On Symmetric Property for q-genocchi Polynomials and Zeta Function

Size: px
Start display at page:

Download "On Symmetric Property for q-genocchi Polynomials and Zeta Function"

Transcription

1 Int Journal of Math Analysis, Vol 8, 2014, no 1, 9-16 HIKARI Ltd, wwwm-hiaricom On Symmetric Property for -Genocchi Polynomials and Zeta Function J Y Kang Department of Mathematics Hannam University, Daejeon , Korea C S Ryoo Department of Mathematics Hannam University, Daejeon , Korea Copyright c 2014 J Y Kang and C S Ryoo This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original wor is properly cited Abstract The present papers deal with the various -Genocchi numbers and polynomials We find the symmetric identity of -Genocchi zeta function By using the symmetric identity of -Genocchi zeta function, we study a few interesting symmetric properties of -Genocchi polynomials Mathematics Subject Classification: 11B68, 11S40, 11S80 Keywords: symmetric identities of -Genocchi polynomials, symmetric property of -Genocchi zeta function 1 Introduction The Genocchi numbers and polynomials possess many interesting properties and arising in many areas of mathematics and physics The classical Genocchi polynomials are defined by F (t, x = 2t e t +1 ext = e G(xt = G n (x tn, t <π, n!

2 10 J Y Kang and C S Ryoo with the usual convention of replacing G n (x byg n (x G n (0 = G n are called the n-th Genocchi numbers For s C and Re(s > 0, the Hurwitz-type Genocchi zeta function are defined by ζ G (s, x =2 ( 1 n, (see [5], (n + x s Note that the Hurwitz-type Genocchi zeta function has the values of the Genocchi polynomials at negative integers Recently, many mathematicians have studied in the area of the -Genocchi numbers and polynomials(see [1-16] When one tals of -extension, is considered in many ways such as an indeterminate, a complex number C, or p-adic number C p Let us assume that C with < 1 Then we use the notation: [x] = 1 x 1, [x] = 1 ( x 1+ (cf [1-5] Note that lim 1 [x] = x for any x In this paper, we consider that C notes the complex plane Definition 11 (generating function of the -Genocchi polynomials Let C Then we define G n, (x tn n! = [2] t ( 1 m m e [x+m]t, where we use the technical method s notation by replacing G n (x by G n (x, symbolically (see [1-5] In the special case x =0, G n, (0 = G n, are called the n-th -Genocchi numbers(see [1-5] Definition 12 (the Hurwitz-type -Genocchi zeta function For s C and Re(s > 0, ( 1 n n ζ (s, x = [2], (see [5], [n + x] s Mathematicians also found out various properties of the -Genocchi polynomials as follows:(see [1-5] Theorem 13 (the -Genocchi polynomials Let C Then we have G n, (x = [2] n ( 1 m m [x + m] n 1

3 Symmetric property for -Genocchi polynomials and zeta function 11 Theorem 14 (the addition theorem for the -Genocchi polynomials Let n be a positive integer Then one has ( n G n, (x + y = lx G l, (y[x] n l l l=0 Theorem 15 (symmetric distribution for the -Genocchi polynomials Let n 0 Then we get G n, 1(1 x =( n 1 G n, (x Theorem 16 (the relation of -Genocchi polynomials and zeta function For N, we have ζ (, x = G +1,(x +1 Observe that ζ (, x function interpolates G, (x polynomials at non-negative integers Our aim in this paper is to discover special symmetric properties for - Genocchi polynomials We are going to find a symmetric identity for - Genocchi zeta function From property of the -Genocchi zeta function, we derive some symmetric properties of -Genocchi polynomials by combing the basic Theorem and some formulas 2 Symmetry properties of Genocchi numbers and polynomials with wea weight α In this section, one of the most important theorems is the Theorem 21 It will be used to obtain the main results of -Genocchi polynomials We also establish several interesting symmetric identities for -Genocchi polynomials and -Genocchi zeta function Theorem 21 Let s C with Re(s > 0 and a,b : odd positive integers Then one has [2] a[a] s ( 1 i ai ζ b(s, ax + ai b = [2] b[b]s ( 1 j bj ζ a(s, bx + bj a i=0 Proof By substitute ax + ai for x in Definition 12 and replace by b,we b derive ζ b(s, ax + ai b = [2] ( 1 n bn b [ax + ai + = [2] b[b] s ( 1 n bn b n]s [abx + ai + bn] s b j=0

4 12 J Y Kang and C S Ryoo Since for any non-negative integer m and odd positive integer a, there exist uniue non-negative integer r such that m = ar +j with 0 j a 1 Hence, this can be written as ζ b(s, ax + ai b = [2] b[b]s = [2] b[b] s ar+j=0 0 j a 1 It follows from the above euation that j=0 r=0 ( 1 ar+j b(ar+j [b(ar + j+abx + ai] s ( 1 ar+j abr+bj [ab(r + x+ai + bj] s [2] a[a] s ( 1 i ai ζ b(s, ax + ai b i=0 = [2] a[2] b[a] s [b] s i=0 j=0 r=0 ( 1 ar+i+j abr+ai+bj [ab(r + x+ai + bj] s (21 In the similar method, we can have that ζ a(s, bx + bj a = [2] a ( 1 n an [bx + bj a + n]s a = [2] a[a] s ( 1 n an, [abx + bj + an] s [2] b[b] s ( 1 j bj ζ a(s, bx + bj a j=0 = [2] a[2] b[a] s [b]s i=0 j=0 r=0 ( 1 br+i+j abr+ai+bj [ab(r + x+ai + bj] s (22 Thus, we complete the proof of the theorem by combining (21 and (22 In Theorem 21, we get the following formulas for the -Genocchi zeta function Corollary 22 Let b =1in Theorem 21 Then we have ( 1 j j ζ a(s, x + j a =[a] 2[a]s 1 ζ (s, ax j=0 Note that if 1, then a 1 j=0 ( 1j j ζ a(s, x + j a =as ζ(s, ax Corollary 23 Let a =2,b=1in Theorem 21 Then we get ζ 2(s, x ζ 2(s, x = (1 + [2]s ζ (s, 2x

