A Solution of the Spherical Poisson-Boltzmann Equation

Size: px
Start display at page:

Download "A Solution of the Spherical Poisson-Boltzmann Equation"

Transcription

1 International Journal of Mathematical Analysis Vol. 1, 018, no. 1, 1-7 HIKARI Ltd, A Solution of the Spherical Poisson-Boltzmann quation. onseca Universidad Nacional de Colombia Grupo de Ciencia de Materiales y Superficies Departamento de ísica Bogotá, Colombia Copyright c 018. onseca. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we used a field and coordinate transformations and the Jacobi lliptic functions, in order to solve the Spherical Poisson-Boltzman (SPB) equation. We find several families of solutions. Keywords: Spherical Poisson-Boltzman, Jacobi lliptic functions 1 Introduction The spherical Poisson-Boltzmann equation (SPBq) gives the electrical potential distribution for a charged spherical electrolyte [1]-[]. SPB equation is a mean field theory that gives into account of the electrostatic interactions between the charges in an ionic solution [3]. Also, a such enormous theoretical effort has been done over the years, in order to provide analytical solutions to nonlinear partial differential equations. Among the most popular developed methods we can find the so called solitary wave methods. We employ the Jacobi lliptic functions [4] and [5] solitary wave methods. Spherical Poisson-Boltzmann equation We start from the spherical Poisson-Boltzmann equation [1]-[]:

2 . onseca ρ = d ρ dr + dρ r dr = κ e ρ (1) Where κ = λ 1 D, and λ D is known as the Debye-Hückel screening length [1]-[]. Using the transformation [7] And [6] r = e ζ, And replacing in eq. (1) Now defining the variables Then ρ = ψ ln (r) + ln () () d dr = e ζ d dζ, d dr = e ζ ( d dζ d dζ ) (3) ψ dζ + ψ dζ = κ e ψ (4) v = e ψ (5) dψ dζ = 1 dv v dζ (6) And replacing in eq. (4) d ψ dζ = 1 v (dv dζ ) + 1 d v (7) v dζ 3 Solution 1 v d v dζ (dv dζ ) + v dv dζ v κ v 3 = 0 (8) We suppose a solution given by the Jacobi elliptic functions, [4] and [5]. They hold the next relations sn (ζ, k) + cn (ζ, k) = 1, k sn (ζ, k) + dn (ζ, k) = 1 (9) dn (ζ, k) k cn (ζ, k) = k, k sn (ζ, k) + cn (ζ, k) = dn (ζ, k) (10)

3 Spherical Poisson-Boltzmann equation 3 Then, we suppose the next solution k = 1 k (11) dv v = Acn(aζ, k); = aasn(aζ, k)dn(aζ, k); (1) dζ d v dζ = Aa ( k cn 3 (aζ, k) (1 k )cn(aζ, k)) Then, replacing eqs. (1) in eq. (8) A a k cn 4 (aζ, k) A a (1 k )cn (aζ, k) (13) a A sn (aζ, k)dn (aζ, k) aa cn(aζ, k)sn(aζ, k)dn(aζ, k) A cn (aζ, k) κ A 3 cn 3 (aζ, k) = 0 quating the left hand side of eq. (13) to zero, we get: Then ( a sn(aζ, k)dn(aζ, k) acn(aζ, k))a sn(aζ, k)dn(aζ, k) = 0 (14) asn(aζ, k)dn(aζ, k) = cn(aζ, k) ( a (1 k ) )A cn (aζ, k) = 0 a 1, = ± (k 1) (15) And So, using eqs. (9) and (14), we get ( a k cn(aζ, k) Aκ )A cn 3 (aζ, k) = 0 (16) cn(aζ, k) = Aκ a k cn (aζ, k) = A κ 4 a 4 k 4 Solving for sn (aζ, k) k sn 4 (aζ, k) sn (aζ, k) + A κ 4 a 6 k 4 = 0 (17)

4 4. onseca sn (aζ, k) = 1 ± 1 4k A κ 4 a 6 k 4 (18) k Again, using eqs. (16), (18) and (9), we have 1 ± 1 4k A κ 4 a 6 k 4 k + A κ 4 a 4 k 4 = 1 (19) a 8 k 4 4a k A κ 4 = (k a 4 k a 4 k A κ 4 ) (0) If we define in eq. (0) = 4κ 8, = (4a k κ 4 + 8a 4 k κ 4 8a 4 k 4 κ 4 ) and G = +3a 8 k 4 8a 8 k 6 + 4a 8 k 8, we get solving for A A 4 + A + G = 0 (1) A 1 = 4G () A = 4G (3) A 3 = + 4G (4) A 4 = + 4G (5) So, we find eight families of solutions v = A i cn(a j ζ, k) (6)

