Solution of Nonlinear Fractional Differential. Equations Using the Homotopy Perturbation. Sumudu Transform Method

Size: px
Start display at page:

Download "Solution of Nonlinear Fractional Differential. Equations Using the Homotopy Perturbation. Sumudu Transform Method"

Transcription

1 Applied Mathematical Sciences, Vol. 8, 2014, no. 44, HIKARI Ltd, Solution of Nonlinear Fractional Differential Equations Using the Homotopy Perturbation Sumudu Transform Method Eltayeb A. Yousif Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Khartoum, Khartoum 11111, Sudan Department of Mathematics, Faculty of Science, Northern Border University, Arar 91431, Saudi Arabia Sara H. M. Hamed Department of Mathematics, Faculty of Mathematical Sciences and Statistics, Alneelain University, Khartoum 11121, Sudan Copyright 2014 Eltayeb A. Yousif and Sara H. M. Hamed. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we obtain exact analytical solutions of nonlinear fractional differential equations using a combined form of the Homotopy perturbation method with the Sumudu transform. The solutions are given in closed forms in terms of Mittage-Leffler functions. The fractional derivatives are considered in Caputo sense. The method is illustrated through a number of test examples. Keywords: Homotopy Perturbation Method, Sumudu Transform, Nonlinear Fractional Differential Equations, Mittage-Leffler functions

2 2196 Eltayeb A. Yousif and Sara H. M. Hamed 1. Introduction Fractional calculus is a generalization of differentiation and integration to non-integer orders. Many problems in physics and engineering are modulated in terms of fractional differential and integral equations, such as acoustics, diffusion, signal processing, electrochemistry, and may other physical phenomena [14,26]. During last decades, a great deal of interest appears in fractional differential equations. The solutions of fractional equations are investigated by many authors using powerful methods in obtaining exact and approximate solutions [1,25,30-32,35,36]. The Homotopy perturbation method (HPM) is proposed by He in 1999 [17]. This method is a coupling of traditional perturbation method and homotopy in topology. Later on He himself drawn many modifications and developments of the method [17-22]. In recent years Homotopy perturbation method has been extensively introduced by numerous authors, and implemented to obtain exact and approximate analytical solutions to a wide range of both linear and nonlinear problems in science and engineering [4,6,15,16,20,22,23,30,32]. Watugala in 1993 [10] introduced a new integral transform and named it as Sumudu transform, used it in obtaining the solution of ordinary differential equations in control engineering problems. Asiru [28] implemented the Sumudu transform for solving integral equations of convolution type. Belgacem et al [18,19] presented the fundamental properties of Sumudu transform. Kilicman and Eltayeb [2,3,12] investigated various types of problems via Sumudu transform, including ordinary and partial differential equations. Gupta and Bhavna [37] used Sumudu transform in determining the solution of reaction-diffusion equation. Rana et al [29] applied He's homotopy perturbation method to compute Sumudu transform. Several authors [1,31,34-36] have discussed many fractional partial differential equations using Sumudu transform. The Homotopy perturbation Sumudu transform method [7,11,24,25,29,33] is applied to solve many problems, for example, nonlinear equations, heat and wave-like equations.

3 Solution of nonlinear fractional differential equations 2197 In this paper the authors implemented the Homotopy perturbation Sumudu transform method (HPSTM) to evaluate the exact analytical solution of nonlinear fractional partial differential equations. This work is organized as follows: In section 2 we provide some preliminaries. Section 3 introduces the concept of Homotopy perturbation method, while section 4 gives the Sumudu transform. The Homotopy perturbation Sumudu transform method (HPSTM) is analyzed in section 5. Numerical examples are provided in section 6. The conclusions are given in section Preliminaries Definition (2.1): The Caputo fractional derivative of order is defined by [14,26] of a function { Where is called the Caputo derivative operator. Definition (2.2): The Mittag-Leffler function with two parameters, is defined by [13,14,26,27] The following results are obtained directly from definition : [ ] } Note (2.3): The special type of Mittag-Leffler function ( ) is given by [13] ( ) ( ) By using (4), we have to drive

4 2198 Eltayeb A. Yousif and Sara H. M. Hamed ( ) ( ) where is a complementary error function. These two functions are used further in this paper. The derivation of formula (5) based on definition of Mittage-Leffler function and formula (4), we have ( ) ( ) Replacing with in the RHS of, we get ( ) ( ) ( ( ) ) ( ( ) ) Substituting ( ) ( ), then we get the result. 3. Homotopy Perturbation Method To illustrate the concept of Homotopy perturbation method, we consider the nonlinear differential equation: with the boundary conditions: Where is a linear operator, is nonlinear operator, is boundary operator, is the boundary of the domain and is a known analytic function. The He s homotopy perturbation technique [8-10] defines the Homotopy [ ] which satisfies: [ ] [ ] (9) or [ ]

5 Solution of nonlinear fractional differential equations 2199 Where and [ ] is an impending parameter, is an initial approximation which satisfies the boundary condition. The basic assumption is that the solution of equation (9) and equation (10) can be expressed as power series in as follows: The approximate solution of equation (7) is given by 4. Sumudu Transform Consider functions in the set A, that defined by: { [ )} where is a constant must be finite, need not simultaneously exist, and each may be finite. The Sumudu transform is defined by [10] ( ) Definition (4.1): The Sumudu transform of fractional order derivative, is defined by [25,34] [ ] [ ] [ ] 5. Analysis of the method In this section we need to illustrate the concept and construction of Homotopy perturbation Sumudu transforms method (HPSTM) for fractional equations, that by considering the general nonlinear nonhomogenous time-fractional partial differential equation with the initial conditions to by: }

6 2200 Eltayeb A. Yousif and Sara H. M. Hamed Applying Sumudu transform on both sides of (15) with respect to t, we get ( ) ( ) ( ) ( ) ( ) ( ) ( ) Taking the inverse Sumudu transform to the above result, we have ( ( ( ) ( ))) Application of the Homotopy perturbation method to (16), yields ( ) ( ( ( ( ) ( )))) Let: ( ( ( ) ( ))) ( )