5 Symmetric property for -Genocchi polynomials and zeta function 13 We can easily see that if 1, then ζ(s, x =ζ(s, x s ζ(s, 2x By Theorem 16 and Theorem 21, we have the following theorem Theorem 24 Let a, b be any odd positive integer and s, t be non-negative integer Then for non-negative integers n, one has [2] a[b] n 1 s=0 ( 1 s as G n, b(ax + as b = [2] b[a]n 1 Considering a = 1 in the Theorem 24, we obtain as below t=0 ( 1 t bt G n, a(bx + bt a ( 1 s s G n, b(x + s b = s=1 1+ b (1 + [b] n 1 G n, (bx From now on, we obtain another result by applying the addition theorem for the -Genocchi polynomials(theorem 14 Theorem 25 Let a, b be any odd positive integer and s, t be non-negative integer ( n [2] a [a] [b] n 1 G n n, b(ax ( 1 s (n+1 as [s] a s=0 ( n = [2] b [a] n 1 [b] G n, a(bx ( 1 t (n+1 bt [t] n b 3 Some symmetric properties of -Genocchi polynomials In this section, we derive the symmetric results by using definition and theorem of -Genocchi polynomials The results are able to express very well the symmetric property of -Genocchi polynomials By using Definition 11 and after some elementary calculations, we have the following theorem Theorem 31 Let n, m be non-negative integer Then we obtain that ( n m = t=0 ( + m (n x [ x] n G +m 1, (x + y ( m ( + n (n+ 1x [x] m G +n 1, (y

6 14 J Y Kang and C S Ryoo Proof By using Definition 11, we easily see that [2] (u+v ( 1 m m e [x+y+m](u+v = [2] (u+ve [x](u+v Since [x + y] =[x] + x [y], we have ( 1 m m e x [y+m] (u+v e [x]v [2] (u + v ( 1 m m e [x+y+m](u+v = e [x]u [2] (u + v ( 1 m m e x [y+m] (u+v (31 The left-hand side of (31 can be expressed as e [x]v [2] (u + v = ( ( 1 m m e [x+y+m](u+v ( n ( + m (n x G +m 1, (x + y[ x] n u m v n m! n! (32 The right-hand side of (31 can be expressed as follows: e [x]u [2] (u + v = ( m ( 1 m m e x [y+m] (u+v ( m ( + n (+n 1x G +n 1, (y[x] m v n u m n! m! (33 By comparing the coefficients of vn u m in (32 and (33, we assert that the n!m! theorem is right The Theorem 31 that was made by the addition Theorem 14 and the Definition 11 is very useful to find the symmetric identity of -Genocchi polynomials Theorem 32 Let s, t be non-negative integer Then we have l m ( ( l m s t s=0 t=0 ( n = s s=0 ( [x + y] l+m s t (n + s + tg n+s+t 1, (x + y + z (l+m+s 1xy [x + y] n s (l + m + sg l+m+s 1, (z

7 Symmetric property for -Genocchi polynomials and zeta function 15 By applying the symmetric distribution for the -Genocchi polynomials(theorem 15 in Theorem 31, we also get the following theorem Theorem 33 Let, n, m be non-negative integer Then we have m+1 ( 1 m =( 1 n+1 n+1 ( m +1 ( n +1 ( + n(1 + + n +n 1 G +n 1, (x + m(1 + + m (+m 2 G +m 1, 1( x Proof By using the Theorem 15, we get the following euation m ( m ( 1 m ( + n +n 1 G +n 1, (x ( n =( 1 n ( + m (+m 2 G +m 1, 1( x (34 By using (34, we get the following euations ( 1 m (n +1 m+1 n+1 =( 1 n+1 ( m +1 ( n +1 m+1 ( m +1 ( 1 m (m +1 1 n+1 ( n +1 =( 1 n+1 (m +1 ( + n +n 1 G +n 1, (x ( + m (+m 2 G +m 1, 1( x, ( + n +n 1 G +n 1, (x ( + m (+m 2 G +m 1, 1( x (35 (36 Thus, we conclude the following result by applying (35, (36 in (34 ACKNOWLEDGEMENTS This wor was supported by NRF(National Research Foundation of Korea Grant funded by the Korean Government(NRF Fostering Core Leaders of the Future Basic Science Program References [1] Ismail Naci Cangul, Hacer Ozdena, Yilmaz Simse, A new approach to - Genocchi numbers and their interpolation functions, Nonlinear Analysis: Theory, Methods and Applications, 71( 2009,

8 16 J Y Kang and C S Ryoo [2] Min-Soo Kim, Su Hu, On p-adic Hurwitz-type Euler zeta function, J Number Theory, 132(2012, [3] T Kim, Symmetry p-adic invariant integral on Z p for Bernoulli and Euler polynomials, J Difference Eu Appl, 14(2008, [4] C S Ryoo, A numerical computation on the structure of the roots of (h, -extension of Genocchi polynomials, Mathematical and Computer Modelling, 49(2009, [5] C S Ryoo, J Y Kang, On the twisted -Genocchi numbers and polynomials with wea weight α, Applied Mathematical Science (6( , Received: November 1, 2013

Symmetric Properties for Carlitz s Type (h, q)-twisted Tangent Polynomials Using Twisted (h, q)-tangent Zeta Function

Symmetric Properties for Carlitz s Type (h, q)-twisted Tangent Polynomials Using Twisted (h, q)-tangent Zeta Function International Journal of Algebra, Vol 11, 2017, no 6, 255-263 HIKARI Ltd, wwwm-hiaricom https://doiorg/1012988/ija20177728 Symmetric Properties for Carlitz s Type h, -Twisted Tangent Polynomials Using

