio.pe] 3 Oct 2018 Journal of Mathematical Biology manuscript No. (will be inserted by the editor Global stability properties of renewal epidemic models Michael T. Meehan Daniel G. Cocks Johannes Müller Emma S. McBryde arxiv:177.3489v2

More information

On Permutation Polynomials over Local Finite Commutative Rings

On Permutation Polynomials over Local Finite Commutative Rings International Journal of Algebra, Vol. 12, 2018, no. 7, 285-295 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ija.2018.8935 On Permutation Polynomials over Local Finite Commutative Rings Javier

More information

Direction and Stability of Hopf Bifurcation in a Delayed Model with Heterogeneous Fundamentalists

Direction and Stability of Hopf Bifurcation in a Delayed Model with Heterogeneous Fundamentalists International Journal of Mathematical Analysis Vol 9, 2015, no 38, 1869-1875 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ijma201554135 Direction and Stability of Hopf Bifurcation in a Delayed Model

More information

Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response

Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response Gang Huang 1,2, Wanbiao Ma 2, Yasuhiro Takeuchi 1 1,Graduate School of Science and Technology, Shizuoka University,

More information

Modeling the Immune System W9. Ordinary Differential Equations as Macroscopic Modeling Tool

Modeling the Immune System W9. Ordinary Differential Equations as Macroscopic Modeling Tool Modeling the Immune System W9 Ordinary Differential Equations as Macroscopic Modeling Tool 1 Lecture Notes for ODE Models We use the lecture notes Theoretical Fysiology 2006 by Rob de Boer, U. Utrecht

More information

Local and Global Stability of Host-Vector Disease Models

Local and Global Stability of Host-Vector Disease Models Local and Global Stability of Host-Vector Disease Models Marc 4, 2008 Cruz Vargas-De-León 1, Jorge Armando Castro Hernández Unidad Académica de Matemáticas, Universidad Autónoma de Guerrero, México and

More information

Dynamics of a Networked Connectivity Model of Waterborne Disease Epidemics

Dynamics of a Networked Connectivity Model of Waterborne Disease Epidemics Dynamics of a Networked Connectivity Model of Waterborne Disease Epidemics A. Edwards, D. Mercadante, C. Retamoza REU Final Presentation July 31, 214 Overview Background on waterborne diseases Introduction

More information

STUDY OF THE DYNAMICAL MODEL OF HIV

STUDY OF THE DYNAMICAL MODEL OF HIV STUDY OF THE DYNAMICAL MODEL OF HIV M.A. Lapshova, E.A. Shchepakina Samara National Research University, Samara, Russia Abstract. The paper is devoted to the study of the dynamical model of HIV. An application

More information

Rosenzweig-MacArthur Model. Considering the Function that Protects a Fixed. Amount of Prey for Population Dynamics

Rosenzweig-MacArthur Model. Considering the Function that Protects a Fixed. Amount of Prey for Population Dynamics Contemporary Engineering Sciences, Vol. 11, 18, no. 4, 1195-15 HIKAI Ltd, www.m-hikari.com https://doi.org/1.1988/ces.18.8395 osenzweig-macarthur Model Considering the Function that Protects a Fixed Amount

More information

Analysis and Dynamic Active Subspaces for a Long Term Model of HIV

Analysis and Dynamic Active Subspaces for a Long Term Model of HIV Analysis and Dynamic Active Subspaces for a Long Term Model of HIV by Tyson S. Loudon A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment

More information

A Family of Nonnegative Matrices with Prescribed Spectrum and Elementary Divisors 1

A Family of Nonnegative Matrices with Prescribed Spectrum and Elementary Divisors 1 International Mathematical Forum, Vol, 06, no 3, 599-63 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/0988/imf0668 A Family of Nonnegative Matrices with Prescribed Spectrum and Elementary Divisors Ricardo

More information

E209A: Analysis and Control of Nonlinear Systems Problem Set 3 Solutions

E209A: Analysis and Control of Nonlinear Systems Problem Set 3 Solutions E09A: Analysis and Control of Nonlinear Systems Problem Set 3 Solutions Michael Vitus Stanford University Winter 007 Problem : Planar phase portraits. Part a Figure : Problem a This phase portrait is correct.