7 Solution of nonlinear fractional differential equations 2201 ( ) ( ) Substituting (18) into equation (17), we get ( ( ( ) ( ( )))) ( ( ( ))) ( ( ( ))) ( ( ( ))) The solution of equation (15) is given by 6. Numerical examples Example (1): Consider the nonlinear nonhomogenous time-fractional invicid Burgers equation } Solution: By applying (HPSTM) to equation (21), then from (19), we have

8 2202 Eltayeb A. Yousif and Sara H. M. Hamed ( ( ( ( )))) ( ( ( ( ( )))) ) ( ( ( ( )))) ( ( ( ))) ( ( ( ))) ( ( )) ( ) ( ( ( ))) ( ( ))

9 Solution of nonlinear fractional differential equations 2203 ( ) ( ) Remark (1): As special case if we take then from (4) and (5), we have ( ). Remark (2 ): If then,. This agrees with the solution obtained by Wazwaz [5]. Example (2): Consider the following nonlinear time-fractional equation Solution: By applying (19) in (22), we get } ( ( ( ( ))))

10 2204 Eltayeb A. Yousif and Sara H. M. Hamed ( ( ( ( )))) ( ( ( ))) ( ( ( ))) ( ( )) ( ( ( ))) ( ( )) ( ) ( ) Remark (3): If then:. Example (3): Consider the time-fractional fifth order KdV equation

11 Solution of nonlinear fractional differential equations 2205 } Solution: Application of (19) into (23), yields ( ( ( ( )))) ( ( ( ( )))) ( ( ( ( )))) ( ( ( ))) ( ( ( ( )))) ( ( ( ( ) ( )))) ( ( ( ( ))))

12 2206 Eltayeb A. Yousif and Sara H. M. Hamed ( ( ( ( ) ( ) ( )))) Remark (4): If, then from, we have: ( ) ( ) Remark (5): If. then we get the solution of the classical equation as 7. Conclusion In the present paper, we applied the Homotopy perturbation Sumudu transform method (HPSTM) for solving fractional nonlinear partial differential equations. The time derivatives are considered in Caputo sense. Solutions are determined in a compact form in terms of Mittag-Leffler functions. The terms are obtained in a simplified way and straightforward. The method was tested on three different problems. This method is powerful, reliable and effective, easy to implement. Thus, this technique can be applied to solve many nonlinear problems in applied science. References [1] A. Kilicman, V. G. Gupta and B. Sharma, On the solution of fractional Maxwell equation by Sumudu transform, Journal of Mathematics Research, 2(4) 2010,

13 Solution of nonlinear fractional differential equations 2207 [2] A. Kilcman and H. Eltayeb. A note on classification of hyperbolic and elliptic equations with polynomial coefficients, Applied Mathematics Letters, 21(11) (2008), [3] A. Kilcman and H. Eltayeb, A note on integral transforms and partial differential equations, Applied Mathematical Sciences, 4(3) 2010, [4] A. M. Siddiqui, R. Mahmood, and Q. K Ghori, Homotopy perturbation method for thin film flow of a fourth grade fluid down a vertical cylinder, Physics Letters A, 352 (2006), [5] A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Higher Education Press Beijing and Springer-Verlag Heidelberg, [6] D. D. Ganji and M. Rafei, Solitary wave solutions for a generalized Hirota Satsuma coupled KdV equation by Homotopy perturbation method, Physics Letters A, 356 (2006), [7] D. Kumar, J. Singh, and Sushila, Sumudu Homotopy perturbation technique, Global Journal of Science Frontier Research, 11(6), Version 1.0, (Sept 2011). [8] F. M. Belgacem, A. A. Karaballi, and S. L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, Mathematical Problems in Engineering, 3 (2003), [9] F. M. Belgacem and A. A. Karaballi, Sumudu transform fundamental properties investigations and applications, Journal of Applied Mathematics and Stochastic Analysis, 2006 (2006), Article ID 91083, [10] G. K. Watugala, Sumudu transform: a new integral transform to solve differential equations and control engineering problems, International Journal of Mathematical Education in Science and Technology, 24(1) (1993), [11] H. Bulut, H. Baskonus, and S. Tulue, Homotopy perturbation Sumudu transform method for heat equations, Mathematics in Engineering, Science and Aerospace, 4(1) [12] H. Eltayeb and A. Kılıcman, On Some Applications of a new integral transform, International Journal of Mathematical Analysis, 4(3) (2010),

14 2208 Eltayeb A. Yousif and Sara H. M. Hamed [13] H. J. Haubold, A. M. Mathal, and R. K. Saxena, Mittage-Leffler functions and their applications, Journal of Applied Mathematics, 2011 (2011), Article ID , 51 pages. [14] I. Podlubny, Fractional Differential Equations, Academic Press, [15] J. Biazar, and H. Ghazvini, Exact solutions for nonlinear Schrödinger equations by He s Homotopy perturbation method, Physics Letters A, 366 (2007), [16] J. Biazar and H. Ghazvini, He s Homotopy perturbation method for solving system of Volterra integral equations of the second kind, Chaos, Solitons and Fractals, 39(3) (2009), [17] J. H. He, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering, 178 (1999), [18] J. H. He, Recent development of the Homotopy perturbation method, Topological Methods in Nonlinear Analysis, 31(2) (2008), [19] J. H. He, A modified perturbation technique depending upon an artificial parameter, Mechanical, 35 (2000), [20] J. H. He, Homotopy perturbation method for solving boundary value problems, Physics Letters A, 350 (2006), [21] J. H. He, New interpretation of Homotopy perturbation method, International Journal of Modern Physics B, 20 (2006), [22] J. H. He, Application of Homotopy perturbation method to nonlinear wave equations, Chaos, Solitons and Fractals, 26 (2005), [23] J. H. He, A coupling method of a Homotopy technique and a perturbation technique for nonlinear problems, International Journal of Nonlinear Mechanics, 35 (2000), [24] J. Singh, D. Kumar, and A. Kilicman, Application of Homotopy perturbation Sumudu transform method for solving heat and wave-like equations, Malaysian Journal of Mathematical Sciences, 7(1) (2013),

