A Numerical-Computational Technique for Solving. Transformed Cauchy-Euler Equidimensional. Equations of Homogeneous Type

Size: px
Start display at page:

Download "A Numerical-Computational Technique for Solving. Transformed Cauchy-Euler Equidimensional. Equations of Homogeneous Type"

Transcription

1 Advanced Studies in Theoretical Physics Vol. 9, 015, no., 85-9 HIKARI Ltd, A Numerical-Computational Technique for Solving Transformed Cauchy-Euler Equidimensional Equations of Homogeneous Type S. O. Edeki *, A. A. Opanuga, H. I. Okagbue and G. O. Akinlabi 1 Department of Mathematical Sciences Covenant University, Canaanland, Otta, Nigeria * Corresponding author S. A. Adeosun Department of Mathematical Sciences Crescent University, Abeokuta, Nigeria A. S. Osheku Department of Mathematics University of Ibadan, Ibadan, Nigeria Copyright 015 S. O. Edeki, A. A. Opanuga, H. I. Okagbue, G. O. Akinlabi, S. A. Adeosun, and A. S. Osheku. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract This work considers the solution of Transformed-Cauchy-Euler differential equations via Differential Transform method (DTM). For illustration and application of the method s efficiency and reliability, two examples of order and 3 are solved. The results agreed with the exact solution obtained via Laplace transform method. Keywords: Cauchy-Euler differential equations, DTM, Laplace Transform method, Series solution

2 86 S. O. Edeki et al. 1. Introduction A Cauchy-Euler equation, also known as Euler s equation named after Augustine Louis Cauchy ( ), is a linear homogeneous ordinary differential equation with variable coefficients. This type of equation commonly appears as second order equation in physics and engineering applications such as Laplace s equation in polar coordinates and many other aspects of applied sciences [1]. One of the characteristic features of Cauchy-Euler equation is that the order of each derivative in the equation equals the power of the independent variable, say, x in the corresponding coefficient. This type of equations can be reduced to linear equation with constant coefficients by using appropriate substitution [1-]. Various numerical methods have been proposed to solve ordinary differential equations. The Differential transformation method (DTM) adopted in this work was first proposed by Zhou [3] to solve both linear and nonlinear initial value problems in electric circuits analysis. Other applications of Differential Transform method can be found in [4-10]. It is also very useful when dealing with integro-differential equations encountered in finance [11]. In this work, a numerical-computational method is applied to solve Cauchy-Euler Equidimensional Equations. To illustrate this, second and third order Cauchy-Euler differential equations of the transformed type are solved.. The Cauchy-Euler Equidimensional Equation A Cauchy-Euler differential equation is a differential equation of the form: a x y a x y... a xy a y 0 n n ( n) n1 ( n1) 1 n1 1 (1) ( m) where a 0, a 1,..., a n are constants and y represents an mth derivative of the unknown function of yx ( ). Considering a second order differential equation of the form: ( ) ( ) 0 () x x ax t b The solution can be obtained through change of variables by applying Euler s formula: x e t, ( t ln x & xdt dx) (3) 1 ( x) x ( t) and (4) ( x) x ( ( t) ( t)) (5)

3 Numerical-computational technique 87 substituting the results in (3-5) in () yields a second order differential equation with constant coefficients of the form: ( ( ) ( )) ( ) 0 (6) 1 x x t t axx t b This on simplification gives: ( t) ( t) a ( t) b 0 (7) ( t) ( a 1) ( t) b 0 (8) Equations (7-8) above can be solved using the characteristic polynomial: ( a1) b 0 (9) With roots 1 and which give the general solution depending on the type of roots it has (or w.r.t. (3) resp.) 1 1 Case1: ( ) t t t a e a e (or ( x) a x a x ) (10) Case: ( ) t t t a e a te ( or ( x) a x a (ln x) x ) (11) t ( t) e ( a1 cos t a sin t) 1 or ( x) x ( a1 cos( ln x) a sin( ln x)) Case (3) (1) 3. Analysis of Differential Transformation Method In illustrating this method, we consider an arbitrary one dimensional function wxwhose ( ) differential transform is defined as: k 1 d w( x) Wk ( ) k k! dx x 0 (13) In the equation above, wx ( ) is the original function and Wk ( ) is the transformed function. The Taylor series about a point x 0 is given as k k x d w( x) wk ( ) k! dx (14) k k0 x0 The inverse differential transform is expressed as:

4 88 S. O. Edeki et al. w( x) W ( k) x k (15) k0 The following theorems are deduced from (13) (15). The proofs of these are found in [8] and in other related research papers. i. If w( x) v1( x) v( x), then W( k) V1( k) V( k) ii. If w( x) v( x), then W( k) V ( k), where is a constant ( ) iii. If w( x) dv x, then W( k) ( k 1) V ( k 1) dx ( ) iv. If w( x) d v x, then W( k) ( k 1)( k ) V ( k ) dx n If w( x) x, then W( k) ( k n), where is the kronecker delta. 4. Numerical Results 1, for kn 0, for kn In this subsection, we apply differential transform method to solve some examples of Cauchy-Euler differential equations of the transformed type. Problem 1 []: Consider the following second order Cauchy-Euler differential equation: 3 x y ( x) 4 xy( x) y 0, y(1), y(1) 1 (16) Using the above substitution, (16) is transformed to a second order differential equation with constant coefficients: 3 y ( t) 7 y( t) y 0, y(0), y(0) 1 (17) The theoretical solution of the equation is: 1 9 t 1 3 t t y( t) e e, ( x e ) (18) 5 5 Taking the differential transform of (17), we obtain: 3( k 1)( k ) Y( k ) 7( k 1) Y( k 1) Y( k) (19) Y(0), Y(1) 1 (0) Therefore, the recurrence relation in (19-0) gives the following:

5 Numerical-computational technique 89 1 Y(), for k 0, 5 Y(3), for k 1, 18 9 Y(4), for k Y(5), for k Hence, k t y( t) Y( k) t t t t t t, ( x e ) (1) k0 Table I: Tabular Solutions of problem1 t DTM EXACT ABS ERR Figure1: Solution graphs of problem1 Remark 1: In table I, a numerical comparison between the exact solution and the 5 approximate solution (up to the term containing t via the DTM) along with the corresponding absolute errors (ABS ERR) is presented. Also, graphical look of such solutions is in figure1, with series1 & series for the DTM & the exact solutions respectively. Problem []: Consider the following third order Cauchy-Euler differential equation: ( ) 10 ( ) 0 0 0, (1) 0, (1) 1, (1) 1 3 x y x x y x xy y y y () Equation () is transformed to a second order differential equation with constant coefficient: y ( t) 7 y ( t) 8y 0 0, y(0) 0, y(0) 1, y (0) 1 (3)

6 90 S. O. Edeki et al. The theoretical solution of () is: 3 t 1 10t 8 t t y( t) e e e, ( x e ) (4) The differential transform of (3) is: with ( k 1)( k )( k 3) Y( k 3) [8( k 1) Y( k 1) 0 Y( k) 7( k 1)( k ) Y( k )] 1 Y(0) 0, Y(1) 1, Y() (5) Therefore, the recurrence relation in (5) gives the following: 35 Y(3), for k 0, 6 93 Y(4), for k 1, 4 k y( t) Y( k) t t t t t 6 4 (6) k0 Table II: Tabular Solutions of problem t EXACT DTM ABS ERR E E E E E E E E , , Series1 Series Figure: Solution graphs of problem Remark 1: In table II, a numerical comparison between the exact solution and the 5 approximate solution (up to the term containing t via the DTM) along with the corresponding absolute errors (ABS ERR) is presented. Also, graphical look of such solutions is in figure, with series1 & series for the DTM & the exact solutions respectively.

7 Numerical-computational technique Concluding Remarks In this paper, Differential transform method has been applied successfully to solve transformed Cauchy-Euler differential equations, whose results can be linked easily with the original Cauchy-Euler s differential equations. The results obtained are in strong agreement with the exact solution. Differential transform method is easy to apply to any kind of differential equation. It does not require any form of linearization, perturbation or initial guess, and hence, it is recommended as an efficient and a reliable numerical-computational method for higher order Cauchy-Euler differential equations in applied sciences. Acknowledgements.The authors wish to express sincere thanks to the anonymous reviewers and/or referees for their positive and constructive comments towards the improvement of the paper. References [1] E. Kreyszig, Advanced Engineering Mathematics, Willey, ISBN: , (006). [] Martha L. Abell and James P. Braselton (010): Introductory Differential Equation with Boundary Value Problems. ISBN: [3] J. K. Zhou Differential Transformation and its application for electrical circuits, Huarjung University press, Wuuhahn, China, (1986). [4] Arikoglu A, Ozkol Solution of Difference Equations by using differential transform method, Appl. Math. Comput. 173 (1), (006): [5] S. O. Edeki, A. A. Opanuga and H. I. Okaghue On Iterative Techniques for Numerical Solutions of linear and nonlinear Differential Equations, J. Math. Comput. Sci. 4(4), (014) [6] K. R. Raslan, A. Biswas and Zain F. Abu Sheer Differential Transform method for solving partial differential equations with variable coefficients, International Journal of Physical Sciences. 7(9), (01): [7] A. A. Opanuga, S. O. Edeki, H. I. Okaghue, G. O. Akinlabi, A. S. Osheku and B. Ajayi On Numerical Solution of Systems of Ordinary Differential Equations by Numerical-Analytical method, Applied Mathematical Sciences, 8 (164), (014):

8 9 S. O. Edeki et al. [8] S. O. Edeki, H. I Okaghue, A. A. Opanuga, S. A. Adeosun, A Semi-Analytical Method for Solutions of a Certain Class of Second Order Ordinary Differential Equations, Applied Mathematics, 5, (014): [9] Z. Odibat, Differential Transform method for solving Volterra integral equation with separable kernels, Math. Comput. Modelling 48, (008): [10] J. Biazar, M. Eslami, Differential Transform method for Quadratic Riccati Differential Equation, International Journal of Nonlinear Science, 9(4), (010): [11] S. O. Edeki, I. Adinya, O. O. Ugbebor, The Effect of Stochastic Capital Reserve on Actuarial Risk Analysis via an Integro-differential equation IAENG Int. J. Appl. Math. 44 (), (014): Received: January 10, 015; Published: February 6, 015

Numerical Solution of Two-Point Boundary Value Problems via Differential Transform Method

Numerical Solution of Two-Point Boundary Value Problems via Differential Transform Method Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 11, Number 2 (2015), pp. 801-806 Research India Publications http://www.ripublication.com Numerical Solution of Two-Point Boundary

More information

On Numerical Solutions of Systems of. Ordinary Differential Equations. by Numerical-Analytical Method

On Numerical Solutions of Systems of. Ordinary Differential Equations. by Numerical-Analytical Method Applied Mathematical Sciences, Vol. 8, 2014, no. 164, 8199-8207 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.12988/ams.2014.410807 On Numerical Solutions of Systems of Ordinary Differential Equations