5 Spherical Poisson-Boltzmann equation 5 4 Solution Also, we suppose a solution dv v = Asn(aζ, k); = aacn(aζ, k)dn(aζ, k); (7) dζ d v dζ = Aa (k sn 3 (aζ, k) (1 + k )sn(aζ, k)) Then, replacing eq. (7) in eq. (8) A a k sn 4 (aζ, k) a (1 + k )A sn (aζ, k) (8) a A cn (aζ, k)dn (aζ, k) + aa sn(aζ, k)cn(aζ, k)dn(aζ, k) A sn (aζ, k) κ A 3 sn 3 (aζ, k) = 0 quating the left hand side of eq. (8) to zero, we get: Also ( a cn(aζ, k)dn(aζ, k) + asn(aζ, k))a cn(aζ, k)dn(aζ, k) = 0 (9) acn(aζ, k)dn(aζ, k) = sn(aζ, k) ( a (1 + k ) )A sn (aζ, k) = 0 a 1, = ±i (k + 1) (30) And (a k sn(aζ, k) Aκ )A sn 3 (aζ, k) = 0 (31) sn(aζ, k) = Aκ a k sn (aζ, k) = A κ 4 a 4 k 4 So, using eqs. (9), (31) and eq. (9), we have cn (aζ, k) = Using eqs. (31), (3) and (9), we get A κ 4 a 6 k 4 (1 A κ 4 a 4 k ) (3) A 4 A + G = 0 (33)

6 6. onseca where, we define = κ 8, = (a k κ 4 (1 + k + a k ) and G = a 8 k 6 in eq. (33), and solving A 5 = 4G (34) A 6 = 4G (35) A 7 = + 4G (36) A 8 = + 4G (37) So, we get eight families of solutions v = A i sn(a j ζ, k) (38) 5 Conclusions We solved the spherical Poisson Boltzmann equation using the Jacobi lliptic functions. We obtain sixteen families of solutions. As a future work, we can extend the method to investigate other charge configurations and other geometric symmetries. ρ(r) = ln (A i cn(a j ln (r), k)) ln (r) + ln () (39) ρ(r) = ln (A i sn(a j ln (r), k)) ln (r) + ln () (40) Acknowledgements. This research was supported by Universidad Nacional de Colombia in Hermes project (3501).

7 Spherical Poisson-Boltzmann equation 7 References [1] D. Andelman, Introduction to electrostatics in soft and biological matter, Chapter in Soft Condensed Matter Physics in Molecular and Cell Biology, d. by W. Poon and D. Andelman, Taylor & rancis, New York, 006, [] D. Andelman, in Handbook of Physics of Biological Systems, Vol. I, Chap. 1, edited by R. Lipowsky and. Sackmann, lsevier, Amsterdam, 1994, 603. [3] D. McQuarrie, Statistical Mechanics, University Science Books, 000. [4] Zuntao u, Shikuo Liu, Shida Liu, Qiang Zhaoa, New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations, Physics Letters A, 90 (001), [5] Zhenya Yan, Jacobi elliptic function solutions of nonlinear wave equations via the new sinh-gordon equation expansion method. J. Phys. A: Math. Gen., 36 (003), [6] S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover Publications, New York, [7] M.A. Soliman and Y. Al-Zeghayer, Approximate Analytical Solution for the Isothermal Lane mden quation in a Spherical Geometry, Revista Mexicana de Astronomía y Astrofísica, 51 (015), Received: December 1, 017; Published: January 5, 018

A Solution of the Cylindrical only Counter-ions Poisson-Boltzmann Equation

A Solution of the Cylindrical only Counter-ions Poisson-Boltzmann Equation Contemporary Engineering Sciences, Vol. 11, 2018, no. 54, 2691-2697 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.86280 A Solution of the Cylindrical only Counter-ions Poisson-Boltzmann

More information

Solitary Wave Solution of the Plasma Equations

Solitary Wave Solution of the Plasma Equations Applied Mathematical Sciences, Vol. 11, 017, no. 39, 1933-1941 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ams.017.7609 Solitary Wave Solution of the Plasma Equations F. Fonseca Universidad Nacional

More information

Solution of the Hirota Equation Using Lattice-Boltzmann and the Exponential Function Methods

Solution of the Hirota Equation Using Lattice-Boltzmann and the Exponential Function Methods Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 7, 307-315 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.7418 Solution of the Hirota Equation Using Lattice-Boltzmann and the

More information

A Solution of the Two-dimensional Boltzmann Transport Equation

A Solution of the Two-dimensional Boltzmann Transport Equation Applied Mathematical Sciences, Vol. 9, 2015, no. 147, 7347-7355 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.510665 A Solution of the Two-dimensional Boltzmann Transport Equation F.

More information

Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type Equation

Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type Equation Contemporary Engineering Sciences Vol. 11 2018 no. 16 785-791 HIKARI Ltd www.m-hikari.com https://doi.org/10.12988/ces.2018.8267 Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type

More information

Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree Polynomial Forcing Function

Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree Polynomial Forcing Function Advanced Studies in Theoretical Physics Vol., 207, no. 2, 679-685 HIKARI Ltd, www.m-hikari.com https://doi.org/0.2988/astp.207.7052 Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree

More information

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients Contemporary Engineering Sciences, Vol. 11, 2018, no. 16, 779-784 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.8262 Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable

More information

The Solution of the Truncated Harmonic Oscillator Using Lie Groups

The Solution of the Truncated Harmonic Oscillator Using Lie Groups Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 7, 327-335 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.7521 The Solution of the Truncated Harmonic Oscillator Using Lie Groups