15 Solution of nonlinear fractional differential equations 2209 [25] J. Singh, D. Kumar, and A. Kilicman, Homotopy perturbation method for fractional gas dynamics equation using Sumudu transform, Abstract and Applied Analysis, 2013 (2013), Article ID , 8 pages. [26] L. Debnath, Recent applications of fractional calculus to science and engineering, International Journal of Mathematics and Mathematical Sciences, 54 (2003), [27] L. Debnath, D. Bhatta, Integral Transforms and their Applications, 2nd edition, Taylor & Francis Group, LLC, [28] M. A. Asiru, Sumudu transform and the solution of integral equations of convolution type, International Journal of Mathematical Education in Science and Technology, 32(6) (2001), [29] M.A. Rana, A.M. Siddiquib, Q.K. Ghoric, and R. Qamar, Application of He's Homotopy perturbation method to Sumudu transform, International Journal of Nonlinear Sciences and Numerical Simulation, 8(2) (2007), [30] Q. Wang, Homotopy perturbation method for fractional KdV Burgers equation, Chaos, Solitons and Fractals, 35 (2008), [31] R. Darzi, B. Mohammadzade, S. Mousavi, and R. Beheshti, Sumudu transform method for solving fractional differential equations and fractional diffusion-wave equation, Journal of Mathematics and Computer Science, 6 (2013) [32] S. Momani and Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Physics Letters A, 365 (2007), [33] S. Rathore, D. Kumer, J. Singh, and S. Gupta, Homotopy analysis Sumudu transform method for nonlinear equations, International Journal of Industrial Mathematics, 4(4) (2012), 13 pages. [34] V. B. Chaurasia and J. Singh, Application of Sumudu transform in fractional kinetic equations, General Mathematics Notes, 2(1) (2011),

16 2210 Eltayeb A. Yousif and Sara H. M. Hamed [35] V. G. Gupta, B. Sharma, and A. Kilicman, A note on fractional Sumudu transform method, Journal of Applied Mathematics, 2010 (2010), Article ID 15489, 9 pages. [36] V. G. Gupta, B. Sharma and A. Kilcman, A note on fractional Sumudu transform, Journal of Applied Mathematics, 2010 (2010), Article ID , 9 pages. [37] V. G. Gupta and B. Sharma, Application of Sumudu transform in reaction-diffusion systems and nonlinear waves, Applied Mathematical Sciences, 4(9) 2010, Received: February 11, 2014

Abstract We paid attention to the methodology of two integral

Abstract We paid attention to the methodology of two integral Comparison of Homotopy Perturbation Sumudu Transform method and Homotopy Decomposition method for solving nonlinear Fractional Partial Differential Equations 1 Rodrigue Batogna Gnitchogna 2 Abdon Atangana

More information

Homotopy perturbation method for solving hyperbolic partial differential equations

Homotopy perturbation method for solving hyperbolic partial differential equations Computers and Mathematics with Applications 56 2008) 453 458 wwwelseviercom/locate/camwa Homotopy perturbation method for solving hyperbolic partial differential equations J Biazar a,, H Ghazvini a,b a

More information

Laplace Transform Method Solution of Fractional Ordinary Differential Equations

Laplace Transform Method Solution of Fractional Ordinary Differential Equations P P P Faculty P Faculty University of Africa Journal of Sciences (U.A.J.S., Vol.2, 139-160) Laplace Transform Method Solution of Fractional Ordinary Differential Equations Eltayeb. A.M. Yousif P 1 Pand

More information

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation International Differential Equations Volume 2010, Article ID 764738, 8 pages doi:10.1155/2010/764738 Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

More information

Research Article Solving Fractional-Order Logistic Equation Using a New Iterative Method

Research Article Solving Fractional-Order Logistic Equation Using a New Iterative Method International Differential Equations Volume 2012, Article ID 975829, 12 pages doi:10.1155/2012/975829 Research Article Solving Fractional-Order Logistic Equation Using a New Iterative Method Sachin Bhalekar

More information

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations Nonlinear Analysis and Differential Equations, Vol. 3, 015, no. 3, 111-1 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/nade.015.416 The Modified Adomian Decomposition Method for Solving Nonlinear

More information

International Journal of Theoretical and Applied Mathematics

International Journal of Theoretical and Applied Mathematics International Journal of Theoretical and Applied Mathematics 2016; 2(2): 45-51 http://www.sciencepublishinggroup.com/j/ijtam doi: 10.11648/j.ijtam.20160202.14 A Comparative Study of Homotopy Perturbation

More information

Exact Solution of Time-Fractional Partial Differential Equations Using Sumudu Transform

Exact Solution of Time-Fractional Partial Differential Equations Using Sumudu Transform Exact Solution of Time-Fractional Partial Differential Equations Using Sumudu Transform ABDOLAMIR KARBALAIE 1, MOHAMMAD MEHDI MONTAZERI 2, HAMED HAMID MUHAMMED 1, Division of Informatics, Logistics and

More information

Research Article Numerical Solution of the Inverse Problem of Determining an Unknown Source Term in a Heat Equation

Research Article Numerical Solution of the Inverse Problem of Determining an Unknown Source Term in a Heat Equation Applied Mathematics Volume 22, Article ID 39876, 9 pages doi:.55/22/39876 Research Article Numerical Solution of the Inverse Problem of Determining an Unknown Source Term in a Heat Equation Xiuming Li

More information

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 3, 143-150 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2016.613 Solution of Differential Equations of Lane-Emden Type by

More information

Solution of Linear and Nonlinear Schrodinger Equations by Combine Elzaki Transform and Homotopy Perturbation Method

Solution of Linear and Nonlinear Schrodinger Equations by Combine Elzaki Transform and Homotopy Perturbation Method American Journal of Theoretical and Applied Statistics 2015; 4(6): 534-538 Published online October 29, 2015 (http://wwwsciencepublishinggroupcom/j/ajtas) doi: 1011648/jajtas2015040624 ISSN: 2326-8999

More information

The Homotopy Perturbation Sumudu Transform Method For Solving The Nonlinear Partial Differential Equations

The Homotopy Perturbation Sumudu Transform Method For Solving The Nonlinear Partial Differential Equations The Homotopy Perturbation Sumudu Transform Method For Solving The Nonlinear Partial Differential Equations HANAN M. ABED RAHMAN Higher Technological Institute Department of Basic Sciences Tenth Of Ramadan

More information

A New Technique of Initial Boundary Value Problems. Using Adomian Decomposition Method

A New Technique of Initial Boundary Value Problems. Using Adomian Decomposition Method International Mathematical Forum, Vol. 7, 2012, no. 17, 799 814 A New Technique of Initial Boundary Value Problems Using Adomian Decomposition Method Elaf Jaafar Ali Department of Mathematics, College

More information

Research Article New Method for Solving Linear Fractional Differential Equations

Research Article New Method for Solving Linear Fractional Differential Equations International Differential Equations Volume 2011, Article ID 814132, 8 pages doi:10.1155/2011/814132 Research Article New Method for Solving Linear Fractional Differential Equations S. Z. Rida and A. A.