More information

Differential Transform Technique for Higher Order Boundary Value Problems

Differential Transform Technique for Higher Order Boundary Value Problems Modern Applied Science; Vol. 9, No. 13; 2015 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Differential Transform Technique for Higher Order Boundary Value Problems

More information

Classes of Ordinary Differential Equations Obtained for the Probability Functions of Cauchy, Standard Cauchy and Log-Cauchy Distributions

Classes of Ordinary Differential Equations Obtained for the Probability Functions of Cauchy, Standard Cauchy and Log-Cauchy Distributions Proceedings of the World Congress on Engineering and Computer Science 07 Vol I WCECS 07, October 5-7, 07, San Francisco, USA Classes of Ordinary Differential Equations Obtained for the Probability Functions

More information

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations Nonlinear Analysis and Differential Equations, Vol. 3, 015, no. 3, 111-1 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/nade.015.416 The Modified Adomian Decomposition Method for Solving Nonlinear

More information

Linearization of Two Dimensional Complex-Linearizable Systems of Second Order Ordinary Differential Equations

Linearization of Two Dimensional Complex-Linearizable Systems of Second Order Ordinary Differential Equations Applied Mathematical Sciences, Vol. 9, 2015, no. 58, 2889-2900 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.4121002 Linearization of Two Dimensional Complex-Linearizable Systems of

More information

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method International Journal of Mathematical Analysis Vol. 9, 2015, no. 39, 1919-1928 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.54124 Improvements in Newton-Rapshon Method for Nonlinear

More information

Differential Transform Method for Solving. Linear and Nonlinear Systems of. Ordinary Differential Equations

Differential Transform Method for Solving. Linear and Nonlinear Systems of. Ordinary Differential Equations Applied Mathematical Sciences, Vol 5, 2011, no 70, 3465-3472 Differential Transform Method for Solving Linear and Nonlinear Systems of Ordinary Differential Equations Farshid Mirzaee Department of Mathematics

More information

The Shifted Data Problems by Using Transform of Derivatives

The Shifted Data Problems by Using Transform of Derivatives Applied Mathematical Sciences, Vol. 8, 2014, no. 151, 7529-7534 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49784 The Shifted Data Problems by Using Transform of Derivatives Hwajoon

More information

Adaptation of Taylor s Formula for Solving System of Differential Equations

Adaptation of Taylor s Formula for Solving System of Differential Equations Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 2, 95-107 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2016.51144 Adaptation of Taylor s Formula for Solving System of Differential

More information

Z. Omar. Department of Mathematics School of Quantitative Sciences College of Art and Sciences Univeristi Utara Malaysia, Malaysia. Ra ft.

Z. Omar. Department of Mathematics School of Quantitative Sciences College of Art and Sciences Univeristi Utara Malaysia, Malaysia. Ra ft. International Journal of Mathematical Analysis Vol. 9, 015, no. 46, 57-7 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.015.57181 Developing a Single Step Hybrid Block Method with Generalized

More information

Iterative Methods for Single Variable Equations

Iterative Methods for Single Variable Equations International Journal of Mathematical Analysis Vol 0, 06, no 6, 79-90 HII Ltd, wwwm-hikaricom http://dxdoiorg/0988/ijma065307 Iterative Methods for Single Variable Equations Shin Min Kang Department of

More information

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces Applied Mathematical Sciences, Vol. 11, 2017, no. 12, 549-560 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.718 The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive

More information

On the Application of the Multistage Differential Transform Method to the Rabinovich-Fabrikant System

On the Application of the Multistage Differential Transform Method to the Rabinovich-Fabrikant System The African Review of Physics (24) 9:23 69 On the Application of the Multistage Differential Transform Method to the Rabinovich-Fabrikant System O. T. Kolebaje,*, M. O. Ojo, O. L. Ojo and A. J. Omoliki

More information

One-Step Hybrid Block Method with One Generalized Off-Step Points for Direct Solution of Second Order Ordinary Differential Equations

One-Step Hybrid Block Method with One Generalized Off-Step Points for Direct Solution of Second Order Ordinary Differential Equations Applied Mathematical Sciences, Vol. 10, 2016, no. 29, 142-142 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.6127 One-Step Hybrid Block Method with One Generalized Off-Step Points for

More information

Approximate Solution of an Integro-Differential Equation Arising in Oscillating Magnetic Fields Using the Differential Transformation Method

Approximate Solution of an Integro-Differential Equation Arising in Oscillating Magnetic Fields Using the Differential Transformation Method IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 5 Ver. I1 (Sep. - Oct. 2017), PP 90-97 www.iosrjournals.org Approximate Solution of an Integro-Differential

More information

A Numerical Solution of Classical Van der Pol-Duffing Oscillator by He s Parameter-Expansion Method

A Numerical Solution of Classical Van der Pol-Duffing Oscillator by He s Parameter-Expansion Method Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 15, 709-71 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2013.355 A Numerical Solution of Classical Van der Pol-Duffing Oscillator by

More information

Stability Analysis and Numerical Solution for. the Fractional Order Biochemical Reaction Model

Stability Analysis and Numerical Solution for. the Fractional Order Biochemical Reaction Model Nonlinear Analysis and Differential Equations, Vol. 4, 16, no. 11, 51-53 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/nade.16.6531 Stability Analysis and Numerical Solution for the Fractional

