Mathematical Analysis of Epidemiological Models III

Size: px
Start display at page:

Download "Mathematical Analysis of Epidemiological Models III"

Transcription

1 Intro Computing R Complex models Mathematical Analysis of Epidemiological Models III Jan Medlock Clemson University Department of Mathematical Sciences 27 July 29

2 Intro Computing R Complex models What is R? Basic Reproduction Number Net Reproductive Rate the average number of secondary infections produced when one infected individual is introduced into a host population where everyone is susceptible (Anderson & May, 1991)

3 Intro Computing R Complex models Why is R important? For a wholly susceptible host population, R > 1 pathogen can invade. R < 1 pathogen cannot invade. When a pathogen is present in the population, often, but not always, R < 1 pathogen will die out of the population.

4 Intro Computing R Complex models The effective reproduction number, R If the population is not wholly susceptible, then we have R, the effective reproduction number. Pathogen already present Vaccinated population

5 Intro Computing R Complex models How to compute R? Heuristic methods Systematic method P. van den Driessche & James Watmough, 22, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 18:

6 Intro Computing R Complex models Example model for STI M S M E M I M R F S F E F I F R dm S dm E dm I dm R = ω M M R β M F I F M S = β M F I F M S τ M M E df S df E = ω F F R β F M I M F S = β F M I M F S τ F F E = τ M M E γ M M I df I = τ FF E γ F F I = γ M M I ω M M R df R = γ F F I ω M F R

7 Intro Computing R Complex models Procedure Decide which states are infected We need to decide which states are infected and which are uninfected. In the STI model, Infected: M E, F E, M I, F I Uninfected: M S, F S, M R, F R

8 Intro Computing R Complex models Procedure Find disease-free equilibrium (or other equilibrium) Set dx = for all model state variables to find equilibrium. Also, for disease-free equilibrium, there are no infected people.

9 Intro Computing R Complex models Procedure Find disease-free equilibrium (or other equilibrium) = ω M M R β M F M S = ω F F R β F M F S = β M F M S τ M = β F M F S τ F = τ M γ M = τ F γ F = γ M ω M M R = γ F ω F F R M S = F S = P 2 M E = F E = M I = F I = M R = F R = M = F = P 2

10 Intro Computing R Complex models Procedure Decide which terms are new infections From the right-hand sides of the equations for the infected states, decide which terms represent new infections, F. The remainder are V. dx = F V F is the rate of production of new infections. V is the transition rates between states.

11 Intro Computing R Complex models Procedure Decide which terms are new infections dm E F I = β M F M S τ M M E df E M I = β F M F S τ F F E dm I = τ M M E γ M M I df I = τ FF E γ F F I F β I M F M S τ M M E M β I F = F M F S, V = τ F F E τ M M E + γ M M I τ F F E + γ F F I

12 Intro Computing R Complex models Procedure Take derivatives at equilibrium F = df dx = df 1 dx 1. df n df dx 1 n dx n df 1 dx n. V = dv dx = dv 1 dx 1. dv n dv dx 1 n dx n dv 1 dx n. These are the rates for new infections and transitions near the equilibrium.

13 Intro Computing R Complex models Procedure Take derivatives at equilibrium At the disease-free equilibrium, M S = F S = M = F = P 2, M E = F E = M I = F I = M R = F R = F β I M F M M S β S M M β I F = F M F F β M S, F = F β S F M = β F τ M M E τ M τ V = F F E τ M M E + γ M M I, V = τ F τ M γ M τ F F E + γ F F I τ F γ F

14 Intro Computing R Complex models Procedure Find V 1 V 1 gives the times spent in each state. In general, finding the inverse is difficult by hand, but computer algebra (Sage, Maple, Mathematica) takes care of that. 1 τ M V 1 1 = τ F 1 1 γ M γ M 1 1 γ F γ F

15 Intro Computing R Complex models Procedure Find FV 1 FV 1 gives the total production of new infections over the course of an infection. β M β F F = FV 1 β F =, V 1 = β M γf γ M 1 τ M 1 τ F 1 1 γ M γ M 1 1 γ F γ F β M γf β F γ M

16 Intro Computing R Complex models Procedure Find ρ(fv 1 ) The largest eigenvalue λ gives the fastest growth of the infected population. ( FV 1) N λ N v for large N. So R = λ. β M β γf M γf FV 1 β F β = γ M F γ M { } σ(fv 1 βf β M βf β M βf β M ) =,, = R = γ M γ F γ M γ F γ M γ F

17 Intro Computing R Complex models Alternative interpretation If we had chosen only F E & F I to be infected states, then R = β Fβ M γ M γ F

18 Intro Computing R Complex models More complex models Flu S I R ds a = λ a S a di a = λ as a (γ a + ν a )I a, dr a λ a = σ a N 17 α=1 φ aα β α I α, = γ a I a, for a = 1,..., 17

19 Intro Computing R Complex models I a are infected states More complex models Flu Equilibrium is everyone susceptible, with given age structure New-infection term is λ a S a, so F = λ S, V = (γ + ν) I Then And F = {[ σ S ] } β T φ, V = diag (γ + ν) N FV 1 = {[ σ (γ + ν) S ] } β T φ N

20 Intro Computing R Complex models More complex models Flu Putting in parameter values from the pandemics, we get 1918 R = R = 1.3 Proportion infected Time (days)