More information

Homotopy Analysis Transform Method for Time-fractional Schrödinger Equations

Homotopy Analysis Transform Method for Time-fractional Schrödinger Equations International Journal of Modern Mathematical Sciences, 2013, 7(1): 26-40 International Journal of Modern Mathematical Sciences Journal homepage:wwwmodernscientificpresscom/journals/ijmmsaspx ISSN:2166-286X

More information

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method International Journal of Mathematical Analysis Vol. 9, 2015, no. 39, 1919-1928 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.54124 Improvements in Newton-Rapshon Method for Nonlinear

More information

Solutions of the coupled system of Burgers equations and coupled Klein-Gordon equation by RDT Method

Solutions of the coupled system of Burgers equations and coupled Klein-Gordon equation by RDT Method International Journal of Advances in Applied Mathematics and Mechanics Volume 1, Issue 2 : (2013) pp. 133-145 IJAAMM Available online at www.ijaamm.com ISSN: 2347-2529 Solutions of the coupled system of

More information

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method Journal of Mathematics Research; Vol. 6, No. ; 04 ISSN 96-9795 E-ISSN 96-9809 Published by Canadian Center of Science and Education Exact Solutions for the Nonlinear +-Dimensional Davey-Stewartson Equation

More information

HOMOTOPY PERTURBATION METHOD TO FRACTIONAL BIOLOGICAL POPULATION EQUATION. 1. Introduction

HOMOTOPY PERTURBATION METHOD TO FRACTIONAL BIOLOGICAL POPULATION EQUATION. 1. Introduction Fractional Differential Calculus Volume 1, Number 1 (211), 117 124 HOMOTOPY PERTURBATION METHOD TO FRACTIONAL BIOLOGICAL POPULATION EQUATION YANQIN LIU, ZHAOLI LI AND YUEYUN ZHANG Abstract In this paper,

More information

Adaptation of Taylor s Formula for Solving System of Differential Equations

Adaptation of Taylor s Formula for Solving System of Differential Equations Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 2, 95-107 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2016.51144 Adaptation of Taylor s Formula for Solving System of Differential

More information

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013)

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013) ISSN 749-3889 (print, 749-3897 (online International Journal of Nonlinear Science Vol.9(205 No.2,pp.3-20 Approimate Solutions of Fractional Linear and Nonlinear Differential Equations Using Laplace Homotopy

More information

Research Article On the Numerical Solution of Differential-Algebraic Equations with Hessenberg Index-3

Research Article On the Numerical Solution of Differential-Algebraic Equations with Hessenberg Index-3 Discrete Dynamics in Nature and Society Volume, Article ID 474, pages doi:.55//474 Research Article On the Numerical Solution of Differential-Algebraic Equations with Hessenberg Inde- Melike Karta and

More information

New interpretation of homotopy perturbation method

New interpretation of homotopy perturbation method From the SelectedWorks of Ji-Huan He 26 New interpretation of homotopy perturbation method Ji-Huan He, Donghua University Available at: https://works.bepress.com/ji_huan_he/3/ International Journal of

More information

Research Article Solutions of the Force-Free Duffing-van der Pol Oscillator Equation

Research Article Solutions of the Force-Free Duffing-van der Pol Oscillator Equation International Differential Equations Volume 211, Article ID 852919, 9 pages doi:1.1155/211/852919 Research Article Solutions of the Force-Free Duffing-van der Pol Oscillator Equation Najeeb Alam Khan,

More information

Research Article Note on the Convergence Analysis of Homotopy Perturbation Method for Fractional Partial Differential Equations

Research Article Note on the Convergence Analysis of Homotopy Perturbation Method for Fractional Partial Differential Equations Abstract and Applied Analysis, Article ID 8392, 8 pages http://dxdoiorg/11155/214/8392 Research Article Note on the Convergence Analysis of Homotopy Perturbation Method for Fractional Partial Differential

More information

Cubic B-spline collocation method for solving time fractional gas dynamics equation

Cubic B-spline collocation method for solving time fractional gas dynamics equation Cubic B-spline collocation method for solving time fractional gas dynamics equation A. Esen 1 and O. Tasbozan 2 1 Department of Mathematics, Faculty of Science and Art, Inönü University, Malatya, 44280,

More information

Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations

Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations Applied Mathematical Sciences, Vol 6, 2012, no 96, 4787-4800 Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations A A Hemeda Department of Mathematics, Faculty of Science Tanta

More information

The k-fractional Logistic Equation with k-caputo Derivative

The k-fractional Logistic Equation with k-caputo Derivative Pure Mathematical Sciences, Vol. 4, 205, no., 9-5 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/0.2988/pms.205.488 The -Fractional Logistic Equation with -Caputo Derivative Rubén A. Cerutti Faculty of

More information

SOLUTIONS OF FRACTIONAL DIFFUSION EQUATIONS BY VARIATION OF PARAMETERS METHOD

SOLUTIONS OF FRACTIONAL DIFFUSION EQUATIONS BY VARIATION OF PARAMETERS METHOD THERMAL SCIENCE, Year 15, Vol. 19, Suppl. 1, pp. S69-S75 S69 SOLUTIONS OF FRACTIONAL DIFFUSION EQUATIONS BY VARIATION OF PARAMETERS METHOD by Syed Tauseef MOHYUD-DIN a, Naveed AHMED a, Asif WAHEED c, Muhammad