More information

Research Article Approximation Algorithm for a System of Pantograph Equations

Research Article Approximation Algorithm for a System of Pantograph Equations Applied Mathematics Volume 01 Article ID 714681 9 pages doi:101155/01/714681 Research Article Approximation Algorithm for a System of Pantograph Equations Sabir Widatalla 1 and Mohammed Abdulai Koroma

More information

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients Contemporary Engineering Sciences, Vol. 11, 2018, no. 16, 779-784 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.8262 Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable

More information

Solution of Nonlinear Fractional Differential. Equations Using the Homotopy Perturbation. Sumudu Transform Method

Solution of Nonlinear Fractional Differential. Equations Using the Homotopy Perturbation. Sumudu Transform Method Applied Mathematical Sciences, Vol. 8, 2014, no. 44, 2195-2210 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4285 Solution of Nonlinear Fractional Differential Equations Using the Homotopy

More information

Journal of Applied Mathematics and Computation (JAMC), 2018, 2(7),

Journal of Applied Mathematics and Computation (JAMC), 2018, 2(7), Journal of Applied Mathematics and Computation (JAMC), 2018, 2(7), 271-278 http://www.hillpublisher.org/journal/jamc ISSN Online:2576-0645 ISSN Print:2576-0653 Numerical Investigation of Dynamical Response

More information

On the Solution of the n-dimensional k B Operator

On the Solution of the n-dimensional k B Operator Applied Mathematical Sciences, Vol. 9, 015, no. 10, 469-479 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.1988/ams.015.410815 On the Solution of the n-dimensional B Operator Sudprathai Bupasiri Faculty

More information

Some Properties of a Semi Dynamical System. Generated by von Forester-Losata Type. Partial Equations

Some Properties of a Semi Dynamical System. Generated by von Forester-Losata Type. Partial Equations Int. Journal of Math. Analysis, Vol. 7, 2013, no. 38, 1863-1868 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.3481 Some Properties of a Semi Dynamical System Generated by von Forester-Losata

More information

Distribution Solutions of Some PDEs Related to the Wave Equation and the Diamond Operator

Distribution Solutions of Some PDEs Related to the Wave Equation and the Diamond Operator Applied Mathematical Sciences, Vol. 7, 013, no. 111, 5515-554 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.013.3844 Distribution Solutions of Some PDEs Related to the Wave Equation and the

More information

International Journal of Modern Theoretical Physics, 2012, 1(1): International Journal of Modern Theoretical Physics

International Journal of Modern Theoretical Physics, 2012, 1(1): International Journal of Modern Theoretical Physics International Journal of Modern Theoretical Physics, 2012, 1(1): 13-22 International Journal of Modern Theoretical Physics Journal homepage:www.modernscientificpress.com/journals/ijmtp.aspx ISSN: 2169-7426

More information

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation International Differential Equations Volume 2010, Article ID 764738, 8 pages doi:10.1155/2010/764738 Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

More information

Explicit Expressions for Free Components of. Sums of the Same Powers

Explicit Expressions for Free Components of. Sums of the Same Powers Applied Mathematical Sciences, Vol., 27, no. 53, 2639-2645 HIKARI Ltd, www.m-hikari.com https://doi.org/.2988/ams.27.79276 Explicit Expressions for Free Components of Sums of the Same Powers Alexander

More information

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials Applied Mathematical Sciences, Vol. 8, 2014, no. 35, 1723-1730 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4127 A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating

More information

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique Int. Journal of Math. Analysis, Vol. 7, 3, no. 53, 65-636 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ijma.3.3894 A Study on Linear and Nonlinear Stiff Problems Using Single-Term Haar Wavelet Series

More information

Fuzzy Sequences in Metric Spaces

Fuzzy Sequences in Metric Spaces Int. Journal of Math. Analysis, Vol. 8, 2014, no. 15, 699-706 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.4262 Fuzzy Sequences in Metric Spaces M. Muthukumari Research scholar, V.O.C.

More information

Newton-Raphson Type Methods

Newton-Raphson Type Methods Int. J. Open Problems Compt. Math., Vol. 5, No. 2, June 2012 ISSN 1998-6262; Copyright c ICSRS Publication, 2012 www.i-csrs.org Newton-Raphson Type Methods Mircea I. Cîrnu Department of Mathematics, Faculty

More information

Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation on a Restricted Domain

Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation on a Restricted Domain Int. Journal of Math. Analysis, Vol. 7, 013, no. 55, 745-75 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.013.394 Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation

More information

The Representation of Energy Equation by Laplace Transform

The Representation of Energy Equation by Laplace Transform Int. Journal of Math. Analysis, Vol. 8, 24, no. 22, 93-97 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ijma.24.442 The Representation of Energy Equation by Laplace Transform Taehee Lee and Hwajoon

More information

Convergence of Differential Transform Method for Ordinary Differential Equations

Convergence of Differential Transform Method for Ordinary Differential Equations Journal of Advances in Mathematics and Computer Science 246: 1-17, 2017; Article no.jamcs.36489 Previously nown as British Journal of Mathematics & Computer Science ISSN: 2231-0851 Convergence of Differential

More information

Diameter of the Zero Divisor Graph of Semiring of Matrices over Boolean Semiring

Diameter of the Zero Divisor Graph of Semiring of Matrices over Boolean Semiring International Mathematical Forum, Vol. 9, 2014, no. 29, 1369-1375 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47131 Diameter of the Zero Divisor Graph of Semiring of Matrices over

More information

On a 3-Uniform Path-Hypergraph on 5 Vertices

On a 3-Uniform Path-Hypergraph on 5 Vertices Applied Mathematical Sciences, Vol. 10, 2016, no. 30, 1489-1500 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.512742 On a 3-Uniform Path-Hypergraph on 5 Vertices Paola Bonacini Department