More information

A Note on the Carlitz s Type Twisted q-tangent. Numbers and Polynomials

A Note on the Carlitz s Type Twisted q-tangent. Numbers and Polynomials Applied Mathematical Sciences, Vol. 12, 2018, no. 15, 731-738 HIKARI Ltd www.m-hikari.com https://doi.org/10.12988/ams.2018.8585 A Note on the Carlitz s Type Twisted q-tangent Numbers and Polynomials Cheon

More information

Advanced Studies in Theoretical Physics Vol. 8, 2014, no. 22, HIKARI Ltd,

Advanced Studies in Theoretical Physics Vol. 8, 2014, no. 22, HIKARI Ltd, Advanced Studies in Theoretical Physics Vol. 8, 204, no. 22, 977-982 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.2988/astp.204.499 Some Identities of Symmetry for the Higher-order Carlitz Bernoulli

More information

Symmetric Properties for the (h, q)-tangent Polynomials

Symmetric Properties for the (h, q)-tangent Polynomials Adv. Studies Theor. Phys., Vol. 8, 04, no. 6, 59-65 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/astp.04.43 Symmetric Properties for the h, q-tangent Polynomials C. S. Ryoo Department of Mathematics

More information

Symmetric Identities for the Generalized Higher-order q-bernoulli Polynomials

Symmetric Identities for the Generalized Higher-order q-bernoulli Polynomials Adv. Studies Theor. Phys., Vol. 8, 204, no. 6, 285-292 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.2988/astp.204.428 Symmetric Identities for the Generalized Higher-order -Bernoulli Polynomials Dae

More information

Symmetric Identities of Generalized (h, q)-euler Polynomials under Third Dihedral Group

Symmetric Identities of Generalized (h, q)-euler Polynomials under Third Dihedral Group Applied Mathematical Sciences, vol. 8, 2014, no. 145, 7207-7212 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49701 Symmetric Identities of Generalized (h, )-Euler Polynomials under

More information

Research Article Multivariate p-adic Fermionic q-integral on Z p and Related Multiple Zeta-Type Functions

Research Article Multivariate p-adic Fermionic q-integral on Z p and Related Multiple Zeta-Type Functions Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2008, Article ID 304539, 13 pages doi:10.1155/2008/304539 Research Article Multivariate p-adic Fermionic -Integral on Z p and Related

More information

Research Article Some Identities of the Frobenius-Euler Polynomials

Research Article Some Identities of the Frobenius-Euler Polynomials Hindawi Publishing Corporation Abstract and Applied Analysis Volume 009, Article ID 639439, 7 pages doi:0.55/009/639439 Research Article Some Identities of the Frobenius-Euler Polynomials Taekyun Kim and

More information

Identities of Symmetry for Generalized Higher-Order q-euler Polynomials under S 3

Identities of Symmetry for Generalized Higher-Order q-euler Polynomials under S 3 Applied Mathematical Sciences, Vol. 8, 204, no. 3, 559-5597 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.2988/ams.204.4755 Identities of Symmetry for Generalized Higher-Order q-euler Polynomials under

More information

Research Article On the Modified q-bernoulli Numbers of Higher Order with Weight

Research Article On the Modified q-bernoulli Numbers of Higher Order with Weight Abstract and Applied Analysis Volume 202, Article ID 948050, 6 pages doi:0.55/202/948050 Research Article On the Modified -Bernoulli Numbers of Higher Order with Weight T. Kim, J. Choi, 2 Y.-H. Kim, 2

More information

A Generalization of Generalized Triangular Fuzzy Sets

A Generalization of Generalized Triangular Fuzzy Sets International Journal of Mathematical Analysis Vol, 207, no 9, 433-443 HIKARI Ltd, wwwm-hikaricom https://doiorg/02988/ijma2077350 A Generalization of Generalized Triangular Fuzzy Sets Chang Il Kim Department

More information

The Greatest Common Divisor of k Positive Integers

The Greatest Common Divisor of k Positive Integers International Mathematical Forum, Vol. 3, 208, no. 5, 25-223 HIKARI Ltd, www.m-hiari.com https://doi.org/0.2988/imf.208.822 The Greatest Common Divisor of Positive Integers Rafael Jaimczu División Matemática,

More information

Serkan Araci, Mehmet Acikgoz, and Aynur Gürsul

Serkan Araci, Mehmet Acikgoz, and Aynur Gürsul Commun. Korean Math. Soc. 28 2013), No. 3, pp. 457 462 http://dx.doi.org/10.4134/ckms.2013.28.3.457 ANALYTIC CONTINUATION OF WEIGHTED q-genocchi NUMBERS AND POLYNOMIALS Serkan Araci, Mehmet Acikgoz, and

More information

On Linear Recursive Sequences with Coefficients in Arithmetic-Geometric Progressions

On Linear Recursive Sequences with Coefficients in Arithmetic-Geometric Progressions Applied Mathematical Sciences, Vol. 9, 015, no. 5, 595-607 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.015.5163 On Linear Recursive Sequences with Coefficients in Arithmetic-Geometric Progressions

More information

Stability of a Functional Equation Related to Quadratic Mappings

Stability of a Functional Equation Related to Quadratic Mappings International Journal of Mathematical Analysis Vol. 11, 017, no., 55-68 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ijma.017.610116 Stability of a Functional Equation Related to Quadratic Mappings

More information

A NOTE ON RECURRENCE FORMULA FOR VALUES OF THE EULER ZETA FUNCTIONS ζ E (2n) AT POSITIVE INTEGERS. 1. Introduction

A NOTE ON RECURRENCE FORMULA FOR VALUES OF THE EULER ZETA FUNCTIONS ζ E (2n) AT POSITIVE INTEGERS. 1. Introduction Bull. Korean Math. Soc. 5 (4), No. 5,. 45 43 htt://dx.doi.org/.434/bkms.4.5.5.45 A NOTE ON RECURRENCE FORMULA FOR VALUES OF THE EULER ZETA FUNCTIONS ζ E (n) AT POSITIVE INTEGERS Hui Young Lee and Cheon

