Finite Difference Method of Fractional Parabolic Partial Differential Equations with Variable Coefficients

Size: px
Start display at page:

Download "Finite Difference Method of Fractional Parabolic Partial Differential Equations with Variable Coefficients"

Transcription

1 International Journal of Contemporary Mathematical Sciences Vol. 9, 014, no. 16, HIKARI Ltd, Finite Difference Method of Fractional Parabolic Partial Differential Equations with Variable Coefficients Ibrahim Karatay and Nurdane Kale Department of Mathematics, Fatih University Hadimoy Campus, Hadimoy road 34500, Buyucemece, Istanbul, Turey Copyright c 014 Ibrahim Karatay and Nurdane Kale. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original wor is properly cited. Abstract In this study, we consider the fractional parabolic partial differential equations that variable coefficients with the Caputo fractional derivative. We constructed a difference scheme based on Cran- Nicholson method. And stability of this difference scheme is proved conditionally. Mathematics Subject Classification: 65N06, 65N1, 65M1 Keywords: Difference scheme, Stability, Caputo fractional derivative 1 Introduction In this study, we propose a Cran-Nicholson type of difference scheme and we see that under some conditions the difference scheme is stable for the following time fractional partial differential problem that variable coefficients; α ux,t = a x ux,t t α x c x ux, t fx, t, 0 < x < 1, 0 < t < 1, ux, 0 = rx, 0 x 1, u0, t = 0, u1, t = 0, 0 t 1. b x ux,t x 1

2 768 Ibrahim Karatay and Nurdane Kale α ux, t 1 = t α Γ1 α where Γ. is the Gamma function. t 0 u t x, τ dτ, 0 < α < 1, t τ α We can obtain some ind of subproblems from this problem which general type. One can see that if bx = 0 and cx = 0 then the problem transforms to time fractional diffusion problem that variable coefficient, if we choose bx = 0 and cx > 0 then the problem will be a time-fractional cable problem that variable coefficient when opposite chosen which means cx = 0 and bx > 0 the problem is called fractional advection dispersion problem that variable coefficient. Discretization of the Problem For some positive integers M and N, the grid sizes in space and time for the finite difference algorithm are defined by h = 1/M and τ = 1/N, respectively. The grid points in the space interval [0, 1] are the numbers x j = jh, j = 0, 1,,..., M, and the grid points in the time interval [0, 1] are labeled t = τ, = 0, 1,,..., N. The values of the functions u and f at the grid points are denoted u j = ux j, t and fj = fx j, t, respectively. Let ux, t, u t x, t and u tt x, t are continuous on [0, 1]. A discrete approximation to the fractional derivative α ux,t at x t α j, t 1 can be obtained by the following approximation[7]: [ α ux j, t 1 = w t α 1 u Oτ α. ] w m1 w m u m w u 0 u1 j u j 1 α Where = 1 1 and w Γ α τ α j = j 1/ 1 α j 1/ 1 α In addition for = 0 there is no these terms w 1 u and w u 0. On the other hand, we have also approximations for second and first derivative at x j, t 1. [ ux j, t 1 = 1 u 1 j1 ] u1 j u 1 j u j1 u j u j Oh. 4 x h h 3 ux j, t 1 x = 1 [ u 1 j1 ] u1 j u j1 u j h h 5

3 Matrix stability 769 Using these approximations 3, 4 and 5 into 1, we obtain the following difference scheme for 1 which is accurate of order Oτ α h ; [ w 1 u j [ ax j ] w m1 w m u m j w u 0 j u1 j u j 1 α ] u 1 j1 u1 j u 1 j u j1 u j u j bx h h j cx j u1 j u j = fx j, t τ, 0 N 1, 1 j M 1, u 0 j = rx j, 0 j M, u 0 = 0, u M = 0, 0 N. u 1 j1 u1 j u j1 u j 4h 4h ax j u j1 ax j cx j 1 α h ax j bx j = fx j, t τ ax j u 1 u 1 w 1 u j j j1 u j ax j bx j u 1 j, 0 N 1, 1 j M 1, ax j cx j 1 α h u j w m1 w m u m j w u 0 j u 0 j = rx j, 0 j M, u 0 = 0, u M = 0, 0 N. 6 3 Matrix Stability of the Difference Scheme And we consructed this difference scheme from 6 ax j bx j ax j bx j u 1 j u j ax j cx j 1 α h 1 α ax j w 1 u j w m1 w m u m j w u 0 j cx j h u 1 j u j ax j ax j u 1 j1 u j1 = fx j, t τ, 0 N 1, 1 j M 1, u 0 j = rx j, 0 j M, u 0 = 0, u M = 0, 0 N. 7

4 770 Ibrahim Karatay and Nurdane Kale The difference scheme above 7 can be written in matrix form, AU 1 = BU 0 ϕ 0, = 0 AU 1 = BU w 1 U w m w m1 U m w U 0 ϕ, 1 N 1 Uj 0 = rx j, 0 j M, U0 = 0, UM = 0, 0 N. where ϕ = [ϕ 1, ϕ, ϕ 3,..., ϕ M ]T, ϕ 0 j = rx j, ϕ j = fx j, t 1/, 1 N, 1 j M, and U = [ U1, U, U3,..., UM] T.Here, A and B are 3-diagonal M 1 M 1 matrices of the form : p ax j 1 α A = B = ax j bx j p 1 α ax j where p = ax j cx j h p ax j 1 α ax j bx j 1 α p ax j ax j ax j bx j p 1 α ax j bx j ax j ax j 1 α p { M } We denote A = A = max a jm, where A = [a jm ] M M. 1 j M Lemma3.1 If ax j cx j > 0, ax j 1 α h bx j > h ax j > 0, bx j > 0 and cx j > 0,then A B 1. Proof. Therefore, A B A 1 B { a jj M = min 1 j M ax j cx j 1 α h ax j cx j 1 α h cx j 1 α cx j 1 α 1. { ax j { ax j m j, bx j a jm } B ax j bx j ax j } } Lemma3. If ax j cx j w 1 α h 1 > 0, ax j > h, ax bx j j > 0, bx j > 0 and cx j > 0 then A B w 1 I A w 1 1