Thursday. Threshold and Sensitivity Analysis

Thursday. Threshold and Sensitivity Analysis Thursday Threshold and Sensitivity Analysis SIR Model without Demography ds dt di dt dr dt = βsi (2.1) = βsi γi (2.2) = γi (2.3) With initial conditions S(0) > 0, I(0) > 0, and R(0) = 0. This model can

More information

Introduction: What one must do to analyze any model Prove the positivity and boundedness of the solutions Determine the disease free equilibrium

Introduction: What one must do to analyze any model Prove the positivity and boundedness of the solutions Determine the disease free equilibrium Introduction: What one must do to analyze any model Prove the positivity and boundedness of the solutions Determine the disease free equilibrium point and the model reproduction number Prove the stability

More information

Mathematical Analysis of Epidemiological Models: Introduction

Mathematical Analysis of Epidemiological Models: Introduction Mathematical Analysis of Epidemiological Models: Introduction Jan Medlock Clemson University Department of Mathematical Sciences 8 February 2010 1. Introduction. The effectiveness of improved sanitation,

More information

Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor. August 15, 2005

Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor. August 15, 2005 Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor August 15, 2005 1 Outline 1. Compartmental Thinking 2. Simple Epidemic (a) Epidemic Curve 1:

More information

Stability of SEIR Model of Infectious Diseases with Human Immunity

Stability of SEIR Model of Infectious Diseases with Human Immunity Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 6 (2017), pp. 1811 1819 Research India Publications http://www.ripublication.com/gjpam.htm Stability of SEIR Model of Infectious

More information

The death of an epidemic

The death of an epidemic LECTURE 2 Equilibrium Stability Analysis & Next Generation Method The death of an epidemic In SIR equations, let s divide equation for dx/dt by dz/ dt:!! dx/dz = - (β X Y/N)/(γY)!!! = - R 0 X/N Integrate

More information

Behavior Stability in two SIR-Style. Models for HIV

Behavior Stability in two SIR-Style. Models for HIV Int. Journal of Math. Analysis, Vol. 4, 2010, no. 9, 427-434 Behavior Stability in two SIR-Style Models for HIV S. Seddighi Chaharborj 2,1, M. R. Abu Bakar 2, I. Fudziah 2 I. Noor Akma 2, A. H. Malik 2,

More information

Australian Journal of Basic and Applied Sciences. Effect of Personal Hygiene Campaign on the Transmission Model of Hepatitis A

Australian Journal of Basic and Applied Sciences. Effect of Personal Hygiene Campaign on the Transmission Model of Hepatitis A Australian Journal of Basic and Applied Sciences, 9(13) Special 15, Pages: 67-73 ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: wwwajbaswebcom Effect of Personal Hygiene

More information

Mathematical Model of Tuberculosis Spread within Two Groups of Infected Population

Mathematical Model of Tuberculosis Spread within Two Groups of Infected Population Applied Mathematical Sciences, Vol. 10, 2016, no. 43, 2131-2140 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.63130 Mathematical Model of Tuberculosis Spread within Two Groups of Infected

More information

GLOBAL STABILITY OF SIR MODELS WITH NONLINEAR INCIDENCE AND DISCONTINUOUS TREATMENT

GLOBAL STABILITY OF SIR MODELS WITH NONLINEAR INCIDENCE AND DISCONTINUOUS TREATMENT Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 304, pp. 1 8. SSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu GLOBAL STABLTY

More information

Mathematical models on Malaria with multiple strains of pathogens

Mathematical models on Malaria with multiple strains of pathogens Mathematical models on Malaria with multiple strains of pathogens Yanyu Xiao Department of Mathematics University of Miami CTW: From Within Host Dynamics to the Epidemiology of Infectious Disease MBI,

More information

HETEROGENEOUS MIXING IN EPIDEMIC MODELS

HETEROGENEOUS MIXING IN EPIDEMIC MODELS CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 2, Number 1, Spring 212 HETEROGENEOUS MIXING IN EPIDEMIC MODELS FRED BRAUER ABSTRACT. We extend the relation between the basic reproduction number and the

More information

Models of Infectious Disease Formal Demography Stanford Spring Workshop in Formal Demography May 2008

Models of Infectious Disease Formal Demography Stanford Spring Workshop in Formal Demography May 2008 Models of Infectious Disease Formal Demography Stanford Spring Workshop in Formal Demography May 2008 James Holland Jones Department of Anthropology Stanford University May 3, 2008 1 Outline 1. Compartmental

More information

STABILITY ANALYSIS OF A GENERAL SIR EPIDEMIC MODEL

STABILITY ANALYSIS OF A GENERAL SIR EPIDEMIC MODEL VFAST Transactions on Mathematics http://vfast.org/index.php/vtm@ 2013 ISSN: 2309-0022 Volume 1, Number 1, May-June, 2013 pp. 16 20 STABILITY ANALYSIS OF A GENERAL SIR EPIDEMIC MODEL Roman Ullah 1, Gul

More information

Sensitivity and Stability Analysis of Hepatitis B Virus Model with Non-Cytolytic Cure Process and Logistic Hepatocyte Growth

Sensitivity and Stability Analysis of Hepatitis B Virus Model with Non-Cytolytic Cure Process and Logistic Hepatocyte Growth Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 3 2016), pp. 2297 2312 Research India Publications http://www.ripublication.com/gjpam.htm Sensitivity and Stability Analysis