More information

The Shifted Data Problems by Using Transform of Derivatives

The Shifted Data Problems by Using Transform of Derivatives Applied Mathematical Sciences, Vol. 8, 2014, no. 151, 7529-7534 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49784 The Shifted Data Problems by Using Transform of Derivatives Hwajoon

More information

Application of He s Amplitude - Frequency. Formulation for Periodic Solution. of Nonlinear Oscillators

Application of He s Amplitude - Frequency. Formulation for Periodic Solution. of Nonlinear Oscillators Adv. heor. Appl. Mech., Vol.,, no. 7, - 8 Application of He s Amplitude - Frequency Formulation for Periodic Solution of Nonlinear Oscillators Jafar Langari* Islamic Azad University, Quchan Branch, Sama

More information

Soliton solution of the Kadomtse-Petviashvili equation by homotopy perturbation method

Soliton solution of the Kadomtse-Petviashvili equation by homotopy perturbation method ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 5 (2009) No. 1, pp. 38-44 Soliton solution of the Kadomtse-Petviashvili equation by homotopy perturbation method H. Mirgolbabaei

More information

Research Article On a New Reliable Algorithm

Research Article On a New Reliable Algorithm Hindawi Publishing Corporation International Journal of Differential Equations Volume 2009, Article ID 710250, 13 pages doi:10.1155/2009/710250 Research Article On a New Reliable Algorithm A. K. Alomari,

More information

Numerical Solution of 12 th Order Boundary Value Problems by Using Homotopy Perturbation Method

Numerical Solution of 12 th Order Boundary Value Problems by Using Homotopy Perturbation Method ohamed I. A. Othman, A.. S. ahdy and R.. Farouk / TJCS Vol. No. () 4-7 The Journal of athematics and Computer Science Available online at http://www.tjcs.com Journal of athematics and Computer Science

More information

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients Contemporary Engineering Sciences, Vol. 11, 2018, no. 16, 779-784 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.8262 Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable

More information

Generalized Differential Transform Method for non-linear Inhomogeneous Time Fractional Partial differential Equation

Generalized Differential Transform Method for non-linear Inhomogeneous Time Fractional Partial differential Equation International Journal of Sciences & Applied Research www.ijsar.in Generalized Differential Transform Method for non-linear Inhomogeneous Time Fractional Partial differential Equation D. Das 1 * and R.

More information

FRACTIONAL FOURIER TRANSFORM AND FRACTIONAL DIFFUSION-WAVE EQUATIONS

FRACTIONAL FOURIER TRANSFORM AND FRACTIONAL DIFFUSION-WAVE EQUATIONS FRACTIONAL FOURIER TRANSFORM AND FRACTIONAL DIFFUSION-WAVE EQUATIONS L. Boyadjiev*, B. Al-Saqabi** Department of Mathematics, Faculty of Science, Kuwait University *E-mail: boyadjievl@yahoo.com **E-mail:

More information

NUMERICAL SOLUTION OF TIME-FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USING SUMUDU DECOMPOSITION METHOD

NUMERICAL SOLUTION OF TIME-FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USING SUMUDU DECOMPOSITION METHOD NUMERICAL SOLUTION OF TIME-FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USING SUMUDU DECOMPOSITION METHOD KAMEL AL-KHALED 1,2 1 Department of Mathematics and Statistics, Sultan Qaboos University, P.O. Box

More information

Exact Solutions of Fractional-Order Biological Population Model

Exact Solutions of Fractional-Order Biological Population Model Commun. Theor. Phys. (Beijing China) 5 (009) pp. 99 996 c Chinese Physical Society and IOP Publishing Ltd Vol. 5 No. 6 December 15 009 Exact Solutions of Fractional-Order Biological Population Model A.M.A.

More information

Abdolamir Karbalaie 1, Hamed Hamid Muhammed 2, Maryam Shabani 3 Mohammad Mehdi Montazeri 4

Abdolamir Karbalaie 1, Hamed Hamid Muhammed 2, Maryam Shabani 3 Mohammad Mehdi Montazeri 4 ISSN 1749-3889 print, 1749-3897 online International Journal of Nonlinear Science Vol.172014 No.1,pp.84-90 Exact Solution of Partial Differential Equation Using Homo-Separation of Variables Abdolamir Karbalaie

More information

A Numerical-Computational Technique for Solving. Transformed Cauchy-Euler Equidimensional. Equations of Homogeneous Type

A Numerical-Computational Technique for Solving. Transformed Cauchy-Euler Equidimensional. Equations of Homogeneous Type Advanced Studies in Theoretical Physics Vol. 9, 015, no., 85-9 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/astp.015.41160 A Numerical-Computational Technique for Solving Transformed Cauchy-Euler

More information

ON THE SOLUTIONS OF NON-LINEAR TIME-FRACTIONAL GAS DYNAMIC EQUATIONS: AN ANALYTICAL APPROACH

ON THE SOLUTIONS OF NON-LINEAR TIME-FRACTIONAL GAS DYNAMIC EQUATIONS: AN ANALYTICAL APPROACH International Journal of Pure and Applied Mathematics Volume 98 No. 4 2015, 491-502 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v98i4.8

More information

On The Exact Solution of Newell-Whitehead-Segel Equation Using the Homotopy Perturbation Method

On The Exact Solution of Newell-Whitehead-Segel Equation Using the Homotopy Perturbation Method On The Exact Solution of Newell-Whitehead-Segel Equation Using the Homotopy Perturbation Method S. Salman Nourazar, Mohsen Soori, Akbar Nazari-Golshan To cite this version: S. Salman Nourazar, Mohsen Soori,

More information

Variational iteration method for fractional heat- and wave-like equations

Variational iteration method for fractional heat- and wave-like equations Nonlinear Analysis: Real World Applications 1 (29 1854 1869 www.elsevier.com/locate/nonrwa Variational iteration method for fractional heat- and wave-like equations Yulita Molliq R, M.S.M. Noorani, I.