5 Matrix stability 771 Proof. A B w 1 I w1 A A B w1 I w1 A 1 cx j w 1 α 1 cx j 1 α w 1 cx j 1 α Theorem3.1 The difference scheme 8 is stable. Proof. To prove the conditional stability of 8, let Uj and Vj be the exact and approximate solution of 8 with initial value Uj 0 and Vj 0 respectively. We denote the corresponding error by ε j = Uj Vj and ε = [ε 1, ε,..., ε M ]t where 0 j M, 0 N. Then ε satisfies if = 0 if > 0 Aε 1 = Bε w 1 ε Aε 1 = Bε 0 w m w m1 ε m w ε 0. Let us prove ε ε 0, = 0, 1,,... by induction. In fact, if = 0 ε 1 = A Bε 0 from that ε 1 = A Bε 0 A B ε 0. Since A B 1, from the Lemma 1, we have ε 1 ε 0. If = 1, then we have From the last equation, we obtain ε = A B w 1 Iε 1 w 1 A ε 0. ε = A B w 1 Iε 1 w 1 A ε 0 A B w 1 I ε 1 w1 A ε A B w 1 I ε w1 A ε { A B w 1 I w1 A } ε. If the condition above is satisfied, then ε ε 0 is obtained. Now, assume

6 77 Ibrahim Karatay and Nurdane Kale ε s ε 0 for all s, we will prove it is also true for s = 1. ε 1 = A Bε w 1 ε w m w m1 ε m w ε 0 A B w 1 I ε w m w m1 A ε m w A ε A B w 1 I ε 0 w A ε w m w m1 A ε A B w 1 I ε {w w... w 1 w w } A ε A B w 1 I w1 A ε ε. Therefore, under the condition ax j cx j w 1 α h 1 > 0, ax j > h, ax bx j j > 0, bx j > 0 and cx j > 0, the stability inequality is obtained. 4 Convergence Of The Difference Scheme Theorem4.1 The proposed scheme 8 is convergent and the following estimate holds: e Zατ α h, with the condition ax j cx j w 1 α h 1 > 0, ax j > h, ax bx j j > 0, bx j > 0 and cx j > 0. Here Zα does not depend on τ and h. Proof. Let R = [cτ α h,..., cτ α h ] T M set w 0 = 1. Since e j = u j Uj, notice that e 0 = 0. Firstly, we prove that e 1 wn for all n by induction. We have the following error equation when = 0. e 1 = A Be 0 A R = A R e 1 = A R A w 0. Similarly, for = we have the error equation e = A B w 1 Ie 1 w 1 A e 0 A R If we tae the norm of this equality, we obtain e = A B w 1 I e 1 A R [ A B w 1 I A w 1 ].w 1 w 1.

7 Matrix stability 773 Assume the inequality e s ws is true for all s. Now, we will prove that it is also true for s = 1. We have the following error equation e 1 = A Be w 1 e w m w m1 e m w e 0 R e 1 A B w 1 I e A w m w m1 e m A R A B w 1 I w A w m w m1 w A B w 1 I w A w m w m1 w m A w w A w w A B w 1 I A w m w m1 A w w A B w 1 I A w 1 w w Since, lim α = α 1 1 α 1 α there exists constant C > 0 such that e 1 w = α α w = Γ α C τ α h 1 α Zα τ α h, α τ α α Γ α 1 1 α 1 1 α where Zα = C Γ α. So, corresponding difference scheme is convergent under the 1 α condition.

8 774 Ibrahim Karatay and Nurdane Kale 5 Numerical Example Consider this problem, α ut,x t α t α = x ut,x x sinx ut,x x x ut, x 1 x sinx [ Γ3 α t 1 x sinxx cosx x x cosx sin x ], 0 < x < 1, 0 < t < 1, u0, x = 0, 0 x 1, ut, 0 = 0, ut, 1 = 0, 0 t 1. Exact solution of this problem is ut, x = t 1 x sinx. The errors for some M and N are given in figure 1. The errors when solving this problem are listed in the table1 for various values of time andspace nodes. The errors in the table 1 are calculated by the formula max ut, x n Un. 0 n M 0 N Figure 1: The errors for some values of M and N when t = 1.

9 Matrix stability 775 Table 1: The errors for some values of M, N and α N M α = 0.3 α = 0.5 α = 0.8 Errorα, τ Err. rate Errorα, τ Err. rate Errorα, τ Err. rate Conclusion In this wor, Oτ α h order approximation for the Caputo fractional derivative based on the Cran-Nicholson difference scheme was successfully applied to solve the fractional parabolic partial differential equations with variable coefficients. It is proven that the time-fractional Cran-Nicholson difference scheme is conditionally stable. Numerical results are agreement with the theoretical results. References [1] A. Ashyralyev and Z. Cair, On the numerical solution of fractional parabolic partial differential equations with the Dirichlet condition, Discrete Dynamics in Nature and Society Volume 01 01, Article ID , 15 pages, [] D. A. Benson, S. Wheatcraft, M. M. Meerschaert, Application of a fractional advection dispersion equation, Water Resour. Res., , [3] Z. Cair, Stability of Difference Schemes for Fractional Parabolic PDE with the Dirichlet-Neumann Conditions, Volume 01 01, Article ID , 17 pages. [4] C. Chen, F. Liu, I. Turner, V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, Journal of Computational Physics, vol , [5] Z. Deng, V.P. Singh, L. Bengtsson, Numerical solution of fractional advection-dispersion equation, J. Hydraulic Eng [6] I. Karatay, S. R. Bayramoglu, A. Sahin, Implicit difference approximation for the time fractional heat equation with the nonlocal con-