More information

Australian Journal of Basic and Applied Sciences. Effect of Education Campaign on Transmission Model of Conjunctivitis

Australian Journal of Basic and Applied Sciences. Effect of Education Campaign on Transmission Model of Conjunctivitis ISSN:99-878 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com ffect of ducation Campaign on Transmission Model of Conjunctivitis Suratchata Sangthongjeen, Anake Sudchumnong

More information

MODELING THE SPREAD OF DENGUE FEVER BY USING SIR MODEL. Hor Ming An, PM. Dr. Yudariah Mohammad Yusof

MODELING THE SPREAD OF DENGUE FEVER BY USING SIR MODEL. Hor Ming An, PM. Dr. Yudariah Mohammad Yusof MODELING THE SPREAD OF DENGUE FEVER BY USING SIR MODEL Hor Ming An, PM. Dr. Yudariah Mohammad Yusof Abstract The establishment and spread of dengue fever is a complex phenomenon with many factors that

More information

Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission

Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission P. van den Driessche a,1 and James Watmough b,2, a Department of Mathematics and Statistics, University

More information

Transmission Dynamics of an Influenza Model with Vaccination and Antiviral Treatment

Transmission Dynamics of an Influenza Model with Vaccination and Antiviral Treatment Bulletin of Mathematical Biology (2010) 72: 1 33 DOI 10.1007/s11538-009-9435-5 ORIGINAL ARTICLE Transmission Dynamics of an Influenza Model with Vaccination and Antiviral Treatment Zhipeng Qiu a,, Zhilan

More information

Fixed Point Analysis of Kermack Mckendrick SIR Model

Fixed Point Analysis of Kermack Mckendrick SIR Model Kalpa Publications in Computing Volume, 17, Pages 13 19 ICRISET17. International Conference on Research and Innovations in Science, Engineering &Technology. Selected Papers in Computing Fixed Point Analysis

More information

Demographic impact and controllability of malaria in an SIS model with proportional fatality

Demographic impact and controllability of malaria in an SIS model with proportional fatality Demographic impact and controllability of malaria in an SIS model with proportional fatality Muntaser Safan 1 Ahmed Ghazi Mathematics Department, Faculty of Science, Mansoura University, 35516 Mansoura,

More information

Analysis of SIR Mathematical Model for Malaria disease with the inclusion of Infected Immigrants

Analysis of SIR Mathematical Model for Malaria disease with the inclusion of Infected Immigrants IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 14, Issue 5 Ver. I (Sep - Oct 218), PP 1-21 www.iosrjournals.org Analysis of SIR Mathematical Model for Malaria disease

More information

Smoking as Epidemic: Modeling and Simulation Study

Smoking as Epidemic: Modeling and Simulation Study American Journal of Applied Mathematics 2017; 5(1): 31-38 http://www.sciencepublishinggroup.com/j/ajam doi: 10.11648/j.ajam.20170501.14 ISSN: 2330-0043 (Print); ISSN: 2330-006X (Online) Smoking as Epidemic:

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com A SIR Transmission Model of Political Figure Fever 1 Benny Yong and 2 Nor Azah Samat 1

More information

Numerical qualitative analysis of a large-scale model for measles spread

Numerical qualitative analysis of a large-scale model for measles spread Numerical qualitative analysis of a large-scale model for measles spread Hossein Zivari-Piran Department of Mathematics and Statistics York University (joint work with Jane Heffernan) p./9 Outline Periodic

More information

The dynamics of disease transmission in a Prey Predator System with harvesting of prey

The dynamics of disease transmission in a Prey Predator System with harvesting of prey ISSN: 78 Volume, Issue, April The dynamics of disease transmission in a Prey Predator System with harvesting of prey, Kul Bhushan Agnihotri* Department of Applied Sciences and Humanties Shaheed Bhagat

More information

Modeling and Global Stability Analysis of Ebola Models

Modeling and Global Stability Analysis of Ebola Models Modeling and Global Stability Analysis of Ebola Models T. Stoller Department of Mathematics, Statistics, and Physics Wichita State University REU July 27, 2016 T. Stoller REU 1 / 95 Outline Background

More information

A Model on the Impact of Treating Typhoid with Anti-malarial: Dynamics of Malaria Concurrent and Co-infection with Typhoid

A Model on the Impact of Treating Typhoid with Anti-malarial: Dynamics of Malaria Concurrent and Co-infection with Typhoid International Journal of Mathematical Analysis Vol. 9, 2015, no. 11, 541-551 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.412403 A Model on the Impact of Treating Typhoid with Anti-malarial:

More information

GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS

GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS CANADIAN APPIED MATHEMATICS QUARTERY Volume 13, Number 4, Winter 2005 GOBA DYNAMICS OF A MATHEMATICA MODE OF TUBERCUOSIS HONGBIN GUO ABSTRACT. Mathematical analysis is carried out for a mathematical model

More information

Control of Epidemics by Vaccination

Control of Epidemics by Vaccination Control of Epidemics by Vaccination Erik Verriest, Florent Delmotte, and Magnus Egerstedt {erik.verriest,florent,magnus}@ece.gatech.edu School of Electrical and Computer Engineering Georgia Institute of

More information

Introduction to SEIR Models

Introduction to SEIR Models Department of Epidemiology and Public Health Health Systems Research and Dynamical Modelling Unit Introduction to SEIR Models Nakul Chitnis Workshop on Mathematical Models of Climate Variability, Environmental