More information

Boundary Value Problem for Second Order Ordinary Linear Differential Equations with Variable Coefficients

Boundary Value Problem for Second Order Ordinary Linear Differential Equations with Variable Coefficients International Journal of Mathematical Analysis Vol. 9, 2015, no. 3, 111-116 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/ijma.2015.411353 Boundary Value Problem for Second Order Ordinary Linear

More information

Application of Homotopy Perturbation and Modified Adomian Decomposition Methods for Higher Order Boundary Value Problems

Application of Homotopy Perturbation and Modified Adomian Decomposition Methods for Higher Order Boundary Value Problems Proceedings of the World Congress on Engineering 7 Vol I WCE 7, July 5-7, 7, London, U.K. Application of Homotopy Perturbation and Modified Adomian Decomposition Methods for Higher Order Boundary Value

More information

Restrained Weakly Connected Independent Domination in the Corona and Composition of Graphs

Restrained Weakly Connected Independent Domination in the Corona and Composition of Graphs Applied Mathematical Sciences, Vol. 9, 2015, no. 20, 973-978 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.4121046 Restrained Weakly Connected Independent Domination in the Corona and

More information

Caristi-type Fixed Point Theorem of Set-Valued Maps in Metric Spaces

Caristi-type Fixed Point Theorem of Set-Valued Maps in Metric Spaces International Journal of Mathematical Analysis Vol. 11, 2017, no. 6, 267-275 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2017.717 Caristi-type Fixed Point Theorem of Set-Valued Maps in Metric

More information

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 3, 143-150 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2016.613 Solution of Differential Equations of Lane-Emden Type by

More information

Positive Solution of a Nonlinear Four-Point Boundary-Value Problem

Positive Solution of a Nonlinear Four-Point Boundary-Value Problem Nonlinear Analysis and Differential Equations, Vol. 5, 27, no. 8, 299-38 HIKARI Ltd, www.m-hikari.com https://doi.org/.2988/nade.27.78 Positive Solution of a Nonlinear Four-Point Boundary-Value Problem

More information

An efficient algorithm on timefractional. equations with variable coefficients. Research Article OPEN ACCESS. Jamshad Ahmad*, Syed Tauseef Mohyud-Din

An efficient algorithm on timefractional. equations with variable coefficients. Research Article OPEN ACCESS. Jamshad Ahmad*, Syed Tauseef Mohyud-Din OPEN ACCESS Research Article An efficient algorithm on timefractional partial differential equations with variable coefficients Jamshad Ahmad*, Syed Tauseef Mohyud-Din Department of Mathematics, Faculty

More information

Hyperbolic Functions and. the Heat Balance Integral Method

Hyperbolic Functions and. the Heat Balance Integral Method Nonl. Analysis and Differential Equations, Vol. 1, 2013, no. 1, 23-27 HIKARI Ltd, www.m-hikari.com Hyperbolic Functions and the Heat Balance Integral Method G. Nhawu and G. Tapedzesa Department of Mathematics,

More information

Generalized Differential Transform Method to Space- Time Fractional Non-linear Schrodinger Equation

Generalized Differential Transform Method to Space- Time Fractional Non-linear Schrodinger Equation International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 455-737 Volume, Issue, December 7, PP 7-3 Generalized Differential Transform Method to Space- Time Fractional Non-linear

More information

(Received 13 December 2011, accepted 27 December 2012) y(x) Y (k) = 1 [ d k ] dx k. x=0. y(x) = x k Y (k), (2) k=0. [ d k ] y(x) x k k!

(Received 13 December 2011, accepted 27 December 2012) y(x) Y (k) = 1 [ d k ] dx k. x=0. y(x) = x k Y (k), (2) k=0. [ d k ] y(x) x k k! ISSN 749-3889 (print), 749-3897 (online) International Journal of Nonlinear Science Vol.6(23) No.,pp.87-9 Solving a Class of Volterra Integral Equation Systems by the Differential Transform Method Ercan

More information

APPLICATION OF DIFFERENTIAL TRANSFORMATION METHOD FOR THE STATIC ANALYSIS OF EULER-BERNOULLI BEAM

APPLICATION OF DIFFERENTIAL TRANSFORMATION METHOD FOR THE STATIC ANALYSIS OF EULER-BERNOULLI BEAM APPLICATION OF DIFFERENTIAL TRANSFORMATION METHOD FOR THE STATIC ANALYSIS OF EULER-BERNOULLI BEAM Evin Varghese 1, C.S.C. Devadass 2, M.G. Rajendran 3 1 P G student, School of Civil Engineering, Karunya

More information

Locating Chromatic Number of Banana Tree

Locating Chromatic Number of Banana Tree International Mathematical Forum, Vol. 12, 2017, no. 1, 39-45 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.610138 Locating Chromatic Number of Banana Tree Asmiati Department of Mathematics

More information

On the Deformed Theory of Special Relativity

On the Deformed Theory of Special Relativity Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 6, 275-282 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.61140 On the Deformed Theory of Special Relativity Won Sang Chung 1

More information

k-pell, k-pell-lucas and Modified k-pell Numbers: Some Identities and Norms of Hankel Matrices

k-pell, k-pell-lucas and Modified k-pell Numbers: Some Identities and Norms of Hankel Matrices International Journal of Mathematical Analysis Vol. 9, 05, no., 3-37 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ijma.05.4370 k-pell, k-pell-lucas and Modified k-pell Numbers: Some Identities