10 776 Ibrahim Karatay and Nurdane Kale dition, Applied Numerical Mathematics , [7] I. Karatay, N. Kale, S. R. Bayramoğlu, A new difference scheme for time fractional heat equations based on the Cran-Nicholson method, , [8] I. Karatay, S. R. Bayramoglu. A Characteristic Difference Scheme for Time-Fractional Heat Equations Based on the Cran-Nicholson Difference Schemes, Abstract and Applied Analysis, 01, 11 pages, Article ID [9] X. Li, Xianhong Han, Xuanping Wang, Numerical modeling of viscoelastic flows using equal low-order finite elements, Comput. Methods Appl. Mech. Engrg., , [10] X. Li, M. Xu, X. Jiang, Homotopy perturbation method to time-fractional diffusion equation with a moving boundary, Appl. Math. Comput., , [11] V. E. Lynch, B. A. Carreras, D. del-castillo-negrete, K. M. Ferreira- Mejias, H. R. Hics, Numerical methods for the solution of partial differential equations of fractional order, J. Comput. Phys , [1] J. A. T. Machado, Discrete-time fractional-order controllers, Fractional Calculus Applied Analysis, , [13] I. Podlubny, Fractional Differential Equations, Academic Press, New Yor, [14] M. Raberto, E. Scalas, F. Mainardi, Waiting-times returns in high frequency financial data: an empirical study,physica A, , [15] L. Su, W. Wang, Z. Yang, Finite difference approximations for the fractional advection diffusion equation, Physics Letters A, , [16] C. Tadjeran, M. M. Meerschaert, H. -P. Scheffler, A Secondorder Accurate Numerical Approximation for the Fractional Diffusion Equation, Journal of Computational Physics, , Received: November 1, 014; Published: December 30, 014

Numerical study of time-fractional hyperbolic partial differential equations

Numerical study of time-fractional hyperbolic partial differential equations Available online at wwwisr-publicationscom/jmcs J Math Computer Sci, 7 7, 53 65 Research Article Journal Homepage: wwwtjmcscom - wwwisr-publicationscom/jmcs Numerical study of time-fractional hyperbolic

More information

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation Iranian Journal of Mathematical Sciences and Informatics Vol., No. 2 (206), pp 7-86 DOI: 0.7508/ijmsi.206.02.005 An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion

More information

On the Solution of the n-dimensional k B Operator

On the Solution of the n-dimensional k B Operator Applied Mathematical Sciences, Vol. 9, 015, no. 10, 469-479 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.1988/ams.015.410815 On the Solution of the n-dimensional B Operator Sudprathai Bupasiri Faculty

More information

An Efficient Numerical Method for Solving. the Fractional Diffusion Equation

An Efficient Numerical Method for Solving. the Fractional Diffusion Equation Journal of Applied Mathematics & Bioinformatics, vol.1, no.2, 2011, 1-12 ISSN: 1792-6602 (print), 1792-6939 (online) International Scientific Press, 2011 An Efficient Numerical Method for Solving the Fractional

More information

A Fast O(N log N) Finite Difference Method for the One-Dimensional Space-Fractional Diffusion Equation

A Fast O(N log N) Finite Difference Method for the One-Dimensional Space-Fractional Diffusion Equation Mathematics 2015, 3, 1032-1044; doi:103390/math3041032 OPEN ACCESS mathematics ISSN 2227-7390 wwwmdpicom/journal/mathematics Article A Fast O(N log N) Finite Difference Method for the One-Dimensional Space-Fractional

More information

Poincaré`s Map in a Van der Pol Equation

Poincaré`s Map in a Van der Pol Equation International Journal of Mathematical Analysis Vol. 8, 014, no. 59, 939-943 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.014.411338 Poincaré`s Map in a Van der Pol Equation Eduardo-Luis

More information

HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION. 1. Introduction

HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION. 1. Introduction International Journal of Analysis and Applications ISSN 229-8639 Volume 0, Number (206), 9-6 http://www.etamaths.com HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION MOUNTASSIR

More information

Fast permutation preconditioning for fractional diffusion equations

Fast permutation preconditioning for fractional diffusion equations DOI.86/s464-6-766-4 RESEARCH Open Access Fast permutation preconditioning for fractional diffusion equations Sheng Feng Wang *, Ting Zhu Huang, Xian Ming Gu and Wei Hua Luo *Correspondence: yihe@63.com

More information

ON THE NUMERICAL SOLUTION FOR THE FRACTIONAL WAVE EQUATION USING LEGENDRE PSEUDOSPECTRAL METHOD

ON THE NUMERICAL SOLUTION FOR THE FRACTIONAL WAVE EQUATION USING LEGENDRE PSEUDOSPECTRAL METHOD International Journal of Pure and Applied Mathematics Volume 84 No. 4 2013, 307-319 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v84i4.1

More information

Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation on a Restricted Domain

Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation on a Restricted Domain Int. Journal of Math. Analysis, Vol. 7, 013, no. 55, 745-75 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.013.394 Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation

More information

Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions

Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions Sudsutad and Tariboon Advances in Difference Equations 212, 212:93 http://www.advancesindifferenceequations.com/content/212/1/93 R E S E A R C H Open Access Boundary value problems for fractional differential

More information

HOMOTOPY PERTURBATION METHOD TO FRACTIONAL BIOLOGICAL POPULATION EQUATION. 1. Introduction

HOMOTOPY PERTURBATION METHOD TO FRACTIONAL BIOLOGICAL POPULATION EQUATION. 1. Introduction Fractional Differential Calculus Volume 1, Number 1 (211), 117 124 HOMOTOPY PERTURBATION METHOD TO FRACTIONAL BIOLOGICAL POPULATION EQUATION YANQIN LIU, ZHAOLI LI AND YUEYUN ZHANG Abstract In this paper,

More information

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components Applied Mathematics Volume 202, Article ID 689820, 3 pages doi:0.55/202/689820 Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

More information

Contemporary Engineering Sciences, Vol. 11, 2018, no. 48, HIKARI Ltd,

Contemporary Engineering Sciences, Vol. 11, 2018, no. 48, HIKARI Ltd, Contemporary Engineering Sciences, Vol. 11, 2018, no. 48, 2349-2356 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.85243 Radially Symmetric Solutions of a Non-Linear Problem with Neumann

More information

An Alternative Definition for the k-riemann-liouville Fractional Derivative

An Alternative Definition for the k-riemann-liouville Fractional Derivative Applied Mathematical Sciences, Vol. 9, 2015, no. 10, 481-491 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.12988/ams.2015.411893 An Alternative Definition for the -Riemann-Liouville Fractional Derivative