More information

Research Article Fourier Series of the Periodic Bernoulli and Euler Functions

Research Article Fourier Series of the Periodic Bernoulli and Euler Functions Abstract and Applied Analysis, Article ID 85649, 4 pages http://dx.doi.org/.55/24/85649 Research Article Fourier Series of the Periodic Bernoulli and Euler Functions Cheon Seoung Ryoo, Hyuck In Kwon, 2

More information

On the New q-extension of Frobenius-Euler Numbers and Polynomials Arising from Umbral Calculus

On the New q-extension of Frobenius-Euler Numbers and Polynomials Arising from Umbral Calculus Adv. Studies Theor. Phys., Vo. 7, 203, no. 20, 977-99 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/0.2988/astp.203.390 On the New -Extension of Frobenius-Euer Numbers and Poynomias Arising from Umbra

More information

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials Applied Mathematical Sciences, Vol. 8, 2014, no. 35, 1723-1730 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4127 A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating

More information

Diophantine Equations. Elementary Methods

Diophantine Equations. Elementary Methods International Mathematical Forum, Vol. 12, 2017, no. 9, 429-438 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.7223 Diophantine Equations. Elementary Methods Rafael Jakimczuk División Matemática,

More information

On Symmetric Bi-Multipliers of Lattice Implication Algebras

On Symmetric Bi-Multipliers of Lattice Implication Algebras International Mathematical Forum, Vol. 13, 2018, no. 7, 343-350 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2018.8423 On Symmetric Bi-Multipliers of Lattice Implication Algebras Kyung Ho

More information

Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation on a Restricted Domain

Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation on a Restricted Domain Int. Journal of Math. Analysis, Vol. 7, 013, no. 55, 745-75 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.013.394 Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation

More information

On the Solution of the n-dimensional k B Operator

On the Solution of the n-dimensional k B Operator Applied Mathematical Sciences, Vol. 9, 015, no. 10, 469-479 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.1988/ams.015.410815 On the Solution of the n-dimensional B Operator Sudprathai Bupasiri Faculty

More information

Applications of Fourier Series and Zeta Functions to Genocchi Polynomials

Applications of Fourier Series and Zeta Functions to Genocchi Polynomials Appl. Math. Inf. Sci., No. 5, 95-955 (8) 95 Applied Mathematics & Information Sciences An International Journal http://d.doi.org/.8576/amis/58 Applications of Fourier Series Zeta Functions to Genocchi

More information

Some identities involving Changhee polynomials arising from a differential equation 1

Some identities involving Changhee polynomials arising from a differential equation 1 Global Journal of Pure and Applied Mathematics. ISS 973-768 Volume, umber 6 (6), pp. 4857 4866 Research India Publications http://www.ripublication.com/gjpam.htm Some identities involving Changhee polynomials

More information

A Note of the Strong Convergence of the Mann Iteration for Demicontractive Mappings

A Note of the Strong Convergence of the Mann Iteration for Demicontractive Mappings Applied Mathematical Sciences, Vol. 10, 2016, no. 6, 255-261 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.511700 A Note of the Strong Convergence of the Mann Iteration for Demicontractive

More information

arxiv: v1 [math.nt] 13 Jun 2016

arxiv: v1 [math.nt] 13 Jun 2016 arxiv:606.03837v [math.nt] 3 Jun 206 Identities on the k-ary Lyndon words related to a family of zeta functions Irem Kucukoglu,a and Yilmaz Simsek,b a ikucukoglu@akdeniz.edu.tr b ysimsek@akdeniz.edu.tr

More information

New families of special numbers and polynomials arising from applications of p-adic q-integrals

New families of special numbers and polynomials arising from applications of p-adic q-integrals Kim et al. Advances in Difference Equations (2017 2017:207 DOI 10.1186/s13662-017-1273-4 R E S E A R C H Open Access New families of special numbers and polynomials arising from applications of p-adic

More information

A Fixed Point Approach to the Stability of a Quadratic-Additive Type Functional Equation in Non-Archimedean Normed Spaces

A Fixed Point Approach to the Stability of a Quadratic-Additive Type Functional Equation in Non-Archimedean Normed Spaces International Journal of Mathematical Analysis Vol. 9, 015, no. 30, 1477-1487 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.1988/ijma.015.53100 A Fied Point Approach to the Stability of a Quadratic-Additive

More information

2-Semi-Norms and 2*-Semi-Inner Product

2-Semi-Norms and 2*-Semi-Inner Product International Journal of Mathematical Analysis Vol. 8, 01, no. 5, 601-609 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.1988/ima.01.103 -Semi-Norms and *-Semi-Inner Product Samoil Malčesi Centre for

More information

B n (x) zn n! n=0. E n (x) zn n! n=0

B n (x) zn n! n=0. E n (x) zn n! n=0 UDC 517.9 Q.-M. Luo Chongqing Normal Univ., China) q-apostol EULER POLYNOMIALS AND q-alternating SUMS* q-полiноми АПОСТОЛА ЕЙЛЕРА ТА q-знакозмiннi СУМИ We establish the basic properties generating functions

More information

Linearization of Two Dimensional Complex-Linearizable Systems of Second Order Ordinary Differential Equations

Linearization of Two Dimensional Complex-Linearizable Systems of Second Order Ordinary Differential Equations Applied Mathematical Sciences, Vol. 9, 2015, no. 58, 2889-2900 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.4121002 Linearization of Two Dimensional Complex-Linearizable Systems of

More information

A Short Note on Universality of Some Quadratic Forms

A Short Note on Universality of Some Quadratic Forms International Mathematical Forum, Vol. 8, 2013, no. 12, 591-595 HIKARI Ltd, www.m-hikari.com A Short Note on Universality of Some Quadratic Forms Cherng-tiao Perng Department of Mathematics Norfolk State