More information

Modeling Co-Dynamics of Cervical Cancer and HIV Diseases

Modeling Co-Dynamics of Cervical Cancer and HIV Diseases Global ournal of Pure Applied Mathematics. SSN 093-8 Volume 3 Number (0) pp. 05-08 Research ndia Publications http://www.riblication.com Modeling o-dynamics of ervical ancer V Diseases Geomira G. Sanga

More information

Modeling the Existence of Basic Offspring Number on Basic Reproductive Ratio of Dengue without Vertical Transmission

Modeling the Existence of Basic Offspring Number on Basic Reproductive Ratio of Dengue without Vertical Transmission International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 232-869 Modeling the Existence of Basic Offspring Number on Basic Reproductive Ratio of Dengue without Vertical

More information

Research Article Modeling Computer Virus and Its Dynamics

Research Article Modeling Computer Virus and Its Dynamics Mathematical Problems in Engineering Volume 213, Article ID 842614, 5 pages http://dx.doi.org/1.1155/213/842614 Research Article Modeling Computer Virus and Its Dynamics Mei Peng, 1 Xing He, 2 Junjian

More information

STUDY OF THE BRUCELLOSIS TRANSMISSION WITH MULTI-STAGE KE MENG, XAMXINUR ABDURAHMAN

STUDY OF THE BRUCELLOSIS TRANSMISSION WITH MULTI-STAGE KE MENG, XAMXINUR ABDURAHMAN Available online at http://scik.org Commun. Math. Biol. Neurosci. 208, 208:20 https://doi.org/0.2899/cmbn/3796 ISSN: 2052-254 STUDY OF THE BRUCELLOSIS TRANSMISSION WITH MULTI-STAGE KE MENG, XAMXINUR ABDURAHMAN

More information

Qualitative Analysis of a Discrete SIR Epidemic Model

Qualitative Analysis of a Discrete SIR Epidemic Model ISSN (e): 2250 3005 Volume, 05 Issue, 03 March 2015 International Journal of Computational Engineering Research (IJCER) Qualitative Analysis of a Discrete SIR Epidemic Model A. George Maria Selvam 1, D.

More information

A mathematical model for malaria involving differential susceptibility, exposedness and infectivity of human host

A mathematical model for malaria involving differential susceptibility, exposedness and infectivity of human host A mathematical model for malaria involving differential susceptibility exposedness and infectivity of human host A. DUCROT 1 B. SOME 2 S. B. SIRIMA 3 and P. ZONGO 12 May 23 2008 1 INRIA-Anubis Sud-Ouest

More information

Delay SIR Model with Nonlinear Incident Rate and Varying Total Population

Delay SIR Model with Nonlinear Incident Rate and Varying Total Population Delay SIR Model with Nonlinear Incident Rate Varying Total Population Rujira Ouncharoen, Salinthip Daengkongkho, Thongchai Dumrongpokaphan, Yongwimon Lenbury Abstract Recently, models describing the behavior

More information

Dynamics of Disease Spread. in a Predator-Prey System

Dynamics of Disease Spread. in a Predator-Prey System Advanced Studies in Biology, vol. 6, 2014, no. 4, 169-179 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/asb.2014.4845 Dynamics of Disease Spread in a Predator-Prey System Asrul Sani 1, Edi Cahyono

More information

Global Analysis of an SEIRS Model with Saturating Contact Rate 1

Global Analysis of an SEIRS Model with Saturating Contact Rate 1 Applied Mathematical Sciences, Vol. 6, 2012, no. 80, 3991-4003 Global Analysis of an SEIRS Model with Saturating Contact Rate 1 Shulin Sun a, Cuihua Guo b, and Chengmin Li a a School of Mathematics and

More information

Non-Linear Models Cont d: Infectious Diseases. Non-Linear Models Cont d: Infectious Diseases

Non-Linear Models Cont d: Infectious Diseases. Non-Linear Models Cont d: Infectious Diseases Cont d: Infectious Diseases Infectious Diseases Can be classified into 2 broad categories: 1 those caused by viruses & bacteria (microparasitic diseases e.g. smallpox, measles), 2 those due to vectors

More information

Stability Analysis of an SVIR Epidemic Model with Non-linear Saturated Incidence Rate

Stability Analysis of an SVIR Epidemic Model with Non-linear Saturated Incidence Rate Applied Mathematical Sciences, Vol. 9, 215, no. 23, 1145-1158 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.215.41164 Stability Analysis of an SVIR Epidemic Model with Non-linear Saturated

More information

Research Article Global Dynamics of a Mathematical Model on Smoking

Research Article Global Dynamics of a Mathematical Model on Smoking ISRN Applied Mathematics, Article ID 847075, 7 pages http://dx.doi.org/10.1155/014/847075 Research Article Global Dynamics of a Mathematical Model on Smoking Zainab Alkhudhari, Sarah Al-Sheikh, and Salma

More information

Kasetsart University Workshop. Mathematical modeling using calculus & differential equations concepts

Kasetsart University Workshop. Mathematical modeling using calculus & differential equations concepts Kasetsart University Workshop Mathematical modeling using calculus & differential equations concepts Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu

More information

A Time Since Recovery Model with Varying Rates of Loss of Immunity

A Time Since Recovery Model with Varying Rates of Loss of Immunity Bull Math Biol (212) 74:281 2819 DOI 1.17/s11538-12-978-7 ORIGINAL ARTICLE A Time Since Recovery Model with Varying Rates of Loss of Immunity Subhra Bhattacharya Frederick R. Adler Received: 7 May 212

More information

Impact of Case Detection and Treatment on the Spread of HIV/AIDS: a Mathematical Study

Impact of Case Detection and Treatment on the Spread of HIV/AIDS: a Mathematical Study Malaysian Journal of Mathematical Sciences (3): 33 347 (8) MALAYSIA JOURAL OF MATHEMATICAL SCIECES Journal homepage: http://einspemupmedumy/journal Impact of Case Detection and Treatment on the Spread

More information

The effect of population dispersal on the spread of a disease

The effect of population dispersal on the spread of a disease J. Math. Anal. Appl. 308 (2005) 343 364 www.elsevier.com/locate/jmaa The effect of population dispersal on the spread of a disease Yu Jin, Wendi Wang Department of Mathematics, Southwest China Normal University,

More information

MODELING AND ANALYSIS OF THE SPREAD OF CARRIER DEPENDENT INFECTIOUS DISEASES WITH ENVIRONMENTAL EFFECTS

MODELING AND ANALYSIS OF THE SPREAD OF CARRIER DEPENDENT INFECTIOUS DISEASES WITH ENVIRONMENTAL EFFECTS Journal of Biological Systems, Vol. 11, No. 3 2003 325 335 c World Scientific Publishing Company MODELING AND ANALYSIS OF THE SPREAD OF CARRIER DEPENDENT INFECTIOUS DISEASES WITH ENVIRONMENTAL EFFECTS

More information

Corrigendum Corrigendum to (Transmission Model of Hepatitis B Virus with the Migration Effect)

Corrigendum Corrigendum to (Transmission Model of Hepatitis B Virus with the Migration Effect) BioMed Research International Volume 216, rticle ID 936329, 9 pages http://dx.doi.org/1155/216/936329 orrigendum orrigendum to (Transmission Model of Hepatitis B Virus with the Migration ffect) Muhammad

More information

GLOBAL STABILITY OF A VACCINATION MODEL WITH IMMIGRATION

GLOBAL STABILITY OF A VACCINATION MODEL WITH IMMIGRATION Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 92, pp. 1 10. SSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu GLOBAL STABLTY

More information

Resilience and stability of harvested predator-prey systems to infectious diseases in the predator

Resilience and stability of harvested predator-prey systems to infectious diseases in the predator Resilience and stability of harvested predator-prey systems to infectious diseases in the predator Morgane Chevé Ronan Congar Papa A. Diop November 1, 2010 Abstract In the context of global change, emerging

More information

Global Stability of a Computer Virus Model with Cure and Vertical Transmission

Global Stability of a Computer Virus Model with Cure and Vertical Transmission International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume 3, Issue 1, January 016, PP 16-4 ISSN 349-4840 (Print) & ISSN 349-4859 (Online) www.arcjournals.org Global

More information

A Mathematical Model for the Spatial Spread of HIV in a Heterogeneous Population

A Mathematical Model for the Spatial Spread of HIV in a Heterogeneous Population A Mathematical Model for the Spatial Spread of HIV in a Heterogeneous Population Titus G. Kassem * Department of Mathematics, University of Jos, Nigeria. Abstract Emmanuel J.D. Garba Department of Mathematics,

More information

Disease dynamics on community networks. Joe Tien. GIScience Workshop September 18, 2012

Disease dynamics on community networks. Joe Tien. GIScience Workshop September 18, 2012 Disease dynamics on community networks Joe Tien GIScience Workshop September 18, 2012 Collaborators Zhisheng Shuai Pauline van den Driessche Marisa Eisenberg John Snow and the Broad Street Pump Geographic

More information

University of Minnesota Duluth Department of Mathematics and Statistics. Modeling of Ebola Control Strategies

University of Minnesota Duluth Department of Mathematics and Statistics. Modeling of Ebola Control Strategies University of Minnesota Duluth Department of Mathematics and Statistics Modeling of Ebola Control Strategies Duluth, May 216 Václav Hasenöhrl Acknowledgments I would like to express my appreciation to

More information

LAW OF LARGE NUMBERS FOR THE SIRS EPIDEMIC

LAW OF LARGE NUMBERS FOR THE SIRS EPIDEMIC LAW OF LARGE NUMBERS FOR THE SIRS EPIDEMIC R. G. DOLGOARSHINNYKH Abstract. We establish law of large numbers for SIRS stochastic epidemic processes: as the population size increases the paths of SIRS epidemic

More information

Mathematical Model of Dengue Disease Transmission Dynamics with Control Measures

Mathematical Model of Dengue Disease Transmission Dynamics with Control Measures Journal of Advances in Mathematics and Computer Science 23(3): 1-12, 2017; Article no.jamcs.33955 Previously known as British Journal of Mathematics & Computer Science ISSN: 2231-0851 Mathematical Model

More information

The E ect of Occasional Smokers on the Dynamics of a Smoking Model

The E ect of Occasional Smokers on the Dynamics of a Smoking Model International Mathematical Forum, Vol. 9, 2014, no. 25, 1207-1222 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.46120 The E ect of Occasional Smokers on the Dynamics of a Smoking Model