More information

Modelling of the Hand-Foot-Mouth-Disease with the Carrier Population

Modelling of the Hand-Foot-Mouth-Disease with the Carrier Population Modelling of the Hand-Foot-Mouth-Disease with the Carrier Population Ruzhang Zhao, Lijun Yang Department of Mathematical Science, Tsinghua University, China. Corresponding author. Email: lyang@math.tsinghua.edu.cn,

More information

Numerical qualitative analysis of a large-scale model for measles spread

Numerical qualitative analysis of a large-scale model for measles spread Numerical qualitative analysis of a large-scale model for measles spread Hossein Zivari-Piran Department of Mathematics and Statistics York University (joint work with Jane Heffernan) p./9 Outline Periodic

More information

β Baire Spaces and β Baire Property

β Baire Spaces and β Baire Property International Journal of Contemporary Mathematical Sciences Vol. 11, 2016, no. 5, 211-216 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2016.612 β Baire Spaces and β Baire Property Tugba

More information

Weyl s Theorem and Property (Saw)

Weyl s Theorem and Property (Saw) International Journal of Mathematical Analysis Vol. 12, 2018, no. 9, 433-437 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2018.8754 Weyl s Theorem and Property (Saw) N. Jayanthi Government

More information

Modelling the spread of bacterial infectious disease with environmental effect in a logistically growing human population

Modelling the spread of bacterial infectious disease with environmental effect in a logistically growing human population Nonlinear Analysis: Real World Applications 7 2006) 341 363 www.elsevier.com/locate/na Modelling the spread of bacterial infectious disease with environmental effect in a logistically growing human population

More information

TRANSMISSION DYNAMICS OF CHOLERA EPIDEMIC MODEL WITH LATENT AND HYGIENE COMPLIANT CLASS

TRANSMISSION DYNAMICS OF CHOLERA EPIDEMIC MODEL WITH LATENT AND HYGIENE COMPLIANT CLASS Electronic Journal of Mathematical Analysis and Applications Vol. 7(2) July 2019, pp. 138-150. ISSN: 2090-729X(online) http://math-frac.org/journals/ejmaa/ TRANSMISSION DYNAMICS OF CHOLERA EPIDEMIC MODEL

More information

Solving Homogeneous Systems with Sub-matrices

Solving Homogeneous Systems with Sub-matrices Pure Mathematical Sciences, Vol 7, 218, no 1, 11-18 HIKARI Ltd, wwwm-hikaricom https://doiorg/112988/pms218843 Solving Homogeneous Systems with Sub-matrices Massoud Malek Mathematics, California State

More information

An Optimal Control Problem Applied to Malaria Disease in Colombia

An Optimal Control Problem Applied to Malaria Disease in Colombia Applied Mathematical Sciences, Vol. 1, 018, no. 6, 79-9 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ams.018.819 An Optimal Control Problem Applied to Malaria Disease in Colombia Jhoana P. Romero-Leiton

More information

ANALYSIS OF DIPHTHERIA DISSEMINATION BY USING MULTI GROUPS OF DYNAMIC SYSTEM METHOD APPROACH

ANALYSIS OF DIPHTHERIA DISSEMINATION BY USING MULTI GROUPS OF DYNAMIC SYSTEM METHOD APPROACH ANALYSIS OF DIPHTHERIA DISSEMINATION BY USING MULTI GROUPS OF DYNAMIC SYSTEM METHOD APPROACH 1 NUR ASIYAH, 2 BASUKI WIDODO, 3 SUHUD WAHYUDI 1,2,3 Laboratory of Analysis and Algebra Faculty of Mathematics

More information

Existence, Uniqueness Solution of a Modified. Predator-Prey Model

Existence, Uniqueness Solution of a Modified. Predator-Prey Model Nonlinear Analysis and Differential Equations, Vol. 4, 6, no. 4, 669-677 HIKARI Ltd, www.m-hikari.com https://doi.org/.988/nade.6.6974 Existence, Uniqueness Solution of a Modified Predator-Prey Model M.

More information

Symmetry Reduction of Chazy Equation

Symmetry Reduction of Chazy Equation Applied Mathematical Sciences, Vol 8, 2014, no 70, 3449-3459 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ams201443208 Symmetry Reduction of Chazy Equation Figen AÇIL KİRAZ Department of Mathematics,

More information

A Solution of the Two-dimensional Boltzmann Transport Equation

A Solution of the Two-dimensional Boltzmann Transport Equation Applied Mathematical Sciences, Vol. 9, 2015, no. 147, 7347-7355 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.510665 A Solution of the Two-dimensional Boltzmann Transport Equation F.