More information

Basins of Attraction for Optimal Third Order Methods for Multiple Roots

Basins of Attraction for Optimal Third Order Methods for Multiple Roots Applied Mathematical Sciences, Vol., 6, no., 58-59 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ams.6.65 Basins of Attraction for Optimal Third Order Methods for Multiple Roots Young Hee Geum Department

More information

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method International Journal of Mathematical Analysis Vol. 9, 2015, no. 39, 1919-1928 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.54124 Improvements in Newton-Rapshon Method for Nonlinear

More information

A Note on Carlitz s Twisted (h,q)-euler Polynomials under Symmetric Group of Degree Five

A Note on Carlitz s Twisted (h,q)-euler Polynomials under Symmetric Group of Degree Five Gen. Math. Note, Vol. 33, No. 1, March 2016, pp.9-16 ISSN 2219-7184; Copyright c ICSRS Publication, 2016 www.i-cr.org Available free online at http://www.geman.in A Note on Carlitz Twited (h,)-euler Polynomial

More information

An Abundancy Result for the Two Prime Power Case and Results for an Equations of Goormaghtigh

An Abundancy Result for the Two Prime Power Case and Results for an Equations of Goormaghtigh International Mathematical Forum, Vol. 8, 2013, no. 9, 427-432 HIKARI Ltd, www.m-hikari.com An Abundancy Result for the Two Prime Power Case and Results for an Equations of Goormaghtigh Richard F. Ryan

More information

Some Properties Related to the Generalized q-genocchi Numbers and Polynomials with Weak Weight α

Some Properties Related to the Generalized q-genocchi Numbers and Polynomials with Weak Weight α Appied Mathematica Sciences, Vo. 6, 2012, no. 118, 5851-5859 Some Properties Reated to the Generaized q-genocchi Numbers and Poynomias with Weak Weight α J. Y. Kang Department of Mathematics Hannam University,

More information

Fibonacci sequences in groupoids

Fibonacci sequences in groupoids Han et al. Advances in Difference Equations 22, 22:9 http://www.advancesindifferenceequations.com/content/22//9 RESEARCH Open Access Fibonacci sequences in groupoids Jeong Soon Han, Hee Sik Kim 2* and

More information

Classifications of Special Curves in the Three-Dimensional Lie Group

Classifications of Special Curves in the Three-Dimensional Lie Group International Journal of Mathematical Analysis Vol. 10, 2016, no. 11, 503-514 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2016.6230 Classifications of Special Curves in the Three-Dimensional

More information

Certain Generating Functions Involving Generalized Mittag-Leffler Function

Certain Generating Functions Involving Generalized Mittag-Leffler Function International Journal of Mathematical Analysis Vol. 12, 2018, no. 6, 269-276 HIKARI Ltd, www.m-hiari.com https://doi.org/10.12988/ijma.2018.8431 Certain Generating Functions Involving Generalized Mittag-Leffler

More information

A Generalization of p-rings

A Generalization of p-rings International Journal of Algebra, Vol. 9, 2015, no. 8, 395-401 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2015.5848 A Generalization of p-rings Adil Yaqub Department of Mathematics University

More information

On the Deformed Theory of Special Relativity

On the Deformed Theory of Special Relativity Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 6, 275-282 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.61140 On the Deformed Theory of Special Relativity Won Sang Chung 1

More information

ON q-analgue OF THE TWISTED L-FUNCTIONS AND q-twisted BERNOULLI NUMBERS. Yilmaz Simsek

ON q-analgue OF THE TWISTED L-FUNCTIONS AND q-twisted BERNOULLI NUMBERS. Yilmaz Simsek J. Korean Math. Soc. 40 (2003), No. 6, pp. 963 975 ON q-analgue OF THE TWISTED L-FUNCTIONS AND q-twisted BERNOULLI NUMBERS Yilmaz Simsek Abstract. The aim of this work is to construct twisted q-l-series

More information

Generalized Boolean and Boolean-Like Rings

Generalized Boolean and Boolean-Like Rings International Journal of Algebra, Vol. 7, 2013, no. 9, 429-438 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2013.2894 Generalized Boolean and Boolean-Like Rings Hazar Abu Khuzam Department

More information

ACG M and ACG H Functions

ACG M and ACG H Functions International Journal of Mathematical Analysis Vol. 8, 2014, no. 51, 2539-2545 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.12988/ijma.2014.410302 ACG M and ACG H Functions Julius V. Benitez Department

More information

Hyperbolic Functions and. the Heat Balance Integral Method

Hyperbolic Functions and. the Heat Balance Integral Method Nonl. Analysis and Differential Equations, Vol. 1, 2013, no. 1, 23-27 HIKARI Ltd, www.m-hikari.com Hyperbolic Functions and the Heat Balance Integral Method G. Nhawu and G. Tapedzesa Department of Mathematics,

More information

Remarks on Fuglede-Putnam Theorem for Normal Operators Modulo the Hilbert-Schmidt Class

Remarks on Fuglede-Putnam Theorem for Normal Operators Modulo the Hilbert-Schmidt Class International Mathematical Forum, Vol. 9, 2014, no. 29, 1389-1396 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47141 Remarks on Fuglede-Putnam Theorem for Normal Operators Modulo the

More information

Secure Weakly Convex Domination in Graphs

Secure Weakly Convex Domination in Graphs Applied Mathematical Sciences, Vol 9, 2015, no 3, 143-147 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ams2015411992 Secure Weakly Convex Domination in Graphs Rene E Leonida Mathematics Department

More information

Solving Homogeneous Systems with Sub-matrices

Solving Homogeneous Systems with Sub-matrices Pure Mathematical Sciences, Vol 7, 218, no 1, 11-18 HIKARI Ltd, wwwm-hikaricom https://doiorg/112988/pms218843 Solving Homogeneous Systems with Sub-matrices Massoud Malek Mathematics, California State