More information

On a Certain Representation in the Pairs of Normed Spaces

On a Certain Representation in the Pairs of Normed Spaces Applied Mathematical Sciences, Vol. 12, 2018, no. 3, 115-119 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.712362 On a Certain Representation in the Pairs of ormed Spaces Ahiro Hoshida

More information

Differential transformation method for solving one-space-dimensional telegraph equation

Differential transformation method for solving one-space-dimensional telegraph equation Volume 3, N 3, pp 639 653, 2 Copyright 2 SBMAC ISSN -825 wwwscielobr/cam Differential transformation method for solving one-space-dimensional telegraph equation B SOLTANALIZADEH Young Researchers Club,

More information

Morera s Theorem for Functions of a Hyperbolic Variable

Morera s Theorem for Functions of a Hyperbolic Variable Int. Journal of Math. Analysis, Vol. 7, 2013, no. 32, 1595-1600 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.212354 Morera s Theorem for Functions of a Hyperbolic Variable Kristin

More information

On Linear Recursive Sequences with Coefficients in Arithmetic-Geometric Progressions

On Linear Recursive Sequences with Coefficients in Arithmetic-Geometric Progressions Applied Mathematical Sciences, Vol. 9, 015, no. 5, 595-607 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.015.5163 On Linear Recursive Sequences with Coefficients in Arithmetic-Geometric Progressions

More information

Quadratic Optimization over a Polyhedral Set

Quadratic Optimization over a Polyhedral Set International Mathematical Forum, Vol. 9, 2014, no. 13, 621-629 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.4234 Quadratic Optimization over a Polyhedral Set T. Bayartugs, Ch. Battuvshin

More information

An Improved Hybrid Algorithm to Bisection Method and Newton-Raphson Method

An Improved Hybrid Algorithm to Bisection Method and Newton-Raphson Method Applied Mathematical Sciences, Vol. 11, 2017, no. 56, 2789-2797 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.710302 An Improved Hybrid Algorithm to Bisection Method and Newton-Raphson

More information

THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION. Haldun Alpaslan Peker, Onur Karaoğlu and Galip Oturanç

THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION. Haldun Alpaslan Peker, Onur Karaoğlu and Galip Oturanç Mathematical and Computational Applications, Vol. 16, No., pp. 507-513, 011. Association for Scientific Research THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION

More information

Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree Polynomial Forcing Function

Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree Polynomial Forcing Function Advanced Studies in Theoretical Physics Vol., 207, no. 2, 679-685 HIKARI Ltd, www.m-hikari.com https://doi.org/0.2988/astp.207.7052 Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree

More information

On a Boundary-Value Problem for Third Order Operator-Differential Equations on a Finite Interval

On a Boundary-Value Problem for Third Order Operator-Differential Equations on a Finite Interval Applied Mathematical Sciences, Vol. 1, 216, no. 11, 543-548 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.216.512743 On a Boundary-Value Problem for Third Order Operator-Differential Equations

More information

Generalized Boolean and Boolean-Like Rings

Generalized Boolean and Boolean-Like Rings International Journal of Algebra, Vol. 7, 2013, no. 9, 429-438 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2013.2894 Generalized Boolean and Boolean-Like Rings Hazar Abu Khuzam Department

More information

A Recursion Scheme for the Fisher Equation

A Recursion Scheme for the Fisher Equation Applied Mathematical Sciences, Vol. 8, 204, no. 08, 536-5368 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.2988/ams.204.47570 A Recursion Scheme for the Fisher Equation P. Sitompul, H. Gunawan,Y. Soeharyadi

More information

Applications of Differential Transform Method To Initial Value Problems

Applications of Differential Transform Method To Initial Value Problems American Journal of Engineering Research (AJER) 207 American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-6, Issue-2, pp-365-37 www.ajer.org Research Paper Open Access

More information

Solving Homogeneous Systems with Sub-matrices

Solving Homogeneous Systems with Sub-matrices Pure Mathematical Sciences, Vol 7, 218, no 1, 11-18 HIKARI Ltd, wwwm-hikaricom https://doiorg/112988/pms218843 Solving Homogeneous Systems with Sub-matrices Massoud Malek Mathematics, California State

More information

A Note of the Strong Convergence of the Mann Iteration for Demicontractive Mappings

A Note of the Strong Convergence of the Mann Iteration for Demicontractive Mappings Applied Mathematical Sciences, Vol. 10, 2016, no. 6, 255-261 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.511700 A Note of the Strong Convergence of the Mann Iteration for Demicontractive

More information

An Efficient Multiscale Runge-Kutta Galerkin Method for Generalized Burgers-Huxley Equation

An Efficient Multiscale Runge-Kutta Galerkin Method for Generalized Burgers-Huxley Equation Applied Mathematical Sciences, Vol. 11, 2017, no. 30, 1467-1479 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.7141 An Efficient Multiscale Runge-Kutta Galerkin Method for Generalized Burgers-Huxley

More information

Devaney's Chaos of One Parameter Family. of Semi-triangular Maps

Devaney's Chaos of One Parameter Family. of Semi-triangular Maps International Mathematical Forum, Vol. 8, 2013, no. 29, 1439-1444 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2013.36114 Devaney's Chaos of One Parameter Family of Semi-triangular Maps

More information

Double Contraction in S-Metric Spaces

Double Contraction in S-Metric Spaces International Journal of Mathematical Analysis Vol. 9, 2015, no. 3, 117-125 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.1135 Double Contraction in S-Metric Spaces J. Mojaradi Afra