More information

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials Applied Mathematical Sciences, Vol. 8, 2014, no. 35, 1723-1730 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4127 A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating

More information

On a Certain Representation in the Pairs of Normed Spaces

On a Certain Representation in the Pairs of Normed Spaces Applied Mathematical Sciences, Vol. 12, 2018, no. 3, 115-119 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.712362 On a Certain Representation in the Pairs of ormed Spaces Ahiro Hoshida

More information

Effective Potential Approach to the Dynamics of the Physical Symmetrical Pendulum

Effective Potential Approach to the Dynamics of the Physical Symmetrical Pendulum Contemporary Engineering Sciences, Vol. 11, 018, no. 104, 5117-515 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ces.018.811593 Effective Potential Approach to the Dynamics of the Physical Symmetrical

More information

Formula for Lucas Like Sequence of Fourth Step and Fifth Step

Formula for Lucas Like Sequence of Fourth Step and Fifth Step International Mathematical Forum, Vol. 12, 2017, no., 10-110 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.612169 Formula for Lucas Like Sequence of Fourth Step and Fifth Step Rena Parindeni

More information

Diophantine Equations. Elementary Methods

Diophantine Equations. Elementary Methods International Mathematical Forum, Vol. 12, 2017, no. 9, 429-438 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.7223 Diophantine Equations. Elementary Methods Rafael Jakimczuk División Matemática,

More information

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 3, 143-150 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2016.613 Solution of Differential Equations of Lane-Emden Type by

More information

Solitary Wave Solutions of a Fractional Boussinesq Equation

Solitary Wave Solutions of a Fractional Boussinesq Equation International Journal of Mathematical Analysis Vol. 11, 2017, no. 9, 407-423 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2017.7346 Solitary Wave Solutions of a Fractional Boussinesq Equation

More information

Determination of Young's Modulus by Using. Initial Data for Different Boundary Conditions

Determination of Young's Modulus by Using. Initial Data for Different Boundary Conditions Applied Mathematical Sciences, Vol. 11, 017, no. 19, 913-93 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ams.017.7388 Determination of Young's Modulus by Using Initial Data for Different Boundary

More information

The Solution of the Fokker-Planck Equation Using Lie Groups

The Solution of the Fokker-Planck Equation Using Lie Groups Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 10, 477-485 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.7834 The Solution of the Fokker-Planck Equation Using Lie Groups D.

More information

Solving Homogeneous Systems with Sub-matrices

Solving Homogeneous Systems with Sub-matrices Pure Mathematical Sciences, Vol 7, 218, no 1, 11-18 HIKARI Ltd, wwwm-hikaricom https://doiorg/112988/pms218843 Solving Homogeneous Systems with Sub-matrices Massoud Malek Mathematics, California State

More information

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations Nonlinear Analysis and Differential Equations, Vol. 3, 015, no. 3, 111-1 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/nade.015.416 The Modified Adomian Decomposition Method for Solving Nonlinear

More information

Morphisms Between the Groups of Semi Magic Squares and Real Numbers

Morphisms Between the Groups of Semi Magic Squares and Real Numbers International Journal of Algebra, Vol. 8, 2014, no. 19, 903-907 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2014.212137 Morphisms Between the Groups of Semi Magic Squares and Real Numbers

More information

Approximation to the Dissipative Klein-Gordon Equation

Approximation to the Dissipative Klein-Gordon Equation International Journal of Mathematical Analysis Vol. 9, 215, no. 22, 159-163 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.5236 Approximation to the Dissipative Klein-Gordon Equation Edilber

More information

On the Deformed Theory of Special Relativity

On the Deformed Theory of Special Relativity Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 6, 275-282 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.61140 On the Deformed Theory of Special Relativity Won Sang Chung 1

More information

A Note on Multiplicity Weight of Nodes of Two Point Taylor Expansion

A Note on Multiplicity Weight of Nodes of Two Point Taylor Expansion Applied Mathematical Sciences, Vol, 207, no 6, 307-3032 HIKARI Ltd, wwwm-hikaricom https://doiorg/02988/ams2077302 A Note on Multiplicity Weight of Nodes of Two Point Taylor Expansion Koichiro Shimada

More information

Pólya-Szegö s Principle for Nonlocal Functionals

Pólya-Szegö s Principle for Nonlocal Functionals International Journal of Mathematical Analysis Vol. 12, 218, no. 5, 245-25 HIKARI Ltd, www.m-hikari.com https://doi.org/1.12988/ijma.218.8327 Pólya-Szegö s Principle for Nonlocal Functionals Tiziano Granucci

More information

Locating Chromatic Number of Banana Tree

Locating Chromatic Number of Banana Tree International Mathematical Forum, Vol. 12, 2017, no. 1, 39-45 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.610138 Locating Chromatic Number of Banana Tree Asmiati Department of Mathematics

More information

Solutions for the Combined sinh-cosh-gordon Equation

Solutions for the Combined sinh-cosh-gordon Equation International Journal of Mathematical Analysis Vol. 9, 015, no. 4, 1159-1163 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.015.556 Solutions for the Combined sinh-cosh-gordon Equation Ana-Magnolia