More information

PERTURBATION ANAYSIS FOR THE MATRIX EQUATION X = I A X 1 A + B X 1 B. Hosoo Lee

PERTURBATION ANAYSIS FOR THE MATRIX EQUATION X = I A X 1 A + B X 1 B. Hosoo Lee Korean J. Math. 22 (214), No. 1, pp. 123 131 http://dx.doi.org/1.11568/jm.214.22.1.123 PERTRBATION ANAYSIS FOR THE MATRIX EQATION X = I A X 1 A + B X 1 B Hosoo Lee Abstract. The purpose of this paper is

More information

International Mathematical Forum, Vol. 9, 2014, no. 36, HIKARI Ltd,

International Mathematical Forum, Vol. 9, 2014, no. 36, HIKARI Ltd, International Mathematical Forum, Vol. 9, 2014, no. 36, 1751-1756 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.411187 Generalized Filters S. Palaniammal Department of Mathematics Thiruvalluvar

More information

k-weyl Fractional Derivative, Integral and Integral Transform

k-weyl Fractional Derivative, Integral and Integral Transform Int. J. Contemp. Math. Sciences, Vol. 8, 213, no. 6, 263-27 HIKARI Ltd, www.m-hiari.com -Weyl Fractional Derivative, Integral and Integral Transform Luis Guillermo Romero 1 and Luciano Leonardo Luque Faculty

More information

Some Properties of a Semi Dynamical System. Generated by von Forester-Losata Type. Partial Equations

Some Properties of a Semi Dynamical System. Generated by von Forester-Losata Type. Partial Equations Int. Journal of Math. Analysis, Vol. 7, 2013, no. 38, 1863-1868 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.3481 Some Properties of a Semi Dynamical System Generated by von Forester-Losata

More information

Double Total Domination in Circulant Graphs 1

Double Total Domination in Circulant Graphs 1 Applied Mathematical Sciences, Vol. 12, 2018, no. 32, 1623-1633 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.811172 Double Total Domination in Circulant Graphs 1 Qin Zhang and Chengye

More information

Boundary Value Problem for Second Order Ordinary Linear Differential Equations with Variable Coefficients

Boundary Value Problem for Second Order Ordinary Linear Differential Equations with Variable Coefficients International Journal of Mathematical Analysis Vol. 9, 2015, no. 3, 111-116 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/ijma.2015.411353 Boundary Value Problem for Second Order Ordinary Linear

More information

Another Look at p-liar s Domination in Graphs

Another Look at p-liar s Domination in Graphs International Journal of Mathematical Analysis Vol 10, 2016, no 5, 213-221 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ijma2016511283 Another Look at p-liar s Domination in Graphs Carlito B Balandra

More information

Secure Weakly Connected Domination in the Join of Graphs

Secure Weakly Connected Domination in the Join of Graphs International Journal of Mathematical Analysis Vol. 9, 2015, no. 14, 697-702 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.519 Secure Weakly Connected Domination in the Join of Graphs

More information

KKM-Type Theorems for Best Proximal Points in Normed Linear Space

KKM-Type Theorems for Best Proximal Points in Normed Linear Space International Journal of Mathematical Analysis Vol. 12, 2018, no. 12, 603-609 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2018.81069 KKM-Type Theorems for Best Proximal Points in Normed

More information

The Shifted Data Problems by Using Transform of Derivatives

The Shifted Data Problems by Using Transform of Derivatives Applied Mathematical Sciences, Vol. 8, 2014, no. 151, 7529-7534 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49784 The Shifted Data Problems by Using Transform of Derivatives Hwajoon

More information

An Improved Hybrid Algorithm to Bisection Method and Newton-Raphson Method

An Improved Hybrid Algorithm to Bisection Method and Newton-Raphson Method Applied Mathematical Sciences, Vol. 11, 2017, no. 56, 2789-2797 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.710302 An Improved Hybrid Algorithm to Bisection Method and Newton-Raphson

More information

HILBERT l-class FIELD TOWERS OF. Hwanyup Jung

HILBERT l-class FIELD TOWERS OF. Hwanyup Jung Korean J. Math. 20 (2012), No. 4, pp. 477 483 http://dx.doi.org/10.11568/kjm.2012.20.4.477 HILBERT l-class FIELD TOWERS OF IMAGINARY l-cyclic FUNCTION FIELDS Hwanyup Jung Abstract. In this paper we study

More information

An Alternative Definition for the k-riemann-liouville Fractional Derivative

An Alternative Definition for the k-riemann-liouville Fractional Derivative Applied Mathematical Sciences, Vol. 9, 2015, no. 10, 481-491 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.12988/ams.2015.411893 An Alternative Definition for the -Riemann-Liouville Fractional Derivative

More information

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces Applied Mathematical Sciences, Vol. 11, 2017, no. 12, 549-560 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.718 The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive

More information

Finite Difference Method of Fractional Parabolic Partial Differential Equations with Variable Coefficients

Finite Difference Method of Fractional Parabolic Partial Differential Equations with Variable Coefficients International Journal of Contemporary Mathematical Sciences Vol. 9, 014, no. 16, 767-776 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.1988/ijcms.014.411118 Finite Difference Method of Fractional Parabolic

More information

On Permutation Polynomials over Local Finite Commutative Rings

On Permutation Polynomials over Local Finite Commutative Rings International Journal of Algebra, Vol. 12, 2018, no. 7, 285-295 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ija.2018.8935 On Permutation Polynomials over Local Finite Commutative Rings Javier

More information

Research Article Approximation of Analytic Functions by Bessel s Functions of Fractional Order

Research Article Approximation of Analytic Functions by Bessel s Functions of Fractional Order Abstract and Applied Analysis Volume 20, Article ID 923269, 3 pages doi:0.55/20/923269 Research Article Approximation of Analytic Functions by Bessel s Functions of Fractional Order Soon-Mo Jung Mathematics