More information

Second Hankel Determinant Problem for a Certain Subclass of Univalent Functions

Second Hankel Determinant Problem for a Certain Subclass of Univalent Functions International Journal of Mathematical Analysis Vol. 9, 05, no. 0, 493-498 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ijma.05.55 Second Hankel Determinant Problem for a Certain Subclass of Univalent

More information

Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type Equation

Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type Equation Contemporary Engineering Sciences Vol. 11 2018 no. 16 785-791 HIKARI Ltd www.m-hikari.com https://doi.org/10.12988/ces.2018.8267 Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type

More information

Non Isolated Periodic Orbits of a Fixed Period for Quadratic Dynamical Systems

Non Isolated Periodic Orbits of a Fixed Period for Quadratic Dynamical Systems Applied Mathematical Sciences, Vol. 12, 2018, no. 22, 1053-1058 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.87100 Non Isolated Periodic Orbits of a Fixed Period for Quadratic Dynamical

More information

Optimal Homotopy Asymptotic Method for Solving Gardner Equation

Optimal Homotopy Asymptotic Method for Solving Gardner Equation Applied Mathematical Sciences, Vol. 9, 2015, no. 53, 2635-2644 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.52145 Optimal Homotopy Asymptotic Method for Solving Gardner Equation Jaharuddin

More information

A Two-step Iterative Method Free from Derivative for Solving Nonlinear Equations

A Two-step Iterative Method Free from Derivative for Solving Nonlinear Equations Applied Mathematical Sciences, Vol. 8, 2014, no. 161, 8021-8027 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49710 A Two-step Iterative Method Free from Derivative for Solving Nonlinear

More information

Strong Convergence of the Mann Iteration for Demicontractive Mappings

Strong Convergence of the Mann Iteration for Demicontractive Mappings Applied Mathematical Sciences, Vol. 9, 015, no. 4, 061-068 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.015.5166 Strong Convergence of the Mann Iteration for Demicontractive Mappings Ştefan

More information

The Variants of Energy Integral Induced by the Vibrating String

The Variants of Energy Integral Induced by the Vibrating String Applied Mathematical Sciences, Vol. 9, 15, no. 34, 1655-1661 HIKARI td, www.m-hikari.com http://d.doi.org/1.1988/ams.15.5168 The Variants of Energy Integral Induced by the Vibrating String Hwajoon Kim

More information

Generalization of the Banach Fixed Point Theorem for Mappings in (R, ϕ)-spaces

Generalization of the Banach Fixed Point Theorem for Mappings in (R, ϕ)-spaces International Mathematical Forum, Vol. 10, 2015, no. 12, 579-585 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2015.5861 Generalization of the Banach Fixed Point Theorem for Mappings in (R,

More information

Math 2142 Homework 5 Part 1 Solutions

Math 2142 Homework 5 Part 1 Solutions Math 2142 Homework 5 Part 1 Solutions Problem 1. For the following homogeneous second order differential equations, give the general solution and the particular solution satisfying the given initial conditions.

More information

Research Article Global Existence and Boundedness of Solutions to a Second-Order Nonlinear Differential System

Research Article Global Existence and Boundedness of Solutions to a Second-Order Nonlinear Differential System Applied Mathematics Volume 212, Article ID 63783, 12 pages doi:1.1155/212/63783 Research Article Global Existence and Boundedness of Solutions to a Second-Order Nonlinear Differential System Changjian

More information

On Symmetric Property for q-genocchi Polynomials and Zeta Function

On Symmetric Property for q-genocchi Polynomials and Zeta Function Int Journal of Math Analysis, Vol 8, 2014, no 1, 9-16 HIKARI Ltd, wwwm-hiaricom http://dxdoiorg/1012988/ijma2014311275 On Symmetric Property for -Genocchi Polynomials and Zeta Function J Y Kang Department

More information

Two Constants of Motion in the Generalized Damped Oscillator

Two Constants of Motion in the Generalized Damped Oscillator Advanced Studies in Theoretical Physics Vol. 10, 2016, no. 2, 57-65 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2016.511107 Two Constants o Motion in the Generalized Damped Oscillator

More information

Secure Weakly Connected Domination in the Join of Graphs

Secure Weakly Connected Domination in the Join of Graphs International Journal of Mathematical Analysis Vol. 9, 2015, no. 14, 697-702 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.519 Secure Weakly Connected Domination in the Join of Graphs

More information

Sixth-Order and Fourth-Order Hybrid Boundary Value Methods for Systems of Boundary Value Problems

Sixth-Order and Fourth-Order Hybrid Boundary Value Methods for Systems of Boundary Value Problems Sith-Order and Fourth-Order Hybrid Boundary Value Methods for Systems of Boundary Value Problems GRACE O. AKILABI Department of Mathematics Covenant University, Canaanland, Ota, Ogun State IGERIA grace.akinlabi@covenantuniversity.edu.ng

More information

Applications Of Differential Transform Method To Integral Equations

Applications Of Differential Transform Method To Integral Equations American Journal of Engineering Research (AJER) 28 American Journal of Engineering Research (AJER) e-issn: 232-847 p-issn : 232-936 Volume-7, Issue-, pp-27-276 www.ajer.org Research Paper Open Access Applications

More information

A Short Note on Universality of Some Quadratic Forms

A Short Note on Universality of Some Quadratic Forms International Mathematical Forum, Vol. 8, 2013, no. 12, 591-595 HIKARI Ltd, www.m-hikari.com A Short Note on Universality of Some Quadratic Forms Cherng-tiao Perng Department of Mathematics Norfolk State