More information

Research Article Modelling Blood and Pulmonary Pressure for Solving a Performance Optimal Problem for Sportsmen

Research Article Modelling Blood and Pulmonary Pressure for Solving a Performance Optimal Problem for Sportsmen International Scholarly Research Network ISRN Applied Mathematics Volume 2012, Article ID 470143, 16 pages doi:10.5402/2012/470143 Research Article Modelling Blood and Pulmonary Pressure for Solving a

More information

Delay SIR Model with Nonlinear Incident Rate and Varying Total Population

Delay SIR Model with Nonlinear Incident Rate and Varying Total Population Delay SIR Model with Nonlinear Incident Rate Varying Total Population Rujira Ouncharoen, Salinthip Daengkongkho, Thongchai Dumrongpokaphan, Yongwimon Lenbury Abstract Recently, models describing the behavior

More information

Z. Omar. Department of Mathematics School of Quantitative Sciences College of Art and Sciences Univeristi Utara Malaysia, Malaysia. Ra ft.

Z. Omar. Department of Mathematics School of Quantitative Sciences College of Art and Sciences Univeristi Utara Malaysia, Malaysia. Ra ft. International Journal of Mathematical Analysis Vol. 9, 015, no. 46, 57-7 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.015.57181 Developing a Single Step Hybrid Block Method with Generalized

More information

On the Power of Standard Polynomial to M a,b (E)

On the Power of Standard Polynomial to M a,b (E) International Journal of Algebra, Vol. 10, 2016, no. 4, 171-177 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2016.6214 On the Power of Standard Polynomial to M a,b (E) Fernanda G. de Paula

More information

ON FRACTIONAL ORDER CANCER MODEL

ON FRACTIONAL ORDER CANCER MODEL Journal of Fractional Calculus and Applications, Vol.. July, No., pp. 6. ISSN: 9-5858. http://www.fcaj.webs.com/ ON FRACTIONAL ORDER CANCER MODEL E. AHMED, A.H. HASHIS, F.A. RIHAN Abstract. In this work

More information

Dynamical Analysis of a Harvested Predator-prey. Model with Ratio-dependent Response Function. and Prey Refuge

Dynamical Analysis of a Harvested Predator-prey. Model with Ratio-dependent Response Function. and Prey Refuge Applied Mathematical Sciences, Vol. 8, 214, no. 11, 527-537 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/12988/ams.214.4275 Dynamical Analysis of a Harvested Predator-prey Model with Ratio-dependent

More information

Recurrence Relations between Symmetric Polynomials of n-th Order

Recurrence Relations between Symmetric Polynomials of n-th Order Applied Mathematical Sciences, Vol. 8, 214, no. 15, 5195-522 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.214.47525 Recurrence Relations between Symmetric Polynomials of n-th Order Yuriy

More information

Contemporary Engineering Sciences, Vol. 11, 2018, no. 48, HIKARI Ltd,

Contemporary Engineering Sciences, Vol. 11, 2018, no. 48, HIKARI Ltd, Contemporary Engineering Sciences, Vol. 11, 2018, no. 48, 2349-2356 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.85243 Radially Symmetric Solutions of a Non-Linear Problem with Neumann

More information

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique Int. Journal of Math. Analysis, Vol. 7, 3, no. 53, 65-636 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ijma.3.3894 A Study on Linear and Nonlinear Stiff Problems Using Single-Term Haar Wavelet Series

More information

Remarks on the Maximum Principle for Parabolic-Type PDEs

Remarks on the Maximum Principle for Parabolic-Type PDEs International Mathematical Forum, Vol. 11, 2016, no. 24, 1185-1190 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2016.69125 Remarks on the Maximum Principle for Parabolic-Type PDEs Humberto

More information

Parallel Properties of Poles of. Positive Functions and those of. Discrete Reactance Functions

Parallel Properties of Poles of. Positive Functions and those of. Discrete Reactance Functions International Journal of Mathematical Analysis Vol. 11, 2017, no. 24, 1141-1150 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ima.2017.77106 Parallel Properties of Poles of Positive Functions and

More information