More information

Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition Method

Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.4(2007) No.3,pp.227-234 Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition

More information

A Study On Linear and Non linear Schrodinger Equations by Reduced Differential Transform Method

A Study On Linear and Non linear Schrodinger Equations by Reduced Differential Transform Method Malaya J. Mat. 4(1)(2016) 59-64 A Study On Linear and Non linear Schrodinger Equations by Reduced Differential Transform Method T.R. Ramesh Rao a, a Department of Mathematics and Actuarial Science, B.S.

More information

Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree Polynomial Forcing Function

Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree Polynomial Forcing Function Advanced Studies in Theoretical Physics Vol., 207, no. 2, 679-685 HIKARI Ltd, www.m-hikari.com https://doi.org/0.2988/astp.207.7052 Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree

More information

On the Equation of Fourth Order with. Quadratic Nonlinearity

On the Equation of Fourth Order with. Quadratic Nonlinearity International Journal of Mathematical Analysis Vol. 9, 015, no. 5, 659-666 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.015.5109 On the Equation of Fourth Order with Quadratic Nonlinearity

More information

NUMERICAL SOLUTION OF FRACTIONAL ORDER DIFFERENTIAL EQUATIONS USING HAAR WAVELET OPERATIONAL MATRIX

NUMERICAL SOLUTION OF FRACTIONAL ORDER DIFFERENTIAL EQUATIONS USING HAAR WAVELET OPERATIONAL MATRIX Palestine Journal of Mathematics Vol. 6(2) (217), 515 523 Palestine Polytechnic University-PPU 217 NUMERICAL SOLUTION OF FRACTIONAL ORDER DIFFERENTIAL EQUATIONS USING HAAR WAVELET OPERATIONAL MATRIX Raghvendra

More information

Stability Analysis and Numerical Solution for. the Fractional Order Biochemical Reaction Model

Stability Analysis and Numerical Solution for. the Fractional Order Biochemical Reaction Model Nonlinear Analysis and Differential Equations, Vol. 4, 16, no. 11, 51-53 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/nade.16.6531 Stability Analysis and Numerical Solution for the Fractional

More information

The Homotopy Perturbation Method for Solving the Modified Korteweg-de Vries Equation

The Homotopy Perturbation Method for Solving the Modified Korteweg-de Vries Equation The Homotopy Perturbation Method for Solving the Modified Korteweg-de Vries Equation Ahmet Yildirim Department of Mathematics, Science Faculty, Ege University, 351 Bornova-İzmir, Turkey Reprint requests

More information

Optimal Homotopy Asymptotic Method for Solving Gardner Equation

Optimal Homotopy Asymptotic Method for Solving Gardner Equation Applied Mathematical Sciences, Vol. 9, 2015, no. 53, 2635-2644 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.52145 Optimal Homotopy Asymptotic Method for Solving Gardner Equation Jaharuddin

More information

New Iterative Method for Time-Fractional Schrödinger Equations

New Iterative Method for Time-Fractional Schrödinger Equations ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 9 2013) No. 2, pp. 89-95 New Iterative Method for Time-Fractional Schrödinger Equations Ambreen Bibi 1, Abid Kamran 2, Umer Hayat

More information

Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation and Exp-Function Methods

Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation and Exp-Function Methods Abstract and Applied Analysis Volume 2012, Article ID 350287, 7 pages doi:10.1155/2012/350287 Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation

More information

) -Expansion Method for Solving (2+1) Dimensional PKP Equation. The New Generalized ( G. 1 Introduction. ) -expansion method

) -Expansion Method for Solving (2+1) Dimensional PKP Equation. The New Generalized ( G. 1 Introduction. ) -expansion method ISSN 749-3889 (print, 749-3897 (online International Journal of Nonlinear Science Vol.4(0 No.,pp.48-5 The New eneralized ( -Expansion Method for Solving (+ Dimensional PKP Equation Rajeev Budhiraja, R.K.

More information

Solution of the Hirota Equation Using Lattice-Boltzmann and the Exponential Function Methods

Solution of the Hirota Equation Using Lattice-Boltzmann and the Exponential Function Methods Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 7, 307-315 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.7418 Solution of the Hirota Equation Using Lattice-Boltzmann and the

More information

Solution of Partial Differential Equations with Variables Coefficients Using Double Sumudu Transform

Solution of Partial Differential Equations with Variables Coefficients Using Double Sumudu Transform International Journal of Scientific and Research Publications, Volume 6, Issue 6, June 2016 37 Solution of Partial Differential Equations with Variables Coefficients Using Double Sumudu Transform Mukhtar

More information

A Domian Decomposition Sumudu Transform Method for Solving Fractional Nonlinear Equations

A Domian Decomposition Sumudu Transform Method for Solving Fractional Nonlinear Equations Math. Sci. Lett. 5, No. 1, 39-48 (2016) 39 Mathematical Sciences Letters An International Journal http://dx.doi.org/10.18576/msl/050106 A Domian Decomposition Sumudu Transform Method for Solving Fractional

More information

HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION. 1. Introduction

HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION. 1. Introduction International Journal of Analysis and Applications ISSN 229-8639 Volume 0, Number (206), 9-6 http://www.etamaths.com HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION MOUNTASSIR

More information

The variational homotopy perturbation method for solving the K(2,2)equations

The variational homotopy perturbation method for solving the K(2,2)equations International Journal of Applied Mathematical Research, 2 2) 213) 338-344 c Science Publishing Corporation wwwsciencepubcocom/indexphp/ijamr The variational homotopy perturbation method for solving the

More information

Distribution Solutions of Some PDEs Related to the Wave Equation and the Diamond Operator

Distribution Solutions of Some PDEs Related to the Wave Equation and the Diamond Operator Applied Mathematical Sciences, Vol. 7, 013, no. 111, 5515-554 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.013.3844 Distribution Solutions of Some PDEs Related to the Wave Equation and the

More information

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique Int. Journal of Math. Analysis, Vol. 7, 3, no. 53, 65-636 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ijma.3.3894 A Study on Linear and Nonlinear Stiff Problems Using Single-Term Haar Wavelet Series

More information

Research Article A New Method for Riccati Differential Equations Based on Reproducing Kernel and Quasilinearization Methods