More information

Mathematical Analysis of Visceral Leishmaniasis Model

Mathematical Analysis of Visceral Leishmaniasis Model vol. 1 (2017), Article I 101263, 16 pages doi:10.11131/2017/101263 AgiAl Publishing House http://www.agialpress.com/ Research Article Mathematical Analysis of Visceral Leishmaniasis Model F. Boukhalfa,

More information

Impact of Heterosexuality and Homosexuality on the transmission and dynamics of HIV/AIDS

Impact of Heterosexuality and Homosexuality on the transmission and dynamics of HIV/AIDS IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 12, Issue 6 Ver. V (Nov. - Dec.216), PP 38-49 www.iosrjournals.org Impact of Heterosexuality and Homosexuality on the

More information

Modeling and Stability Analysis of a Zika Virus Dynamics

Modeling and Stability Analysis of a Zika Virus Dynamics Modeling and Stability Analysis of a Zika Virus Dynamics S. Bates 1 H. Hutson 2 1 Department of Mathematics Jacksonville University 2 Department of Mathematics REU July 28, 2016 S. Bates, H. Hutson REU

More information

Available online at J. Math. Comput. Sci. 2 (2012), No. 6, ISSN:

Available online at   J. Math. Comput. Sci. 2 (2012), No. 6, ISSN: Available online at http://scik.org J. Math. Comput. Sci. 2 (2012), No. 6, 1671-1684 ISSN: 1927-5307 A MATHEMATICAL MODEL FOR THE TRANSMISSION DYNAMICS OF HIV/AIDS IN A TWO-SEX POPULATION CONSIDERING COUNSELING

More information

Transmission in finite populations

Transmission in finite populations Transmission in finite populations Juliet Pulliam, PhD Department of Biology and Emerging Pathogens Institute University of Florida and RAPIDD Program, DIEPS Fogarty International Center US National Institutes

More information

Advances in Environmental Biology

Advances in Environmental Biology Adances in Enironmental Biology, 9() Special 5, Pages: 6- AENSI Journals Adances in Enironmental Biology ISSN-995-756 EISSN-998-66 Journal home page: http://www.aensiweb.com/aeb/ Mathematical Model for

More information

Modelling HIV/AIDS and Tuberculosis Coinfection

Modelling HIV/AIDS and Tuberculosis Coinfection Modelling HIV/AIDS and Tuberculosis Coinfection C. P. Bhunu 1, W. Garira 1, Z. Mukandavire 1 Department of Applied Mathematics, National University of Science and Technology, Bulawayo, Zimbabwe 1 Abstract

More information

GLOBAL STABILITY OF A 9-DIMENSIONAL HSV-2 EPIDEMIC MODEL

GLOBAL STABILITY OF A 9-DIMENSIONAL HSV-2 EPIDEMIC MODEL CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 9 Number 4 Winter 0 GLOBAL STABILITY OF A 9-DIMENSIONAL HSV- EPIDEMIC MODEL Dedicated to Professor Freedman on the Occasion of his 70th Birthday ZHILAN FENG

More information

Mathematical Epidemiology Lecture 1. Matylda Jabłońska-Sabuka

Mathematical Epidemiology Lecture 1. Matylda Jabłońska-Sabuka Lecture 1 Lappeenranta University of Technology Wrocław, Fall 2013 What is? Basic terminology Epidemiology is the subject that studies the spread of diseases in populations, and primarily the human populations.

More information

Accepted Manuscript. Backward Bifurcations in Dengue Transmission Dynamics. S.M. Garba, A.B. Gumel, M.R. Abu Bakar

Accepted Manuscript. Backward Bifurcations in Dengue Transmission Dynamics. S.M. Garba, A.B. Gumel, M.R. Abu Bakar Accepted Manuscript Backward Bifurcations in Dengue Transmission Dynamics S.M. Garba, A.B. Gumel, M.R. Abu Bakar PII: S0025-5564(08)00073-4 DOI: 10.1016/j.mbs.2008.05.002 Reference: MBS 6860 To appear

More information

Stochastic Model for the Spread of the Hepatitis C Virus with Different Types of Virus Genome

Stochastic Model for the Spread of the Hepatitis C Virus with Different Types of Virus Genome Australian Journal of Basic and Applied Sciences, 3(): 53-65, 009 ISSN 99-878 Stochastic Model for the Spread of the Hepatitis C Virus with Different Types of Virus Genome I.A. Moneim and G.A. Mosa, Department

More information

arxiv: v2 [q-bio.pe] 3 Oct 2018

arxiv: v2 [q-bio.pe] 3 Oct 2018 Journal of Mathematical Biology manuscript No. (will be inserted by the editor Global stability properties of renewal epidemic models Michael T. Meehan Daniel G. Cocks Johannes Müller Emma S. McBryde arxiv:177.3489v2

More information

Stability Analysis of an HIV/AIDS Epidemic Model with Screening

Stability Analysis of an HIV/AIDS Epidemic Model with Screening International Mathematical Forum, Vol. 6, 11, no. 66, 351-373 Stability Analysis of an HIV/AIDS Epidemic Model with Screening Sarah Al-Sheikh Department of Mathematics King Abdulaziz University Jeddah,

More information

A comparison of delayed SIR and SEIR epidemic models

A comparison of delayed SIR and SEIR epidemic models Nonlinear Analysis: Modelling and Control, 2011, Vol. 16, No. 2, 181 190 181 A comparison of delayed SIR and SEIR epidemic models Abdelilah Kaddar a, Abdelhadi Abta b, Hamad Talibi Alaoui b a Université