More information

Sums of Tribonacci and Tribonacci-Lucas Numbers

Sums of Tribonacci and Tribonacci-Lucas Numbers International Journal of Mathematical Analysis Vol. 1, 018, no. 1, 19-4 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ijma.018.71153 Sums of Tribonacci Tribonacci-Lucas Numbers Robert Frontczak

More information

The Improved Arithmetic-Geometric Mean Inequalities for Matrix Norms

The Improved Arithmetic-Geometric Mean Inequalities for Matrix Norms Applied Mathematical Sciences, Vol 7, 03, no 9, 439-446 HIKARI Ltd, wwwm-hikaricom The Improved Arithmetic-Geometric Mean Inequalities for Matrix Norms I Halil Gumus Adıyaman University, Faculty of Arts

More information

Novel Approach to Calculation of Box Dimension of Fractal Functions

Novel Approach to Calculation of Box Dimension of Fractal Functions Applied Mathematical Sciences, vol. 8, 2014, no. 144, 7175-7181 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49718 Novel Approach to Calculation of Box Dimension of Fractal Functions

More information

On Two New Classes of Fibonacci and Lucas Reciprocal Sums with Subscripts in Arithmetic Progression

On Two New Classes of Fibonacci and Lucas Reciprocal Sums with Subscripts in Arithmetic Progression Applied Mathematical Sciences Vol. 207 no. 25 2-29 HIKARI Ltd www.m-hikari.com https://doi.org/0.2988/ams.207.7392 On Two New Classes of Fibonacci Lucas Reciprocal Sums with Subscripts in Arithmetic Progression

More information

Diameter of the Zero Divisor Graph of Semiring of Matrices over Boolean Semiring

Diameter of the Zero Divisor Graph of Semiring of Matrices over Boolean Semiring International Mathematical Forum, Vol. 9, 2014, no. 29, 1369-1375 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47131 Diameter of the Zero Divisor Graph of Semiring of Matrices over

More information

REPRESENTATION OF A POSITIVE INTEGER BY A SUM OF LARGE FOUR SQUARES. Byeong Moon Kim. 1. Introduction

REPRESENTATION OF A POSITIVE INTEGER BY A SUM OF LARGE FOUR SQUARES. Byeong Moon Kim. 1. Introduction Korean J. Math. 24 (2016), No. 1, pp. 71 79 http://dx.doi.org/10.11568/kjm.2016.24.1.71 REPRESENTATION OF A POSITIVE INTEGER BY A SUM OF LARGE FOUR SQUARES Byeong Moon Kim Abstract. In this paper, we determine

More information

Sharp Bounds for Seiffert Mean in Terms of Arithmetic and Geometric Means 1

Sharp Bounds for Seiffert Mean in Terms of Arithmetic and Geometric Means 1 Int. Journal of Math. Analysis, Vol. 7, 01, no. 6, 1765-177 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.01.49 Sharp Bounds for Seiffert Mean in Terms of Arithmetic and Geometric Means 1

More information

On Some Identities and Generating Functions

On Some Identities and Generating Functions Int. Journal of Math. Analysis, Vol. 7, 2013, no. 38, 1877-1884 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.35131 On Some Identities and Generating Functions for k- Pell Numbers Paula

More information

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line?

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line? 1 How many natural numbers are between 1.5 and 4.5 on the number line? 2 How many composite numbers are between 7 and 13 on the number line? 3 How many prime numbers are between 7 and 20 on the number

More information

Restrained Weakly Connected Independent Domination in the Corona and Composition of Graphs

Restrained Weakly Connected Independent Domination in the Corona and Composition of Graphs Applied Mathematical Sciences, Vol. 9, 2015, no. 20, 973-978 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.4121046 Restrained Weakly Connected Independent Domination in the Corona and

More information

Bounds Improvement for Neuman-Sándor Mean Using Arithmetic, Quadratic and Contraharmonic Means 1

Bounds Improvement for Neuman-Sándor Mean Using Arithmetic, Quadratic and Contraharmonic Means 1 International Mathematical Forum, Vol. 8, 2013, no. 30, 1477-1485 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2013.36125 Bounds Improvement for Neuman-Sándor Mean Using Arithmetic, Quadratic

More information

The Representation of Energy Equation by Laplace Transform

The Representation of Energy Equation by Laplace Transform Int. Journal of Math. Analysis, Vol. 8, 24, no. 22, 93-97 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ijma.24.442 The Representation of Energy Equation by Laplace Transform Taehee Lee and Hwajoon

More information

A Note on Multiplicity Weight of Nodes of Two Point Taylor Expansion

A Note on Multiplicity Weight of Nodes of Two Point Taylor Expansion Applied Mathematical Sciences, Vol, 207, no 6, 307-3032 HIKARI Ltd, wwwm-hikaricom https://doiorg/02988/ams2077302 A Note on Multiplicity Weight of Nodes of Two Point Taylor Expansion Koichiro Shimada

More information

Common Fixed Point Theorem for Compatible. Mapping on Cone Banach Space

Common Fixed Point Theorem for Compatible. Mapping on Cone Banach Space International Journal of Mathematical Analysis Vol. 8, 2014, no. 35, 1697-1706 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.46166 Common Fixed Point Theorem for Compatible Mapping

More information

Z. Omar. Department of Mathematics School of Quantitative Sciences College of Art and Sciences Univeristi Utara Malaysia, Malaysia. Ra ft.