Research Article A New Method for Riccati Differential Equations Based on Reproducing Kernel and Quasilinearization Methods Abstract and Applied Analysis Volume 0, Article ID 603748, 8 pages doi:0.55/0/603748 Research Article A New Method for Riccati Differential Equations Based on Reproducing Kernel and Quasilinearization

More information

Solving nonlinear fractional differential equation using a multi-step Laplace Adomian decomposition method

Solving nonlinear fractional differential equation using a multi-step Laplace Adomian decomposition method Annals of the University of Craiova, Mathematics and Computer Science Series Volume 39(2), 2012, Pages 200 210 ISSN: 1223-6934 Solving nonlinear fractional differential equation using a multi-step Laplace

More information

Computers and Mathematics with Applications. A modified variational iteration method for solving Riccati differential equations

Computers and Mathematics with Applications. A modified variational iteration method for solving Riccati differential equations Computers and Mathematics with Applications 6 (21) 1868 1872 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa A modified

More information

Basins of Attraction for Optimal Third Order Methods for Multiple Roots

Basins of Attraction for Optimal Third Order Methods for Multiple Roots Applied Mathematical Sciences, Vol., 6, no., 58-59 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ams.6.65 Basins of Attraction for Optimal Third Order Methods for Multiple Roots Young Hee Geum Department

More information

Research Article Local Fractional Variational Iteration Method for Inhomogeneous Helmholtz Equation within Local Fractional Derivative Operator

Research Article Local Fractional Variational Iteration Method for Inhomogeneous Helmholtz Equation within Local Fractional Derivative Operator Mathematical Problems in Engineering, Article ID 9322, 7 pages http://d.doi.org/.55/24/9322 Research Article Local Fractional Variational Iteration Method for Inhomogeneous Helmholtz Equation within Local

More information

Second Hankel Determinant Problem for a Certain Subclass of Univalent Functions

Second Hankel Determinant Problem for a Certain Subclass of Univalent Functions International Journal of Mathematical Analysis Vol. 9, 05, no. 0, 493-498 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ijma.05.55 Second Hankel Determinant Problem for a Certain Subclass of Univalent

More information

The Representation of Energy Equation by Laplace Transform

The Representation of Energy Equation by Laplace Transform Int. Journal of Math. Analysis, Vol. 8, 24, no. 22, 93-97 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ijma.24.442 The Representation of Energy Equation by Laplace Transform Taehee Lee and Hwajoon

More information

Application of fractional sub-equation method to the space-time fractional differential equations

Application of fractional sub-equation method to the space-time fractional differential equations Int. J. Adv. Appl. Math. and Mech. 4(3) (017) 1 6 (ISSN: 347-59) Journal homepage: www.ijaamm.com IJAAMM International Journal of Advances in Applied Mathematics and Mechanics Application of fractional

More information

Generalized Functions for the Fractional Calculus. and Dirichlet Averages

Generalized Functions for the Fractional Calculus. and Dirichlet Averages International Mathematical Forum, Vol. 8, 2013, no. 25, 1199-1204 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2013.3483 Generalized Functions for the Fractional Calculus and Dirichlet Averages

More information

The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation

The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation M. M. KHADER Faculty of Science, Benha University Department of Mathematics Benha EGYPT mohamedmbd@yahoo.com N. H. SWETLAM

More information

On Some Identities and Generating Functions

On Some Identities and Generating Functions Int. Journal of Math. Analysis, Vol. 7, 2013, no. 38, 1877-1884 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.35131 On Some Identities and Generating Functions for k- Pell Numbers Paula

More information

Variational iteration method for q-difference equations of second order

Variational iteration method for q-difference equations of second order Sichuan University From the SelectedWorks of G.C. Wu Summer June 6, 1 Variational iteration method for -difference euations of second order Guo-Cheng Wu Available at: https://works.bepress.com/gcwu/1/

More information

An efficient algorithm on timefractional. equations with variable coefficients. Research Article OPEN ACCESS. Jamshad Ahmad*, Syed Tauseef Mohyud-Din

An efficient algorithm on timefractional. equations with variable coefficients. Research Article OPEN ACCESS. Jamshad Ahmad*, Syed Tauseef Mohyud-Din OPEN ACCESS Research Article An efficient algorithm on timefractional partial differential equations with variable coefficients Jamshad Ahmad*, Syed Tauseef Mohyud-Din Department of Mathematics, Faculty

More information

Diophantine Equations. Elementary Methods

Diophantine Equations. Elementary Methods International Mathematical Forum, Vol. 12, 2017, no. 9, 429-438 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.7223 Diophantine Equations. Elementary Methods Rafael Jakimczuk División Matemática,

More information

SolitaryWaveSolutionsfortheGeneralizedZakharovKuznetsovBenjaminBonaMahonyNonlinearEvolutionEquation

SolitaryWaveSolutionsfortheGeneralizedZakharovKuznetsovBenjaminBonaMahonyNonlinearEvolutionEquation Global Journal of Science Frontier Research: A Physics Space Science Volume 16 Issue 4 Version 1.0 Year 2016 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

New computational method for solving fractional Riccati equation

New computational method for solving fractional Riccati equation Available online at www.isr-publications.com/jmcs J. Math. Computer Sci., 17 2017), 106 114 Research Article Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs New computational method for

More information

Journal of Engineering Science and Technology Review 2 (1) (2009) Research Article

Journal of Engineering Science and Technology Review 2 (1) (2009) Research Article Journal of Engineering Science and Technology Review 2 (1) (2009) 118-122 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org Thin film flow of non-newtonian fluids on a

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 1 (211) 233 2341 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Variational

More information

UNSTEADY MAGNETOHYDRODYNAMICS THIN FILM FLOW OF A THIRD GRADE FLUID OVER AN OSCILLATING INCLINED BELT EMBEDDED IN A POROUS MEDIUM

UNSTEADY MAGNETOHYDRODYNAMICS THIN FILM FLOW OF A THIRD GRADE FLUID OVER AN OSCILLATING INCLINED BELT EMBEDDED IN A POROUS MEDIUM THERMAL SCIENCE, Year 2016, No. 5, pp. 875-887 875 UNSTEADY MAGNETOHYDRODYNAMICS THIN FILM FLOW OF A THIRD GRADE FLUID OVER AN OSCILLATING INCLINED BELT EMBEDDED IN A POROUS MEDIUM by Fazal GHANI a, Taza