More information

Applications in Biology

Applications in Biology 11 Applications in Biology In this chapter we make use of the techniques developed in the previous few chapters to examine some nonlinear systems that have been used as mathematical models for a variety

More information

Impact of Travel Between Patches for Spatial Spread of Disease

Impact of Travel Between Patches for Spatial Spread of Disease Impact of Travel Between Patches for Spatial Spread of Disease Ying-Hen Hsieh Department of Applied Mathematics National Chung Hsing University Taichung, Taiwan P. van den Driessche Department of Mathematics

More information

Modelling the dynamics of dengue real epidemics

Modelling the dynamics of dengue real epidemics Modelling the dynamics of dengue real epidemics Claudia P. Ferreira Depto de Bioestatística, IB, UNESP E-mail: pio@ibb.unesp.br Suani T.R. Pinho Instituto de Física, Universidade Federal da Bahia E-mail:

More information

GLOBAL DYNAMICS OF A TWO-STRAIN DISEASE MODEL WITH LATENCY AND SATURATING INCIDENCE RATE

GLOBAL DYNAMICS OF A TWO-STRAIN DISEASE MODEL WITH LATENCY AND SATURATING INCIDENCE RATE CANADIAN APPLIED MATHEMATIC QUARTERLY Volume 2, Number 1, pring 212 GLOBAL DYNAMIC OF A TWO-TRAIN DIEAE MODEL WITH LATENCY AND ATURATING INCIDENCE RATE Dedicated to Professor H.I. Freedman s 7th birthday.

More information

A sharp threshold for disease persistence in host metapopulations

A sharp threshold for disease persistence in host metapopulations A sharp threshold for disease persistence in host metapopulations Thanate Dhirasakdanon, Horst R. Thieme, and P. van den Driessche Department of Mathematics and Statistics, Arizona State University, Tempe,

More information

Solutions: Section 2.5

Solutions: Section 2.5 Solutions: Section 2.5. Problem : Given dy = ay + by2 = y(a + by) with a, b > 0. For the more general case, we will let y 0 be any real number. Always look for the equilibria first! In this case, y(a +

More information

SIR Epidemic Model with total Population size

SIR Epidemic Model with total Population size Advances in Applied Mathematical Biosciences. ISSN 2248-9983 Volume 7, Number 1 (2016), pp. 33-39 International Research Publication House http://www.irphouse.com SIR Epidemic Model with total Population

More information

Optimal control of vaccination and treatment for an SIR epidemiological model

Optimal control of vaccination and treatment for an SIR epidemiological model ISSN 746-7233, England, UK World Journal of Modelling and Simulation Vol. 8 (22) No. 3, pp. 94-24 Optimal control of vaccination and treatment for an SIR epidemiological model Tunde Tajudeen Yusuf, Francis

More information

The SIRS Model Approach to Host/Parasite Relationships

The SIRS Model Approach to Host/Parasite Relationships = B I + y (N I ) 1 8 6 4 2 I = B I v I N = 5 v = 25 The IR Model Approach to Host/Parasite Relationships Brianne Gill May 16, 28 5 1 15 2 The IR Model... Abstract In this paper, we shall explore examples

More information

A Mathematical Analysis on the Transmission Dynamics of Neisseria gonorrhoeae. Yk j N k j

A Mathematical Analysis on the Transmission Dynamics of Neisseria gonorrhoeae. Yk j N k j North Carolina Journal of Mathematics and Statistics Volume 3, Pages 7 20 (Accepted June 23, 2017, published June 30, 2017 ISSN 2380-7539 A Mathematical Analysis on the Transmission Dynamics of Neisseria

More information

SOME SIMPLE EPIDEMIC MODELS. Fred Brauer. In honor of Professor Zhien Ma s 70th birthday

SOME SIMPLE EPIDEMIC MODELS. Fred Brauer. In honor of Professor Zhien Ma s 70th birthday MATHEMATICAL BIOSCIENCES http://www.mbejournal.org/ AND ENGINEERING Volume 3, Number 1, January 26 pp. 1 15 SOME SIMPLE EPIDEMIC MODELS Fred Brauer Department of Mathematics University of British Columbia

More information

The Effect of Stochastic Migration on an SIR Model for the Transmission of HIV. Jan P. Medlock

The Effect of Stochastic Migration on an SIR Model for the Transmission of HIV. Jan P. Medlock The Effect of Stochastic Migration on an SIR Model for the Transmission of HIV A Thesis Presented to The Faculty of the Division of Graduate Studies by Jan P. Medlock In Partial Fulfillment of the Requirements

More information

Research Article Hopf Bifurcation in an SEIDQV Worm Propagation Model with Quarantine Strategy

Research Article Hopf Bifurcation in an SEIDQV Worm Propagation Model with Quarantine Strategy Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 1, Article ID 3868, 18 pages doi:1.11/1/3868 Research Article Hopf Bifurcation in an SEIDQV Worm Propagation Model with Quarantine

More information

IN mathematical epidemiology, deterministic models are

IN mathematical epidemiology, deterministic models are tability and ensitivity Analysis of a Deterministic Epidemiological Model with Pseudo-recovery amson Olaniyi, Maruf A. Lawal, Olawale. Obabiyi Abstract A deterministic epidemiological model describing