More information

An Approximate Solution for Volterra Integral Equations of the Second Kind in Space with Weight Function

An Approximate Solution for Volterra Integral Equations of the Second Kind in Space with Weight Function International Journal of Mathematical Analysis Vol. 11 17 no. 18 849-861 HIKARI Ltd www.m-hikari.com https://doi.org/1.1988/ijma.17.771 An Approximate Solution for Volterra Integral Equations of the Second

More information

Formula for Lucas Like Sequence of Fourth Step and Fifth Step

Formula for Lucas Like Sequence of Fourth Step and Fifth Step International Mathematical Forum, Vol. 12, 2017, no., 10-110 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.612169 Formula for Lucas Like Sequence of Fourth Step and Fifth Step Rena Parindeni

More information

Unit Group of Z 2 D 10

Unit Group of Z 2 D 10 International Journal of Algebra, Vol. 9, 2015, no. 4, 179-183 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2015.5420 Unit Group of Z 2 D 10 Parvesh Kumari Department of Mathematics Indian

More information

Numerical Solution of Non-Linear Biharmonic. Equation for Elasto-Plastic Bending Plate

Numerical Solution of Non-Linear Biharmonic. Equation for Elasto-Plastic Bending Plate Applied Mathematical Sciences, Vol. 9, 5, no. 6, 769-78 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ams.5.575 Numerical Solution of Non-Linear Biharmonic Equation for Elasto-Plastic Bending Plate

More information

A Direct Proof of Caristi s Fixed Point Theorem

A Direct Proof of Caristi s Fixed Point Theorem Applied Mathematical Sciences, Vol. 10, 2016, no. 46, 2289-2294 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.66190 A Direct Proof of Caristi s Fixed Point Theorem Wei-Shih Du Department

More information

Approximations to the t Distribution

Approximations to the t Distribution Applied Mathematical Sciences, Vol. 9, 2015, no. 49, 2445-2449 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.52148 Approximations to the t Distribution Bashar Zogheib 1 and Ali Elsaheli

More information

Symmetric Properties for the (h, q)-tangent Polynomials

Symmetric Properties for the (h, q)-tangent Polynomials Adv. Studies Theor. Phys., Vol. 8, 04, no. 6, 59-65 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/astp.04.43 Symmetric Properties for the h, q-tangent Polynomials C. S. Ryoo Department of Mathematics

More information

Morphisms Between the Groups of Semi Magic Squares and Real Numbers

Morphisms Between the Groups of Semi Magic Squares and Real Numbers International Journal of Algebra, Vol. 8, 2014, no. 19, 903-907 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2014.212137 Morphisms Between the Groups of Semi Magic Squares and Real Numbers

More information

A Laplace Type Problems for a Lattice with Cell Composed by Three Quadrilaterals and with Maximum Probability

A Laplace Type Problems for a Lattice with Cell Composed by Three Quadrilaterals and with Maximum Probability Applied Mathematical Sciences, Vol. 8, 1, no. 165, 879-886 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/ams.1.11915 A Laplace Type Problems for a Lattice with Cell Composed by Three Quadrilaterals

More information

Solutions of some system of non-linear PDEs using Reduced Differential Transform Method

Solutions of some system of non-linear PDEs using Reduced Differential Transform Method IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 11, Issue 5 Ver. I (Sep. - Oct. 2015), PP 37-44 www.iosrjournals.org Solutions of some system of non-linear PDEs using

More information

Runge Kutta Collocation Method for the Solution of First Order Ordinary Differential Equations

Runge Kutta Collocation Method for the Solution of First Order Ordinary Differential Equations Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 1, 17-26 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2016.5823 Runge Kutta Collocation Method for the Solution of First

More information

Double Total Domination on Generalized Petersen Graphs 1

Double Total Domination on Generalized Petersen Graphs 1 Applied Mathematical Sciences, Vol. 11, 2017, no. 19, 905-912 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.7114 Double Total Domination on Generalized Petersen Graphs 1 Chengye Zhao 2

More information

Generalized Differential Transform Method for non-linear Inhomogeneous Time Fractional Partial differential Equation

Generalized Differential Transform Method for non-linear Inhomogeneous Time Fractional Partial differential Equation International Journal of Sciences & Applied Research www.ijsar.in Generalized Differential Transform Method for non-linear Inhomogeneous Time Fractional Partial differential Equation D. Das 1 * and R.

More information

Secure Weakly Convex Domination in Graphs

Secure Weakly Convex Domination in Graphs Applied Mathematical Sciences, Vol 9, 2015, no 3, 143-147 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ams2015411992 Secure Weakly Convex Domination in Graphs Rene E Leonida Mathematics Department

More information

ON A SURVEY OF UNIFORM INTEGRABILITY OF SEQUENCES OF RANDOM VARIABLES

ON A SURVEY OF UNIFORM INTEGRABILITY OF SEQUENCES OF RANDOM VARIABLES ON A SURVEY OF UNIFORM INTEGRABILITY OF SEQUENCES OF RANDOM VARIABLES S. A. Adeosun and S. O. Edeki 1 Department of Mathematical Sciences, Crescent University, Abeokuta, Nigeria. 2 Department of Industrial

More information

k-jacobsthal and k-jacobsthal Lucas Matrix Sequences

k-jacobsthal and k-jacobsthal Lucas Matrix Sequences International Mathematical Forum, Vol 11, 016, no 3, 145-154 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/101988/imf0165119 k-jacobsthal and k-jacobsthal Lucas Matrix Sequences S Uygun 1 and H Eldogan Department

More information