Z. Omar. Department of Mathematics School of Quantitative Sciences College of Art and Sciences Univeristi Utara Malaysia, Malaysia. Ra ft. International Journal of Mathematical Analysis Vol. 9, 015, no. 46, 57-7 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.015.57181 Developing a Single Step Hybrid Block Method with Generalized

More information

The Asymptotic Expansion of a Generalised Mathieu Series

The Asymptotic Expansion of a Generalised Mathieu Series Applied Mathematical Sciences, Vol. 7, 013, no. 15, 609-616 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.013.3949 The Asymptotic Expansion of a Generalised Mathieu Series R. B. Paris School

More information

A Numerical-Computational Technique for Solving. Transformed Cauchy-Euler Equidimensional. Equations of Homogeneous Type

A Numerical-Computational Technique for Solving. Transformed Cauchy-Euler Equidimensional. Equations of Homogeneous Type Advanced Studies in Theoretical Physics Vol. 9, 015, no., 85-9 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/astp.015.41160 A Numerical-Computational Technique for Solving Transformed Cauchy-Euler

More information

On the Power of Standard Polynomial to M a,b (E)

On the Power of Standard Polynomial to M a,b (E) International Journal of Algebra, Vol. 10, 2016, no. 4, 171-177 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2016.6214 On the Power of Standard Polynomial to M a,b (E) Fernanda G. de Paula

More information

Alternate Locations of Equilibrium Points and Poles in Complex Rational Differential Equations

Alternate Locations of Equilibrium Points and Poles in Complex Rational Differential Equations International Mathematical Forum, Vol. 9, 2014, no. 35, 1725-1739 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.410170 Alternate Locations of Equilibrium Points and Poles in Complex

More information

On Numerical Solutions of Systems of. Ordinary Differential Equations. by Numerical-Analytical Method

On Numerical Solutions of Systems of. Ordinary Differential Equations. by Numerical-Analytical Method Applied Mathematical Sciences, Vol. 8, 2014, no. 164, 8199-8207 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.12988/ams.2014.410807 On Numerical Solutions of Systems of Ordinary Differential Equations

More information

On a Boundary-Value Problem for Third Order Operator-Differential Equations on a Finite Interval

On a Boundary-Value Problem for Third Order Operator-Differential Equations on a Finite Interval Applied Mathematical Sciences, Vol. 1, 216, no. 11, 543-548 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.216.512743 On a Boundary-Value Problem for Third Order Operator-Differential Equations

More information

Double Contraction in S-Metric Spaces

Double Contraction in S-Metric Spaces International Journal of Mathematical Analysis Vol. 9, 2015, no. 3, 117-125 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.1135 Double Contraction in S-Metric Spaces J. Mojaradi Afra

More information

Fixed Point Theorems for Modular Contraction Mappings on Modulared Spaces

Fixed Point Theorems for Modular Contraction Mappings on Modulared Spaces Int. Journal of Math. Analysis, Vol. 7, 2013, no. 20, 965-972 HIKARI Ltd, www.m-hikari.com Fixed Point Theorems for Modular Contraction Mappings on Modulared Spaces Mariatul Kiftiah Dept. of Math., Tanjungpura

More information

Strong Convergence of the Mann Iteration for Demicontractive Mappings

Strong Convergence of the Mann Iteration for Demicontractive Mappings Applied Mathematical Sciences, Vol. 9, 015, no. 4, 061-068 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.015.5166 Strong Convergence of the Mann Iteration for Demicontractive Mappings Ştefan

More information

Qualitative Theory of Differential Equations and Dynamics of Quadratic Rational Functions

Qualitative Theory of Differential Equations and Dynamics of Quadratic Rational Functions Nonl. Analysis and Differential Equations, Vol. 2, 2014, no. 1, 45-59 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2014.3819 Qualitative Theory of Differential Equations and Dynamics of

More information

On Nonlinear Methods for Stiff and Singular First Order Initial Value Problems

On Nonlinear Methods for Stiff and Singular First Order Initial Value Problems Nonlinear Analysis and Differential Equations, Vol. 6, 08, no., 5-64 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/nade.08.8 On Nonlinear Methods for Stiff and Singular First Order Initial Value Problems

More information

Contemporary Engineering Sciences, Vol. 11, 2018, no. 48, HIKARI Ltd,

Contemporary Engineering Sciences, Vol. 11, 2018, no. 48, HIKARI Ltd, Contemporary Engineering Sciences, Vol. 11, 2018, no. 48, 2349-2356 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.85243 Radially Symmetric Solutions of a Non-Linear Problem with Neumann

More information

On a 3-Uniform Path-Hypergraph on 5 Vertices

On a 3-Uniform Path-Hypergraph on 5 Vertices Applied Mathematical Sciences, Vol. 10, 2016, no. 30, 1489-1500 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.512742 On a 3-Uniform Path-Hypergraph on 5 Vertices Paola Bonacini Department

More information

Generalized Extended Whittaker Function and Its Properties

Generalized Extended Whittaker Function and Its Properties Applied Mathematical Sciences, Vol. 9, 5, no. 3, 659-654 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ams.5.58555 Generalized Extended Whittaker Function and Its Properties Junesang Choi Department

More information

Fuzzy Sequences in Metric Spaces

Fuzzy Sequences in Metric Spaces Int. Journal of Math. Analysis, Vol. 8, 2014, no. 15, 699-706 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.4262 Fuzzy Sequences in Metric Spaces M. Muthukumari Research scholar, V.O.C.

More information

Unit Group of Z 2 D 10

Unit Group of Z 2 D 10 International Journal of Algebra, Vol. 9, 2015, no. 4, 179-183 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2015.5420 Unit Group of Z 2 D 10 Parvesh Kumari Department of Mathematics Indian

More information

Second Hankel Determinant Problem for a Certain Subclass of Univalent Functions

Second Hankel Determinant Problem for a Certain Subclass of Univalent Functions International Journal of Mathematical Analysis Vol. 9, 05, no. 0, 493-498 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ijma.05.55 Second Hankel Determinant Problem for a Certain Subclass of Univalent

More information

A Generalized Fermat Equation with an Emphasis on Non-Primitive Solutions

A Generalized Fermat Equation with an Emphasis on Non-Primitive Solutions International Mathematical Forum, Vol. 12, 2017, no. 17, 835-840 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.78701 A Generalized Fermat Equation with an Emphasis on Non-Primitive Solutions

More information