More information

Sharp Bounds for Seiffert Mean in Terms of Arithmetic and Geometric Means 1

Sharp Bounds for Seiffert Mean in Terms of Arithmetic and Geometric Means 1 Int. Journal of Math. Analysis, Vol. 7, 01, no. 6, 1765-177 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.01.49 Sharp Bounds for Seiffert Mean in Terms of Arithmetic and Geometric Means 1

More information

Nonexistence of Limit Cycles in Rayleigh System

Nonexistence of Limit Cycles in Rayleigh System International Journal of Mathematical Analysis Vol. 8, 014, no. 49, 47-431 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.014.4883 Nonexistence of Limit Cycles in Rayleigh System Sandro-Jose

More information

On Symmetric Property for q-genocchi Polynomials and Zeta Function

On Symmetric Property for q-genocchi Polynomials and Zeta Function Int Journal of Math Analysis, Vol 8, 2014, no 1, 9-16 HIKARI Ltd, wwwm-hiaricom http://dxdoiorg/1012988/ijma2014311275 On Symmetric Property for -Genocchi Polynomials and Zeta Function J Y Kang Department

More information

Maximum principle for the fractional diusion equations and its applications

Maximum principle for the fractional diusion equations and its applications Maximum principle for the fractional diusion equations and its applications Yuri Luchko Department of Mathematics, Physics, and Chemistry Beuth Technical University of Applied Sciences Berlin Berlin, Germany

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

The Shifted Data Problems by Using Transform of Derivatives

The Shifted Data Problems by Using Transform of Derivatives Applied Mathematical Sciences, Vol. 8, 2014, no. 151, 7529-7534 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49784 The Shifted Data Problems by Using Transform of Derivatives Hwajoon

More information

Numerical Solution of Space-Time Fractional Convection-Diffusion Equations with Variable Coefficients Using Haar Wavelets

Numerical Solution of Space-Time Fractional Convection-Diffusion Equations with Variable Coefficients Using Haar Wavelets Copyright 22 Tech Science Press CMES, vol.89, no.6, pp.48-495, 22 Numerical Solution of Space-Time Fractional Convection-Diffusion Equations with Variable Coefficients Using Haar Wavelets Jinxia Wei, Yiming

More information

k-weyl Fractional Derivative, Integral and Integral Transform

k-weyl Fractional Derivative, Integral and Integral Transform Int. J. Contemp. Math. Sciences, Vol. 8, 213, no. 6, 263-27 HIKARI Ltd, www.m-hiari.com -Weyl Fractional Derivative, Integral and Integral Transform Luis Guillermo Romero 1 and Luciano Leonardo Luque Faculty

More information

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials Applied Mathematical Sciences, Vol. 8, 2014, no. 35, 1723-1730 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4127 A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating

More information

DETERMINATION OF AN UNKNOWN SOURCE TERM IN A SPACE-TIME FRACTIONAL DIFFUSION EQUATION

DETERMINATION OF AN UNKNOWN SOURCE TERM IN A SPACE-TIME FRACTIONAL DIFFUSION EQUATION Journal of Fractional Calculus and Applications, Vol. 6(1) Jan. 2015, pp. 83-90. ISSN: 2090-5858. http://fcag-egypt.com/journals/jfca/ DETERMINATION OF AN UNKNOWN SOURCE TERM IN A SPACE-TIME FRACTIONAL

More information

Remarks on the Maximum Principle for Parabolic-Type PDEs

Remarks on the Maximum Principle for Parabolic-Type PDEs International Mathematical Forum, Vol. 11, 2016, no. 24, 1185-1190 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2016.69125 Remarks on the Maximum Principle for Parabolic-Type PDEs Humberto

More information

2-Semi-Norms and 2*-Semi-Inner Product

2-Semi-Norms and 2*-Semi-Inner Product International Journal of Mathematical Analysis Vol. 8, 01, no. 5, 601-609 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.1988/ima.01.103 -Semi-Norms and *-Semi-Inner Product Samoil Malčesi Centre for

More information

Splitting methods with boundary corrections

Splitting methods with boundary corrections Splitting methods with boundary corrections Alexander Ostermann University of Innsbruck, Austria Joint work with Lukas Einkemmer Verona, April/May 2017 Strang s paper, SIAM J. Numer. Anal., 1968 S (5)

More information

CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION EQUATION

CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION EQUATION Journal of Fractional Calculus and Applications, Vol. 2. Jan. 2012, No. 2, pp. 1-9. ISSN: 2090-5858. http://www.fcaj.webs.com/ CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION

More information

PARAMETRIC STUDY OF FRACTIONAL BIOHEAT EQUATION IN SKIN TISSUE WITH SINUSOIDAL HEAT FLUX. 1. Introduction

PARAMETRIC STUDY OF FRACTIONAL BIOHEAT EQUATION IN SKIN TISSUE WITH SINUSOIDAL HEAT FLUX. 1. Introduction Fractional Differential Calculus Volume 5, Number 1 (15), 43 53 doi:10.7153/fdc-05-04 PARAMETRIC STUDY OF FRACTIONAL BIOHEAT EQUATION IN SKIN TISSUE WITH SINUSOIDAL HEAT FLUX R. S. DAMOR, SUSHIL KUMAR

More information

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces Applied Mathematical Sciences, Vol. 11, 2017, no. 12, 549-560 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.718 The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive

More information

Symmetric Properties for Carlitz s Type (h, q)-twisted Tangent Polynomials Using Twisted (h, q)-tangent Zeta Function

Symmetric Properties for Carlitz s Type (h, q)-twisted Tangent Polynomials Using Twisted (h, q)-tangent Zeta Function International Journal of Algebra, Vol 11, 2017, no 6, 255-263 HIKARI Ltd, wwwm-hiaricom https://doiorg/1012988/ija20177728 Symmetric Properties for Carlitz s Type h, -Twisted Tangent Polynomials Using

More information

Introduction to numerical schemes

Introduction to numerical schemes 236861 Numerical Geometry of Images Tutorial 2 Introduction to numerical schemes Heat equation The simple parabolic PDE with the initial values u t = K 2 u 2 x u(0, x) = u 0 (x) and some boundary conditions

More information

Research Article A Note on Kantorovich Inequality for Hermite Matrices

Research Article A Note on Kantorovich Inequality for Hermite Matrices Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 0, Article ID 5767, 6 pages doi:0.55/0/5767 Research Article A Note on Kantorovich Inequality for Hermite Matrices Zhibing