More information

Antibound State for Klein-Gordon Equation

Antibound State for Klein-Gordon Equation International Journal of Mathematical Analysis Vol. 8, 2014, no. 59, 2945-2949 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.411374 Antibound State for Klein-Gordon Equation Ana-Magnolia

More information

Factorized Parametric Solutions and Separation of Equations in ΛLTB Cosmological Models

Factorized Parametric Solutions and Separation of Equations in ΛLTB Cosmological Models Advanced Studies in Theoretical Physics Vol. 9, 2015, no. 7, 315-321 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2015.5231 Factorized Parametric Solutions and Separation of Equations in

More information

A Note on the Variational Formulation of PDEs and Solution by Finite Elements

A Note on the Variational Formulation of PDEs and Solution by Finite Elements Advanced Studies in Theoretical Physics Vol. 12, 2018, no. 4, 173-179 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2018.8412 A Note on the Variational Formulation of PDEs and Solution by

More information

The Expansion of the Confluent Hypergeometric Function on the Positive Real Axis

The Expansion of the Confluent Hypergeometric Function on the Positive Real Axis Applied Mathematical Sciences, Vol. 12, 2018, no. 1, 19-26 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.712351 The Expansion of the Confluent Hypergeometric Function on the Positive Real

More information

Remarks on the Maximum Principle for Parabolic-Type PDEs

Remarks on the Maximum Principle for Parabolic-Type PDEs International Mathematical Forum, Vol. 11, 2016, no. 24, 1185-1190 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2016.69125 Remarks on the Maximum Principle for Parabolic-Type PDEs Humberto

More information

Poincaré`s Map in a Van der Pol Equation

Poincaré`s Map in a Van der Pol Equation International Journal of Mathematical Analysis Vol. 8, 014, no. 59, 939-943 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.014.411338 Poincaré`s Map in a Van der Pol Equation Eduardo-Luis

More information

Hyperbolic Functions and. the Heat Balance Integral Method

Hyperbolic Functions and. the Heat Balance Integral Method Nonl. Analysis and Differential Equations, Vol. 1, 2013, no. 1, 23-27 HIKARI Ltd, www.m-hikari.com Hyperbolic Functions and the Heat Balance Integral Method G. Nhawu and G. Tapedzesa Department of Mathematics,

More information

International Mathematical Forum, Vol. 9, 2014, no. 36, HIKARI Ltd,

International Mathematical Forum, Vol. 9, 2014, no. 36, HIKARI Ltd, International Mathematical Forum, Vol. 9, 2014, no. 36, 1751-1756 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.411187 Generalized Filters S. Palaniammal Department of Mathematics Thiruvalluvar

More information

On Regular Prime Graphs of Solvable Groups

On Regular Prime Graphs of Solvable Groups International Journal of Algebra, Vol. 10, 2016, no. 10, 491-495 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ija.2016.6858 On Regular Prime Graphs of Solvable Groups Donnie Munyao Kasyoki Department

More information

On Numerical Solutions of Systems of. Ordinary Differential Equations. by Numerical-Analytical Method

On Numerical Solutions of Systems of. Ordinary Differential Equations. by Numerical-Analytical Method Applied Mathematical Sciences, Vol. 8, 2014, no. 164, 8199-8207 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.12988/ams.2014.410807 On Numerical Solutions of Systems of Ordinary Differential Equations

More information

Contemporary Engineering Sciences, Vol. 11, 2018, no. 48, HIKARI Ltd,

Contemporary Engineering Sciences, Vol. 11, 2018, no. 48, HIKARI Ltd, Contemporary Engineering Sciences, Vol. 11, 2018, no. 48, 2349-2356 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.85243 Radially Symmetric Solutions of a Non-Linear Problem with Neumann

More information

Existence, Uniqueness Solution of a Modified. Predator-Prey Model

Existence, Uniqueness Solution of a Modified. Predator-Prey Model Nonlinear Analysis and Differential Equations, Vol. 4, 6, no. 4, 669-677 HIKARI Ltd, www.m-hikari.com https://doi.org/.988/nade.6.6974 Existence, Uniqueness Solution of a Modified Predator-Prey Model M.

More information

On Symmetric Bi-Multipliers of Lattice Implication Algebras

On Symmetric Bi-Multipliers of Lattice Implication Algebras International Mathematical Forum, Vol. 13, 2018, no. 7, 343-350 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2018.8423 On Symmetric Bi-Multipliers of Lattice Implication Algebras Kyung Ho

More information

A Two-step Iterative Method Free from Derivative for Solving Nonlinear Equations

A Two-step Iterative Method Free from Derivative for Solving Nonlinear Equations Applied Mathematical Sciences, Vol. 8, 2014, no. 161, 8021-8027 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49710 A Two-step Iterative Method Free from Derivative for Solving Nonlinear

More information

Positive Solution of a Nonlinear Four-Point Boundary-Value Problem

Positive Solution of a Nonlinear Four-Point Boundary-Value Problem Nonlinear Analysis and Differential Equations, Vol. 5, 27, no. 8, 299-38 HIKARI Ltd, www.m-hikari.com https://doi.org/.2988/nade.27.78 Positive Solution of a Nonlinear Four-Point Boundary-Value Problem