More information

Research Article A Viral Infection Model with a Nonlinear Infection Rate

Research Article A Viral Infection Model with a Nonlinear Infection Rate Hindawi Publishing Corporation Boundary Value Problems Volume 2009, Article ID 958016, 19 pages doi:10.1155/2009/958016 Research Article A Viral Infection Model with a Nonlinear Infection Rate Yumei Yu,

More information

Compartmental Analysis

Compartmental Analysis Compartmental Analysis Math 366 - Differential Equations Material Covering Lab 3 We now learn how to model some physical phonomena through DE. General steps for modeling (you are encouraged to find your

More information

Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response

Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response Gang Huang 1,2, Wanbiao Ma 2, Yasuhiro Takeuchi 1 1,Graduate School of Science and Technology, Shizuoka University,

More information

HIV/AIDS Treatment Model with the Incorporation of Diffusion Equations

HIV/AIDS Treatment Model with the Incorporation of Diffusion Equations Applied Mathematical Sciences, Vol. 12, 2018, no. 12, 603-615 HIKARI Ltd www.m-hikari.com https://doi.org/10.12988/ams.2018.8467 HIV/AIDS Treatment Model with the Incorporation of Diffusion Equations K.

More information

UR Scholarship Repository. University of Richmond. Joanna R. Wares University of Richmond, Erika M.C. D'Agata. Glenn F.

UR Scholarship Repository. University of Richmond. Joanna R. Wares University of Richmond, Erika M.C. D'Agata. Glenn F. University of Richmond UR Scholarship Repository Math and omputer Science Faculty Publications Math and omputer Science 2010 The effect of co-colonization with communityacquired and hospital-acquired methicillin-resistant

More information

Global Analysis of a Mathematical Model of HCV Transmission among Injecting Drug Users and the Impact of Vaccination

Global Analysis of a Mathematical Model of HCV Transmission among Injecting Drug Users and the Impact of Vaccination Applied Mathematical Sciences, Vol. 8, 2014, no. 128, 6379-6388 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.48625 Global Analysis of a Mathematical Model of HCV Transmission among

More information

Can multiple species of Malaria co-persist in a region? Dynamics of multiple malaria species

Can multiple species of Malaria co-persist in a region? Dynamics of multiple malaria species Can multiple species of Malaria co-persist in a region? Dynamics of multiple malaria species Xingfu Zou Department of Applied Mathematics University of Western Ontario London, Ontario, Canada (Joint work

More information

Dynamics of varroa-mites infested honey bee colonies model Kazeem O. OKOSUN

Dynamics of varroa-mites infested honey bee colonies model Kazeem O. OKOSUN Dynamics of varroa-mites infested honey bee colonies model Kazeem O. OKOSUN Vaal University of Technology, Vanderbijlparrk, South Africa. BIOMAT 23: November 7, 23 Talk Outline Optimal Control Analysis

More information

The Dynamic Properties of a Deterministic SIR Epidemic Model in Discrete-Time

The Dynamic Properties of a Deterministic SIR Epidemic Model in Discrete-Time Applied Mathematics, 05, 6, 665-675 Published Online September 05 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/046/am056048 The Dynamic Properties of a Deterministic SIR Epidemic Model in Discrete-Time

More information

Received: 11 July 2013 / Revised: 14 April 2014 / Published online: 5 May 2014 Springer-Verlag Berlin Heidelberg 2014

Received: 11 July 2013 / Revised: 14 April 2014 / Published online: 5 May 2014 Springer-Verlag Berlin Heidelberg 2014 J. Math. Biol. (2015) 70:1065 1092 DOI 10.1007/s00285-014-0791-x Mathematical Biology Disease invasion on community networks with environmental pathogen movement Joseph H. Tien Zhisheng Shuai Marisa C.

More information

Modeling and Analysis of Cholera Dynamics with Vaccination

Modeling and Analysis of Cholera Dynamics with Vaccination American Journal of Applied Mathematics Statistics, 2019, Vol. 7, No. 1, 1-8 Available online at http://pubs.sciepub.com/ajams/7/1/1 Published by Science Education Publishing DOI:10.12691/ajams-7-1-1 Modeling

More information

Mathematical Modeling and Analysis of Infectious Disease Dynamics

Mathematical Modeling and Analysis of Infectious Disease Dynamics Mathematical Modeling and Analysis of Infectious Disease Dynamics V. A. Bokil Department of Mathematics Oregon State University Corvallis, OR MTH 323: Mathematical Modeling May 22, 2017 V. A. Bokil (OSU-Math)

More information

Modelling the Effect of Post-mortem Contact on the Spread of Ebola with Quarantine As an Intervention

Modelling the Effect of Post-mortem Contact on the Spread of Ebola with Quarantine As an Intervention Journal of Mathematics Research; Vol. 8, o. 4; August 016 ISS 1916-9795 E-ISS 1916-9809 Published by Canadian Center of Science and Education Modelling the Effect of Post-mortem Contact on the Spread of

More information

Analysis of a model for hepatitis C virus transmission that includes the effects of vaccination and waning immunity

Analysis of a model for hepatitis C virus transmission that includes the effects of vaccination and waning immunity Analysis of a model for hepatitis C virus transmission that includes the effects of vaccination and waning immunity Daniah Tahir Uppsala University Department of Mathematics 7516 Uppsala Sweden daniahtahir@gmailcom

More information