More information

Linearization of Two Dimensional Complex-Linearizable Systems of Second Order Ordinary Differential Equations

Linearization of Two Dimensional Complex-Linearizable Systems of Second Order Ordinary Differential Equations Applied Mathematical Sciences, Vol. 9, 2015, no. 58, 2889-2900 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.4121002 Linearization of Two Dimensional Complex-Linearizable Systems of

More information

The Greatest Common Divisor of k Positive Integers

The Greatest Common Divisor of k Positive Integers International Mathematical Forum, Vol. 3, 208, no. 5, 25-223 HIKARI Ltd, www.m-hiari.com https://doi.org/0.2988/imf.208.822 The Greatest Common Divisor of Positive Integers Rafael Jaimczu División Matemática,

More information

An Efficient Computational Technique based on Cubic Trigonometric B-splines for Time Fractional Burgers Equation.

An Efficient Computational Technique based on Cubic Trigonometric B-splines for Time Fractional Burgers Equation. An Efficient Computational Technique based on Cubic Trigonometric B-splines for Time Fractional Burgers Equation. arxiv:1709.016v1 [math.na] 5 Sep 2017 Muhammad Yaseen, Muhammad Abbas Department of Mathematics,

More information

ACG M and ACG H Functions

ACG M and ACG H Functions International Journal of Mathematical Analysis Vol. 8, 2014, no. 51, 2539-2545 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.12988/ijma.2014.410302 ACG M and ACG H Functions Julius V. Benitez Department

More information

On the Deformed Theory of Special Relativity

On the Deformed Theory of Special Relativity Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 6, 275-282 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.61140 On the Deformed Theory of Special Relativity Won Sang Chung 1

More information

Approximation to the Dissipative Klein-Gordon Equation

Approximation to the Dissipative Klein-Gordon Equation International Journal of Mathematical Analysis Vol. 9, 215, no. 22, 159-163 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.5236 Approximation to the Dissipative Klein-Gordon Equation Edilber

More information

Numerical Solution of Heat Equation by Spectral Method

Numerical Solution of Heat Equation by Spectral Method Applied Mathematical Sciences, Vol 8, 2014, no 8, 397-404 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ams201439502 Numerical Solution of Heat Equation by Spectral Method Narayan Thapa Department

More information

Positive Solution of a Nonlinear Four-Point Boundary-Value Problem

Positive Solution of a Nonlinear Four-Point Boundary-Value Problem Nonlinear Analysis and Differential Equations, Vol. 5, 27, no. 8, 299-38 HIKARI Ltd, www.m-hikari.com https://doi.org/.2988/nade.27.78 Positive Solution of a Nonlinear Four-Point Boundary-Value Problem

More information

Solving Poisson Equation within Local Fractional Derivative Operators

Solving Poisson Equation within Local Fractional Derivative Operators vol. (207), Article ID 0253, 2 pages doi:0.3/207/0253 AgiAl Publishing House http://www.agialpress.com/ Research Article Solving Poisson Equation within Local Fractional Derivative Operators Hassan Kamil

More information

Some Properties of a Semi Dynamical System. Generated by von Forester-Losata Type. Partial Equations

Some Properties of a Semi Dynamical System. Generated by von Forester-Losata Type. Partial Equations Int. Journal of Math. Analysis, Vol. 7, 2013, no. 38, 1863-1868 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.3481 Some Properties of a Semi Dynamical System Generated by von Forester-Losata

More information

Research Article A New Fractional Integral Inequality with Singularity and Its Application

Research Article A New Fractional Integral Inequality with Singularity and Its Application Abstract and Applied Analysis Volume 212, Article ID 93798, 12 pages doi:1.1155/212/93798 Research Article A New Fractional Integral Inequality with Singularity and Its Application Qiong-Xiang Kong 1 and

More information

Solution of Nonlinear Fractional Differential. Equations Using the Homotopy Perturbation. Sumudu Transform Method

Solution of Nonlinear Fractional Differential. Equations Using the Homotopy Perturbation. Sumudu Transform Method Applied Mathematical Sciences, Vol. 8, 2014, no. 44, 2195-2210 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4285 Solution of Nonlinear Fractional Differential Equations Using the Homotopy

More information

Potential Symmetries and Differential Forms. for Wave Dissipation Equation

Potential Symmetries and Differential Forms. for Wave Dissipation Equation Int. Journal of Math. Analysis, Vol. 7, 2013, no. 42, 2061-2066 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.36163 Potential Symmetries and Differential Forms for Wave Dissipation

More information

KKM-Type Theorems for Best Proximal Points in Normed Linear Space

KKM-Type Theorems for Best Proximal Points in Normed Linear Space International Journal of Mathematical Analysis Vol. 12, 2018, no. 12, 603-609 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2018.81069 KKM-Type Theorems for Best Proximal Points in Normed

More information

A Two-step Iterative Method Free from Derivative for Solving Nonlinear Equations

A Two-step Iterative Method Free from Derivative for Solving Nonlinear Equations Applied Mathematical Sciences, Vol. 8, 2014, no. 161, 8021-8027 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49710 A Two-step Iterative Method Free from Derivative for Solving Nonlinear

More information

High Order Numerical Methods for the Riesz Derivatives and the Space Riesz Fractional Differential Equation

High Order Numerical Methods for the Riesz Derivatives and the Space Riesz Fractional Differential Equation International Symposium on Fractional PDEs: Theory, Numerics and Applications June 3-5, 013, Salve Regina University High Order Numerical Methods for the Riesz Derivatives and the Space Riesz Fractional

More information

New group iterative schemes in the numerical solution of the two-dimensional time fractional advection-diffusion equation

New group iterative schemes in the numerical solution of the two-dimensional time fractional advection-diffusion equation Balasim & Hj. Mohd. Ali Cogent Mathematics 7 https//doi.org/./3335.7. COMPUTATIONAL SCIENCE RESEARCH ARTICLE New group iterative schemes in the numerical solution of the two-dimensional time fractional

More information

A Note of the Strong Convergence of the Mann Iteration for Demicontractive Mappings