More information

Fixed Point Theorems for Modular Contraction Mappings on Modulared Spaces

Fixed Point Theorems for Modular Contraction Mappings on Modulared Spaces Int. Journal of Math. Analysis, Vol. 7, 2013, no. 20, 965-972 HIKARI Ltd, www.m-hikari.com Fixed Point Theorems for Modular Contraction Mappings on Modulared Spaces Mariatul Kiftiah Dept. of Math., Tanjungpura

More information

Double Total Domination in Circulant Graphs 1

Double Total Domination in Circulant Graphs 1 Applied Mathematical Sciences, Vol. 12, 2018, no. 32, 1623-1633 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.811172 Double Total Domination in Circulant Graphs 1 Qin Zhang and Chengye

More information

From Binary Logic Functions to Fuzzy Logic Functions

From Binary Logic Functions to Fuzzy Logic Functions Applied Mathematical Sciences, Vol. 7, 2013, no. 103, 5129-5138 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.36317 From Binary Logic Functions to Fuzzy Logic Functions Omar Salazar,

More information

Sequences from Heptagonal Pyramid Corners of Integer

Sequences from Heptagonal Pyramid Corners of Integer International Mathematical Forum, Vol 13, 2018, no 4, 193-200 HIKARI Ltd, wwwm-hikaricom https://doiorg/1012988/imf2018815 Sequences from Heptagonal Pyramid Corners of Integer Nurul Hilda Syani Putri,

More information

PID Controller Design for DC Motor

PID Controller Design for DC Motor Contemporary Engineering Sciences, Vol. 11, 2018, no. 99, 4913-4920 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.810539 PID Controller Design for DC Motor Juan Pablo Trujillo Lemus Department

More information

Another Sixth-Order Iterative Method Free from Derivative for Solving Multiple Roots of a Nonlinear Equation

Another Sixth-Order Iterative Method Free from Derivative for Solving Multiple Roots of a Nonlinear Equation Applied Mathematical Sciences, Vol. 11, 2017, no. 43, 2121-2129 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.76208 Another Sixth-Order Iterative Method Free from Derivative for Solving

More information

Logarithmic Extension of Real Numbers and Hyperbolic Representation of Generalized Lorentz Transforms

Logarithmic Extension of Real Numbers and Hyperbolic Representation of Generalized Lorentz Transforms International Journal of Algebra, Vol. 11, 017, no. 4, 159-170 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ija.017.7315 Logarithmic Extension of Real Numbers and Hyperbolic Representation of Generalized

More information

k-pell, k-pell-lucas and Modified k-pell Numbers: Some Identities and Norms of Hankel Matrices

k-pell, k-pell-lucas and Modified k-pell Numbers: Some Identities and Norms of Hankel Matrices International Journal of Mathematical Analysis Vol. 9, 05, no., 3-37 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ijma.05.4370 k-pell, k-pell-lucas and Modified k-pell Numbers: Some Identities

More information

A Short Note on Universality of Some Quadratic Forms

A Short Note on Universality of Some Quadratic Forms International Mathematical Forum, Vol. 8, 2013, no. 12, 591-595 HIKARI Ltd, www.m-hikari.com A Short Note on Universality of Some Quadratic Forms Cherng-tiao Perng Department of Mathematics Norfolk State

More information

On the Three Dimensional Laplace Problem with Dirichlet Condition

On the Three Dimensional Laplace Problem with Dirichlet Condition Applied Mathematical Sciences, Vol. 8, 2014, no. 83, 4097-4101 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.45356 On the Three Dimensional Laplace Problem with Dirichlet Condition P.

More information

On the Coercive Functions and Minimizers

On the Coercive Functions and Minimizers Advanced Studies in Theoretical Physics Vol. 11, 17, no. 1, 79-715 HIKARI Ltd, www.m-hikari.com https://doi.org/1.1988/astp.17.71154 On the Coercive Functions and Minimizers Carlos Alberto Abello Muñoz

More information

Sharp Bounds for Seiffert Mean in Terms of Arithmetic and Geometric Means 1

Sharp Bounds for Seiffert Mean in Terms of Arithmetic and Geometric Means 1 Int. Journal of Math. Analysis, Vol. 7, 01, no. 6, 1765-177 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.01.49 Sharp Bounds for Seiffert Mean in Terms of Arithmetic and Geometric Means 1

More information

Second Hankel Determinant Problem for a Certain Subclass of Univalent Functions

Second Hankel Determinant Problem for a Certain Subclass of Univalent Functions International Journal of Mathematical Analysis Vol. 9, 05, no. 0, 493-498 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ijma.05.55 Second Hankel Determinant Problem for a Certain Subclass of Univalent

More information

A Note of the Strong Convergence of the Mann Iteration for Demicontractive Mappings

A Note of the Strong Convergence of the Mann Iteration for Demicontractive Mappings Applied Mathematical Sciences, Vol. 10, 2016, no. 6, 255-261 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.511700 A Note of the Strong Convergence of the Mann Iteration for Demicontractive

More information

On the Power of Standard Polynomial to M a,b (E)

On the Power of Standard Polynomial to M a,b (E) International Journal of Algebra, Vol. 10, 2016, no. 4, 171-177 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2016.6214 On the Power of Standard Polynomial to M a,b (E) Fernanda G. de Paula

More information

Several Solutions of the Damped Harmonic Oscillator with Time-Dependent Frictional Coefficient and Time-Dependent Frequency

Several Solutions of the Damped Harmonic Oscillator with Time-Dependent Frictional Coefficient and Time-Dependent Frequency Advanced Studies in Theoretical Physics Vol. 11, 017, no. 6, 63-73 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/astp.017.676 Several Solutions of the Damped Harmonic Oscillator with Time-Dependent

More information

On the Equation of Fourth Order with. Quadratic Nonlinearity

On the Equation of Fourth Order with. Quadratic Nonlinearity International Journal of Mathematical Analysis Vol. 9, 015, no. 5, 659-666 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.015.5109 On the Equation of Fourth Order with Quadratic Nonlinearity

More information

Approximations to the t Distribution

Approximations to the t Distribution Applied Mathematical Sciences, Vol. 9, 2015, no. 49, 2445-2449 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.52148 Approximations to the t Distribution Bashar Zogheib 1 and Ali Elsaheli

More information

Symmetric Properties for the (h, q)-tangent Polynomials

Symmetric Properties for the (h, q)-tangent Polynomials Adv. Studies Theor. Phys., Vol. 8, 04, no. 6, 59-65 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/astp.04.43 Symmetric Properties for the h, q-tangent Polynomials C. S. Ryoo Department of Mathematics

More information

Dynamical Behavior for Optimal Cubic-Order Multiple Solver

Dynamical Behavior for Optimal Cubic-Order Multiple Solver Applied Mathematical Sciences, Vol., 7, no., 5 - HIKARI Ltd, www.m-hikari.com https://doi.org/.988/ams.7.6946 Dynamical Behavior for Optimal Cubic-Order Multiple Solver Young Hee Geum Department of Applied

More information

The Rainbow Connection of Windmill and Corona Graph

The Rainbow Connection of Windmill and Corona Graph Applied Mathematical Sciences, Vol. 8, 2014, no. 128, 6367-6372 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.48632 The Rainbow Connection of Windmill and Corona Graph Yixiao Liu Department

More information

New Nonlinear Conditions for Approximate Sequences and New Best Proximity Point Theorems

New Nonlinear Conditions for Approximate Sequences and New Best Proximity Point Theorems Applied Mathematical Sciences, Vol., 207, no. 49, 2447-2457 HIKARI Ltd, www.m-hikari.com https://doi.org/0.2988/ams.207.7928 New Nonlinear Conditions for Approximate Sequences and New Best Proximity Point

More information

A Matrix-Vector Analytic Demonstration of Pappus Construction of an Ellipse from a Pair of Conjugate Diameters

A Matrix-Vector Analytic Demonstration of Pappus Construction of an Ellipse from a Pair of Conjugate Diameters Applied Mathematical Sciences, Vol. 9, 015, no. 14, 679-687 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.015.411035 A Matrix-Vector Analytic Demonstration of Pappus Construction of an Ellipse

More information

A Quantum Carnot Engine in Three-Dimensions

A Quantum Carnot Engine in Three-Dimensions Adv. Studies Theor. Phys., Vol. 8, 2014, no. 14, 627-633 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2014.4568 A Quantum Carnot Engine in Three-Dimensions Paul Bracken Department of Mathematics

More information

Chaos Control for the Lorenz System

Chaos Control for the Lorenz System Advanced Studies in Theoretical Physics Vol. 12, 2018, no. 4, 181-188 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2018.8413 Chaos Control for the Lorenz System Pedro Pablo Cárdenas Alzate

More information

Hopf Bifurcation Analysis of a Dynamical Heart Model with Time Delay

Hopf Bifurcation Analysis of a Dynamical Heart Model with Time Delay Applied Mathematical Sciences, Vol 11, 2017, no 22, 1089-1095 HIKARI Ltd, wwwm-hikaricom https://doiorg/1012988/ams20177271 Hopf Bifurcation Analysis of a Dynamical Heart Model with Time Delay Luca Guerrini

More information

The Ruled Surfaces According to Type-2 Bishop Frame in E 3

The Ruled Surfaces According to Type-2 Bishop Frame in E 3 International Mathematical Forum, Vol. 1, 017, no. 3, 133-143 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/imf.017.610131 The Ruled Surfaces According to Type- Bishop Frame in E 3 Esra Damar Department

More information

Double Total Domination on Generalized Petersen Graphs 1

Double Total Domination on Generalized Petersen Graphs 1 Applied Mathematical Sciences, Vol. 11, 2017, no. 19, 905-912 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.7114 Double Total Domination on Generalized Petersen Graphs 1 Chengye Zhao 2

More information

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces Applied Mathematical Sciences, Vol. 11, 2017, no. 12, 549-560 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.718 The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive

More information

Bounds Improvement for Neuman-Sándor Mean Using Arithmetic, Quadratic and Contraharmonic Means 1