A Note of the Strong Convergence of the Mann Iteration for Demicontractive Mappings Applied Mathematical Sciences, Vol. 10, 2016, no. 6, 255-261 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.511700 A Note of the Strong Convergence of the Mann Iteration for Demicontractive

More information

Research Article Existence of Periodic Positive Solutions for Abstract Difference Equations

Research Article Existence of Periodic Positive Solutions for Abstract Difference Equations Discrete Dynamics in Nature and Society Volume 2011, Article ID 870164, 7 pages doi:10.1155/2011/870164 Research Article Existence of Periodic Positive Solutions for Abstract Difference Equations Shugui

More information

An efficient algorithm on timefractional. equations with variable coefficients. Research Article OPEN ACCESS. Jamshad Ahmad*, Syed Tauseef Mohyud-Din

An efficient algorithm on timefractional. equations with variable coefficients. Research Article OPEN ACCESS. Jamshad Ahmad*, Syed Tauseef Mohyud-Din OPEN ACCESS Research Article An efficient algorithm on timefractional partial differential equations with variable coefficients Jamshad Ahmad*, Syed Tauseef Mohyud-Din Department of Mathematics, Faculty

More information

Remarks on Fuglede-Putnam Theorem for Normal Operators Modulo the Hilbert-Schmidt Class

Remarks on Fuglede-Putnam Theorem for Normal Operators Modulo the Hilbert-Schmidt Class International Mathematical Forum, Vol. 9, 2014, no. 29, 1389-1396 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47141 Remarks on Fuglede-Putnam Theorem for Normal Operators Modulo the

More information

Note About a Combinatorial Sum

Note About a Combinatorial Sum Int. J. Contemp. Math. Sciences, Vol. 8, 203, no. 8, 349-353 HIKARI Ltd, www.m-hiari.com Note About a Combinatorial Sum Laurenţiu Modan Spiru Haret University, Academy of Economic Studies Department of

More information

A Class of Multi-Scales Nonlinear Difference Equations

A Class of Multi-Scales Nonlinear Difference Equations Applied Mathematical Sciences, Vol. 12, 2018, no. 19, 911-919 HIKARI Ltd, www.m-hiari.com https://doi.org/10.12988/ams.2018.8799 A Class of Multi-Scales Nonlinear Difference Equations Tahia Zerizer Mathematics

More information

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique Int. Journal of Math. Analysis, Vol. 7, 3, no. 53, 65-636 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ijma.3.3894 A Study on Linear and Nonlinear Stiff Problems Using Single-Term Haar Wavelet Series

More information

Landweber iterative regularization method for identifying the unknown source of the time-fractional diffusion equation

Landweber iterative regularization method for identifying the unknown source of the time-fractional diffusion equation Yang et al. Advances in Difference Equations 017) 017:388 DOI 10.1186/s1366-017-143-8 R E S E A R C H Open Access Landweber iterative regularization method for identifying the unknown source of the time-fractional

More information

RECONSTRUCTION OF THE THERMAL CONDUCTIVITY COEFFICIENT IN THE SPACE FRACTIONAL HEAT CONDUCTION EQUATION

RECONSTRUCTION OF THE THERMAL CONDUCTIVITY COEFFICIENT IN THE SPACE FRACTIONAL HEAT CONDUCTION EQUATION THERMAL SCIENCE: Year 207, Vol. 2, No. A, pp. 8-88 8 RECONSTRUCTION OF THE THERMAL CONDUCTIVITY COEFFICIENT IN THE SPACE FRACTIONAL HEAT CONDUCTION EQUATION by Rafal BROCIEK * and Damian SLOTA Institute

More information

Hyperbolic Functions and. the Heat Balance Integral Method

Hyperbolic Functions and. the Heat Balance Integral Method Nonl. Analysis and Differential Equations, Vol. 1, 2013, no. 1, 23-27 HIKARI Ltd, www.m-hikari.com Hyperbolic Functions and the Heat Balance Integral Method G. Nhawu and G. Tapedzesa Department of Mathematics,

More information

A Direct Proof of Caristi s Fixed Point Theorem

A Direct Proof of Caristi s Fixed Point Theorem Applied Mathematical Sciences, Vol. 10, 2016, no. 46, 2289-2294 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.66190 A Direct Proof of Caristi s Fixed Point Theorem Wei-Shih Du Department

More information

Certain Generating Functions Involving Generalized Mittag-Leffler Function

Certain Generating Functions Involving Generalized Mittag-Leffler Function International Journal of Mathematical Analysis Vol. 12, 2018, no. 6, 269-276 HIKARI Ltd, www.m-hiari.com https://doi.org/10.12988/ijma.2018.8431 Certain Generating Functions Involving Generalized Mittag-Leffler

More information

Research Article Existence and Uniqueness Results for Perturbed Neumann Boundary Value Problems

Research Article Existence and Uniqueness Results for Perturbed Neumann Boundary Value Problems Hindawi Publishing Corporation Boundary Value Problems Volume 2, Article ID 4942, pages doi:.55/2/4942 Research Article Existence and Uniqueness Results for Perturbed Neumann Boundary Value Problems Jieming

More information

Bounds Improvement for Neuman-Sándor Mean Using Arithmetic, Quadratic and Contraharmonic Means 1

Bounds Improvement for Neuman-Sándor Mean Using Arithmetic, Quadratic and Contraharmonic Means 1 International Mathematical Forum, Vol. 8, 2013, no. 30, 1477-1485 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2013.36125 Bounds Improvement for Neuman-Sándor Mean Using Arithmetic, Quadratic

More information

A Recursion Scheme for the Fisher Equation

A Recursion Scheme for the Fisher Equation Applied Mathematical Sciences, Vol. 8, 204, no. 08, 536-5368 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.2988/ams.204.47570 A Recursion Scheme for the Fisher Equation P. Sitompul, H. Gunawan,Y. Soeharyadi

More information

Research Article A Two-Grid Method for Finite Element Solutions of Nonlinear Parabolic Equations

Research Article A Two-Grid Method for Finite Element Solutions of Nonlinear Parabolic Equations Abstract and Applied Analysis Volume 212, Article ID 391918, 11 pages doi:1.1155/212/391918 Research Article A Two-Grid Method for Finite Element Solutions of Nonlinear Parabolic Equations Chuanjun Chen

More information

NUMERICAL SIMULATION OF TIME VARIABLE FRACTIONAL ORDER MOBILE-IMMOBILE ADVECTION-DISPERSION MODEL

NUMERICAL SIMULATION OF TIME VARIABLE FRACTIONAL ORDER MOBILE-IMMOBILE ADVECTION-DISPERSION MODEL Romanian Reports in Physics, Vol. 67, No. 3, P. 773 791, 2015 NUMERICAL SIMULATION OF TIME VARIABLE FRACTIONAL ORDER MOBILE-IMMOBILE ADVECTION-DISPERSION MODEL M.A. ABDELKAWY 1,a, M.A. ZAKY 2,b, A.H. BHRAWY

More information

Existence, Uniqueness Solution of a Modified. Predator-Prey Model

Existence, Uniqueness Solution of a Modified. Predator-Prey Model Nonlinear Analysis and Differential Equations, Vol. 4, 6, no. 4, 669-677 HIKARI Ltd, www.m-hikari.com https://doi.org/.988/nade.6.6974 Existence, Uniqueness Solution of a Modified Predator-Prey Model M.

More information

A Fixed Point Approach to the Stability of a Quadratic-Additive Type Functional Equation in Non-Archimedean Normed Spaces

A Fixed Point Approach to the Stability of a Quadratic-Additive Type Functional Equation in Non-Archimedean Normed Spaces International Journal of Mathematical Analysis Vol. 9, 015, no. 30, 1477-1487 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.1988/ijma.015.53100 A Fied Point Approach to the Stability of a Quadratic-Additive

More information

On the Three-Phase-Lag Heat Equation with Spatial Dependent Lags

On the Three-Phase-Lag Heat Equation with Spatial Dependent Lags Nonlinear Analysis and Differential Equations, Vol. 5, 07, no., 53-66 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/nade.07.694 On the Three-Phase-Lag Heat Equation with Spatial Dependent Lags Yang

More information

Finite Differences for Differential Equations 28 PART II. Finite Difference Methods for Differential Equations

Finite Differences for Differential Equations 28 PART II. Finite Difference Methods for Differential Equations Finite Differences for Differential Equations 28 PART II Finite Difference Methods for Differential Equations Finite Differences for Differential Equations 29 BOUNDARY VALUE PROBLEMS (I) Solving a TWO

More information

ON THE SOLUTIONS OF NON-LINEAR TIME-FRACTIONAL GAS DYNAMIC EQUATIONS: AN ANALYTICAL APPROACH

ON THE SOLUTIONS OF NON-LINEAR TIME-FRACTIONAL GAS DYNAMIC EQUATIONS: AN ANALYTICAL APPROACH International Journal of Pure and Applied Mathematics Volume 98 No. 4 2015, 491-502 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v98i4.8

More information

On a Boundary-Value Problem for Third Order Operator-Differential Equations on a Finite Interval

On a Boundary-Value Problem for Third Order Operator-Differential Equations on a Finite Interval Applied Mathematical Sciences, Vol. 1, 216, no. 11, 543-548 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.216.512743 On a Boundary-Value Problem for Third Order Operator-Differential Equations

More information

Hermite-Hadamard Type Inequalities for Fractional Integrals Operators

Hermite-Hadamard Type Inequalities for Fractional Integrals Operators Applied Mathematical Sciences, Vol., 27, no. 35, 745-754 HIKARI Ltd, www.m-hiari.com https://doi.org/.2988/ams.27.7573 Hermite-Hadamard Type Inequalities for ractional Integrals Operators Loredana Ciurdariu

More information

Novel Approach to Calculation of Box Dimension of Fractal Functions

Novel Approach to Calculation of Box Dimension of Fractal Functions Applied Mathematical Sciences, vol. 8, 2014, no. 144, 7175-7181 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49718 Novel Approach to Calculation of Box Dimension of Fractal Functions

More information

Antibound State for Klein-Gordon Equation

Antibound State for Klein-Gordon Equation International Journal of Mathematical Analysis Vol. 8, 2014, no. 59, 2945-2949 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.411374 Antibound State for Klein-Gordon Equation Ana-Magnolia

More information

A Petrov-Galerkin Finite Element Method for Solving the Time-fractional Diffusion Equation with Interface

A Petrov-Galerkin Finite Element Method for Solving the Time-fractional Diffusion Equation with Interface Journal of Mathematics Research; Vol., No. 4; August 8 ISSN 96-979 E-ISSN 96-989 Published by Canadian Center of Science and Education A Petrov-Galerkin Finite Element Method for Solving the Time-fractional

More information

Tutorial 2. Introduction to numerical schemes

Tutorial 2. Introduction to numerical schemes 236861 Numerical Geometry of Images Tutorial 2 Introduction to numerical schemes c 2012 Classifying PDEs Looking at the PDE Au xx + 2Bu xy + Cu yy + Du x + Eu y + Fu +.. = 0, and its discriminant, B 2

More information

On the Laplacian Energy of Windmill Graph. and Graph D m,cn

On the Laplacian Energy of Windmill Graph. and Graph D m,cn International Journal of Contemporary Mathematical Sciences Vol. 11, 2016, no. 9, 405-414 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2016.6844 On the Laplacian Energy of Windmill Graph

More information

Cubic B-spline collocation method for solving time fractional gas dynamics equation

Cubic B-spline collocation method for solving time fractional gas dynamics equation Cubic B-spline collocation method for solving time fractional gas dynamics equation A. Esen 1 and O. Tasbozan 2 1 Department of Mathematics, Faculty of Science and Art, Inönü University, Malatya, 44280,

More information

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation International Differential Equations Volume 2010, Article ID 764738, 8 pages doi:10.1155/2010/764738 Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

More information

Stability of a Functional Equation Related to Quadratic Mappings

Stability of a Functional Equation Related to Quadratic Mappings International Journal of Mathematical Analysis Vol. 11, 017, no., 55-68 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ijma.017.610116 Stability of a Functional Equation Related to Quadratic Mappings

More information

An Efficient Multiscale Runge-Kutta Galerkin Method for Generalized Burgers-Huxley Equation