Bounds Improvement for Neuman-Sándor Mean Using Arithmetic, Quadratic and Contraharmonic Means 1 International Mathematical Forum, Vol. 8, 2013, no. 30, 1477-1485 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2013.36125 Bounds Improvement for Neuman-Sándor Mean Using Arithmetic, Quadratic

More information

The Linear Chain as an Extremal Value of VDB Topological Indices of Polyomino Chains

The Linear Chain as an Extremal Value of VDB Topological Indices of Polyomino Chains Applied Mathematical Sciences, Vol. 8, 2014, no. 103, 5133-5143 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.46507 The Linear Chain as an Extremal Value of VDB Topological Indices of

More information

Rainbow Connection Number of the Thorn Graph

Rainbow Connection Number of the Thorn Graph Applied Mathematical Sciences, Vol. 8, 2014, no. 128, 6373-6377 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.48633 Rainbow Connection Number of the Thorn Graph Yixiao Liu Department

More information

Linearization of Two Dimensional Complex-Linearizable Systems of Second Order Ordinary Differential Equations

Linearization of Two Dimensional Complex-Linearizable Systems of Second Order Ordinary Differential Equations Applied Mathematical Sciences, Vol. 9, 2015, no. 58, 2889-2900 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.4121002 Linearization of Two Dimensional Complex-Linearizable Systems of

More information

Predictor-Corrector Finite-Difference Lattice Boltzmann Schemes

Predictor-Corrector Finite-Difference Lattice Boltzmann Schemes Applied Mathematical Sciences, Vol. 9, 2015, no. 84, 4191-4199 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.5138 Predictor-Corrector Finite-Difference Lattice Boltzmann Schemes G. V.

More information

Bounded Subsets of the Zygmund F -Algebra

Bounded Subsets of the Zygmund F -Algebra International Journal of Mathematical Analysis Vol. 12, 2018, no. 9, 425-431 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2018.8752 Bounded Subsets of the Zygmund F -Algebra Yasuo Iida Department

More information

An Application of Fibonacci Sequence on Continued Fractions

An Application of Fibonacci Sequence on Continued Fractions International Mathematical Forum, Vol. 0, 205, no. 2, 69-74 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.2988/imf.205.42207 An Application of Fibonacci Sequence on Continued Fractions Ali H. Hakami

More information

Optimal Homotopy Asymptotic Method for Solving Gardner Equation

Optimal Homotopy Asymptotic Method for Solving Gardner Equation Applied Mathematical Sciences, Vol. 9, 2015, no. 53, 2635-2644 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.52145 Optimal Homotopy Asymptotic Method for Solving Gardner Equation Jaharuddin

More information

A NEW ANALYTIC APPROXIMATION TO THE ISOTHERMAL, SELF-GRAVITATING SPHERE

A NEW ANALYTIC APPROXIMATION TO THE ISOTHERMAL, SELF-GRAVITATING SPHERE Revista Mexicana de Astronomía y Astrofísica, 49, 63 69 (2013) A NEW ANALYTIC APPROXIMATION TO THE ISOTHERMAL, SELF-GRAVITATING SPHERE A. C. Raga, 1 J. C. Rodríguez-Ramírez, 1 M. Villasante, 2 A. Rodríguez-González,

More information

Restrained Weakly Connected Independent Domination in the Corona and Composition of Graphs

Restrained Weakly Connected Independent Domination in the Corona and Composition of Graphs Applied Mathematical Sciences, Vol. 9, 2015, no. 20, 973-978 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.4121046 Restrained Weakly Connected Independent Domination in the Corona and

More information

A Numerical-Computational Technique for Solving. Transformed Cauchy-Euler Equidimensional. Equations of Homogeneous Type

A Numerical-Computational Technique for Solving. Transformed Cauchy-Euler Equidimensional. Equations of Homogeneous Type Advanced Studies in Theoretical Physics Vol. 9, 015, no., 85-9 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/astp.015.41160 A Numerical-Computational Technique for Solving Transformed Cauchy-Euler

More information

KKM-Type Theorems for Best Proximal Points in Normed Linear Space

KKM-Type Theorems for Best Proximal Points in Normed Linear Space International Journal of Mathematical Analysis Vol. 12, 2018, no. 12, 603-609 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2018.81069 KKM-Type Theorems for Best Proximal Points in Normed

More information

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method International Journal of Mathematical Analysis Vol. 9, 2015, no. 39, 1919-1928 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.54124 Improvements in Newton-Rapshon Method for Nonlinear

More information

A Mathematical Model for Transmission of Dengue

A Mathematical Model for Transmission of Dengue Applied Mathematical Sciences, Vol. 10, 2016, no. 7, 345-355 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.510662 A Mathematical Model for Transmission of Dengue Luis Eduardo López Departamento

More information

Two Constants of Motion in the Generalized Damped Oscillator

Two Constants of Motion in the Generalized Damped Oscillator Advanced Studies in Theoretical Physics Vol. 10, 2016, no. 2, 57-65 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2016.511107 Two Constants o Motion in the Generalized Damped Oscillator

More information

Numerical Solution of Non-Linear Biharmonic. Equation for Elasto-Plastic Bending Plate

Numerical Solution of Non-Linear Biharmonic. Equation for Elasto-Plastic Bending Plate Applied Mathematical Sciences, Vol. 9, 5, no. 6, 769-78 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ams.5.575 Numerical Solution of Non-Linear Biharmonic Equation for Elasto-Plastic Bending Plate

More information

Variational Theory of Solitons for a Higher Order Generalized Camassa-Holm Equation

Variational Theory of Solitons for a Higher Order Generalized Camassa-Holm Equation International Journal of Mathematical Analysis Vol. 11, 2017, no. 21, 1007-1018 HIKAI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2017.710141 Variational Theory of Solitons for a Higher Order Generalized

More information

Explicit Expressions for Free Components of. Sums of the Same Powers

Explicit Expressions for Free Components of. Sums of the Same Powers Applied Mathematical Sciences, Vol., 27, no. 53, 2639-2645 HIKARI Ltd, www.m-hikari.com https://doi.org/.2988/ams.27.79276 Explicit Expressions for Free Components of Sums of the Same Powers Alexander

More information

The Spin Angular Momentum. for the Celestial Objects

The Spin Angular Momentum. for the Celestial Objects Adv. Studies Theor. Phys., Vol. 7, 2013, no. 11, 541-547 HIKARI Ltd, www.m-hikari.com The Spin Angular Momentum for the Celestial Objects Shubhen Biswas G.P.S.H.School, P.O.Alaipur, Pin.-741245(W.B), India

More information

The Shifted Data Problems by Using Transform of Derivatives

The Shifted Data Problems by Using Transform of Derivatives Applied Mathematical Sciences, Vol. 8, 2014, no. 151, 7529-7534 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49784 The Shifted Data Problems by Using Transform of Derivatives Hwajoon

More information

The Greatest Common Divisor of k Positive Integers

The Greatest Common Divisor of k Positive Integers International Mathematical Forum, Vol. 3, 208, no. 5, 25-223 HIKARI Ltd, www.m-hiari.com https://doi.org/0.2988/imf.208.822 The Greatest Common Divisor of Positive Integers Rafael Jaimczu División Matemática,

More information

Certain Generating Functions Involving Generalized Mittag-Leffler Function

Certain Generating Functions Involving Generalized Mittag-Leffler Function International Journal of Mathematical Analysis Vol. 12, 2018, no. 6, 269-276 HIKARI Ltd, www.m-hiari.com https://doi.org/10.12988/ijma.2018.8431 Certain Generating Functions Involving Generalized Mittag-Leffler

More information

Geometric Construction of an Ellipse from Its Moments

Geometric Construction of an Ellipse from Its Moments Applied Mathematical Sciences, Vol. 10, 2016, no. 3, 127-135 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.511704 Geometric Construction of an llipse from Its Moments Brian J. M c Cartin

More information

A Note on the Carlitz s Type Twisted q-tangent. Numbers and Polynomials

A Note on the Carlitz s Type Twisted q-tangent. Numbers and Polynomials Applied Mathematical Sciences, Vol. 12, 2018, no. 15, 731-738 HIKARI Ltd www.m-hikari.com https://doi.org/10.12988/ams.2018.8585 A Note on the Carlitz s Type Twisted q-tangent Numbers and Polynomials Cheon

More information

On the Three-Phase-Lag Heat Equation with Spatial Dependent Lags

On the Three-Phase-Lag Heat Equation with Spatial Dependent Lags Nonlinear Analysis and Differential Equations, Vol. 5, 07, no., 53-66 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/nade.07.694 On the Three-Phase-Lag Heat Equation with Spatial Dependent Lags Yang

More information

A General Control Method for Inverse Hybrid Function Projective Synchronization of a Class of Chaotic Systems

A General Control Method for Inverse Hybrid Function Projective Synchronization of a Class of Chaotic Systems International Journal of Mathematical Analysis Vol. 9, 2015, no. 9, 429-436 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.47193 A General Control Method for Inverse Hybrid Function

More information

Direction and Stability of Hopf Bifurcation in a Delayed Model with Heterogeneous Fundamentalists

Direction and Stability of Hopf Bifurcation in a Delayed Model with Heterogeneous Fundamentalists International Journal of Mathematical Analysis Vol 9, 2015, no 38, 1869-1875 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ijma201554135 Direction and Stability of Hopf Bifurcation in a Delayed Model

More information

Some New Inequalities for a Sum of Exponential Functions

Some New Inequalities for a Sum of Exponential Functions Applied Mathematical Sciences, Vol. 9, 2015, no. 109, 5429-5439 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/ams.2015.57471 Some New Inequalities for a Sum of Eponential Functions Steven G. From

More information

A Numerical Solution of Classical Van der Pol-Duffing Oscillator by He s Parameter-Expansion Method

A Numerical Solution of Classical Van der Pol-Duffing Oscillator by He s Parameter-Expansion Method Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 15, 709-71 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2013.355 A Numerical Solution of Classical Van der Pol-Duffing Oscillator by

More information

Restrained Independent 2-Domination in the Join and Corona of Graphs

Restrained Independent 2-Domination in the Join and Corona of Graphs Applied Mathematical Sciences, Vol. 11, 2017, no. 64, 3171-3176 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.711343 Restrained Independent 2-Domination in the Join and Corona of Graphs

More information