An Efficient Multiscale Runge-Kutta Galerkin Method for Generalized Burgers-Huxley Equation Applied Mathematical Sciences, Vol. 11, 2017, no. 30, 1467-1479 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.7141 An Efficient Multiscale Runge-Kutta Galerkin Method for Generalized Burgers-Huxley

More information

Mathematical Models Based on Boussinesq Love equation

Mathematical Models Based on Boussinesq Love equation Applied Mathematical Sciences, Vol. 8, 2014, no. 110, 5477-5483 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.47546 Mathematical Models Based on Boussinesq Love equation A. A. Zamyshlyaeva

More information

Secure Weakly Convex Domination in Graphs

Secure Weakly Convex Domination in Graphs Applied Mathematical Sciences, Vol 9, 2015, no 3, 143-147 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ams2015411992 Secure Weakly Convex Domination in Graphs Rene E Leonida Mathematics Department

More information

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 3, 143-150 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2016.613 Solution of Differential Equations of Lane-Emden Type by

More information

NUMERICAL SOLUTION OF FRACTIONAL DIFFUSION-WAVE EQUATION WITH TWO SPACE VARIABLES BY MATRIX METHOD. Mridula Garg, Pratibha Manohar.

NUMERICAL SOLUTION OF FRACTIONAL DIFFUSION-WAVE EQUATION WITH TWO SPACE VARIABLES BY MATRIX METHOD. Mridula Garg, Pratibha Manohar. NUMERICAL SOLUTION OF FRACTIONAL DIFFUSION-WAVE EQUATION WITH TWO SPACE VARIABLES BY MATRIX METHOD Mridula Garg, Pratibha Manohar Abstract In the present paper we solve space-time fractional diffusion-wave

More information

Research Article On the Stability Property of the Infection-Free Equilibrium of a Viral Infection Model

Research Article On the Stability Property of the Infection-Free Equilibrium of a Viral Infection Model Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume, Article ID 644, 9 pages doi:.55//644 Research Article On the Stability Property of the Infection-Free Equilibrium of a Viral

More information

The Homotopy Perturbation Method (HPM) for Nonlinear Parabolic Equation with Nonlocal Boundary Conditions

The Homotopy Perturbation Method (HPM) for Nonlinear Parabolic Equation with Nonlocal Boundary Conditions Applied Mathematical Sciences, Vol. 5, 211, no. 3, 113-123 The Homotopy Perturbation Method (HPM) for Nonlinear Parabolic Equation with Nonlocal Boundary Conditions M. Ghoreishi School of Mathematical

More information

On the Differential Geometric Elements of Mannheim Darboux Ruled Surface in E 3

On the Differential Geometric Elements of Mannheim Darboux Ruled Surface in E 3 Applied Mathematical Sciences, Vol. 10, 016, no. 6, 3087-3094 HIKARI Ltd, www.m-hiari.com https://doi.org/10.1988/ams.016.671 On the Differential Geometric Elements of Mannheim Darboux Ruled Surface in

More information

Crank-Nicolson Scheme for Space Fractional Heat Conduction Equation with Mixed Boundary Condition

Crank-Nicolson Scheme for Space Fractional Heat Conduction Equation with Mixed Boundary Condition Crank-Nicolson Scheme for Space Fractional Heat Conduction Equation with Mied Boundary Condition Rafał Brociek Institute of Mathematics Silesian University of Technology Kaszubska 23, 44-00 Gliwice, Poland

More information

Static Model of Decision-making over the Set of Coalitional Partitions

Static Model of Decision-making over the Set of Coalitional Partitions Applied Mathematical ciences, Vol. 8, 2014, no. 170, 8451-8457 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.12988/ams.2014.410889 tatic Model of Decision-maing over the et of Coalitional Partitions

More information

International Mathematical Forum, Vol. 9, 2014, no. 36, HIKARI Ltd,

International Mathematical Forum, Vol. 9, 2014, no. 36, HIKARI Ltd, International Mathematical Forum, Vol. 9, 2014, no. 36, 1751-1756 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.411187 Generalized Filters S. Palaniammal Department of Mathematics Thiruvalluvar

More information

Predictor-Corrector Finite-Difference Lattice Boltzmann Schemes

Predictor-Corrector Finite-Difference Lattice Boltzmann Schemes Applied Mathematical Sciences, Vol. 9, 2015, no. 84, 4191-4199 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.5138 Predictor-Corrector Finite-Difference Lattice Boltzmann Schemes G. V.

More information

New Iterative Algorithm for Variational Inequality Problem and Fixed Point Problem in Hilbert Spaces

New Iterative Algorithm for Variational Inequality Problem and Fixed Point Problem in Hilbert Spaces Int. Journal of Math. Analysis, Vol. 8, 2014, no. 20, 995-1003 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.4392 New Iterative Algorithm for Variational Inequality Problem and Fixed

More information

Variational Theory of Solitons for a Higher Order Generalized Camassa-Holm Equation

Variational Theory of Solitons for a Higher Order Generalized Camassa-Holm Equation International Journal of Mathematical Analysis Vol. 11, 2017, no. 21, 1007-1018 HIKAI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2017.710141 Variational Theory of Solitons for a Higher Order Generalized

More information

Strong Convergence of the Mann Iteration for Demicontractive Mappings

Strong Convergence of the Mann Iteration for Demicontractive Mappings Applied Mathematical Sciences, Vol. 9, 015, no. 4, 061-068 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.015.5166 Strong Convergence of the Mann Iteration for Demicontractive Mappings Ştefan

More information

On Positive Stable Realization for Continuous Linear Singular Systems

On Positive Stable Realization for Continuous Linear Singular Systems Int. Journal of Math. Analysis, Vol. 8, 2014, no. 8, 395-400 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.4246 On Positive Stable Realization for Continuous Linear Singular Systems

More information

k-pell, k-pell-lucas and Modified k-pell Numbers: Some Identities and Norms of Hankel Matrices

k-pell, k-pell-lucas and Modified k-pell Numbers: Some Identities and Norms of Hankel Matrices International Journal of Mathematical Analysis Vol. 9, 05, no., 3-37 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ijma.05.4370 k-pell, k-pell-lucas and Modified k-pell Numbers: Some Identities

More information