More information

Application of He s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate

Application of He s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate Physics Letters A 37 007) 33 38 www.elsevier.com/locate/pla Application of He s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate M. Esmaeilpour, D.D. Ganji

More information

SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD

SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD R. C. Mittal 1 and Ruchi Nigam 2 1 Department of Mathematics, I.I.T. Roorkee, Roorkee, India-247667. Email: rcmmmfma@iitr.ernet.in

More information

Research Article The Extended Fractional Subequation Method for Nonlinear Fractional Differential Equations

Research Article The Extended Fractional Subequation Method for Nonlinear Fractional Differential Equations Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2012, Article ID 924956, 11 pages doi:10.1155/2012/924956 Research Article The Extended Fractional Subequation Method for Nonlinear

More information

Research Article Approximation Algorithm for a System of Pantograph Equations

Research Article Approximation Algorithm for a System of Pantograph Equations Applied Mathematics Volume 01 Article ID 714681 9 pages doi:101155/01/714681 Research Article Approximation Algorithm for a System of Pantograph Equations Sabir Widatalla 1 and Mohammed Abdulai Koroma

More information

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized ISSN 749-889 (print), 749-897 (online) International Journal of Nonlinear Science Vol.8(2009) No.4,pp.448-455 Homotopy Perturbation Method for the Fisher s Equation and Its Generalized M. Matinfar,M. Ghanbari

More information

An Efficient Multiscale Runge-Kutta Galerkin Method for Generalized Burgers-Huxley Equation

An Efficient Multiscale Runge-Kutta Galerkin Method for Generalized Burgers-Huxley Equation Applied Mathematical Sciences, Vol. 11, 2017, no. 30, 1467-1479 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.7141 An Efficient Multiscale Runge-Kutta Galerkin Method for Generalized Burgers-Huxley

More information

Remark on the Sensitivity of Simulated Solutions of the Nonlinear Dynamical System to the Used Numerical Method

Remark on the Sensitivity of Simulated Solutions of the Nonlinear Dynamical System to the Used Numerical Method International Journal of Mathematical Analysis Vol. 9, 2015, no. 55, 2749-2754 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.59236 Remark on the Sensitivity of Simulated Solutions of

More information

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials Applied Mathematical Sciences, Vol. 8, 2014, no. 35, 1723-1730 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4127 A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating

More information

Research Article Soliton Solutions for the Wick-Type Stochastic KP Equation

Research Article Soliton Solutions for the Wick-Type Stochastic KP Equation Abstract and Applied Analysis Volume 212, Article ID 327682, 9 pages doi:1.1155/212/327682 Research Article Soliton Solutions for the Wick-Type Stochastic KP Equation Y. F. Guo, 1, 2 L. M. Ling, 2 and

More information

The New Exact Solutions of the New Coupled Konno-Oono Equation By Using Extended Simplest Equation Method

The New Exact Solutions of the New Coupled Konno-Oono Equation By Using Extended Simplest Equation Method Applied Mathematical Sciences, Vol. 12, 2018, no. 6, 293-301 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.8118 The New Exact Solutions of the New Coupled Konno-Oono Equation By Using

More information

Certain Generating Functions Involving Generalized Mittag-Leffler Function

Certain Generating Functions Involving Generalized Mittag-Leffler Function International Journal of Mathematical Analysis Vol. 12, 2018, no. 6, 269-276 HIKARI Ltd, www.m-hiari.com https://doi.org/10.12988/ijma.2018.8431 Certain Generating Functions Involving Generalized Mittag-Leffler

More information

Application of Laplace Adomian Decomposition Method for the soliton solutions of Boussinesq-Burger equations

Application of Laplace Adomian Decomposition Method for the soliton solutions of Boussinesq-Burger equations Int. J. Adv. Appl. Math. and Mech. 3( (05 50 58 (ISSN: 347-59 IJAAMM Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics Application of Laplace Adomian

More information

Morphisms Between the Groups of Semi Magic Squares and Real Numbers

Morphisms Between the Groups of Semi Magic Squares and Real Numbers International Journal of Algebra, Vol. 8, 2014, no. 19, 903-907 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2014.212137 Morphisms Between the Groups of Semi Magic Squares and Real Numbers

More information

On Some Identities of k-fibonacci Sequences Modulo Ring Z 6 and Z 10

On Some Identities of k-fibonacci Sequences Modulo Ring Z 6 and Z 10 Applied Mathematical Sciences, Vol. 12, 2018, no. 9, 441-448 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.8228 On Some Identities of k-fibonacci Sequences Modulo Ring Z 6 and Z 10 Tri

More information

Application of new iterative transform method and modified fractional homotopy analysis transform method for fractional Fornberg-Whitham equation

Application of new iterative transform method and modified fractional homotopy analysis transform method for fractional Fornberg-Whitham equation Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 9 (2016), 2419 2433 Research Article Application of new iterative transform method and modified fractional homotopy analysis transform method for

More information

Sequences from Heptagonal Pyramid Corners of Integer

Sequences from Heptagonal Pyramid Corners of Integer International Mathematical Forum, Vol 13, 2018, no 4, 193-200 HIKARI Ltd, wwwm-hikaricom https://doiorg/1012988/imf2018815 Sequences from Heptagonal Pyramid Corners of Integer Nurul Hilda Syani Putri,

More information

Dynamical Behavior for Optimal Cubic-Order Multiple Solver

Dynamical Behavior for Optimal Cubic-Order Multiple Solver Applied Mathematical Sciences, Vol., 7, no., 5 - HIKARI Ltd, www.m-hikari.com https://doi.org/.988/ams.7.6946 Dynamical Behavior for Optimal Cubic-Order Multiple Solver Young Hee Geum Department of Applied

More information

The Homotopy Perturbation Method for Solving the Kuramoto Sivashinsky Equation

The Homotopy Perturbation Method for Solving the Kuramoto Sivashinsky Equation IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 12 (December. 2013), V3 PP 22-27 The Homotopy Perturbation Method for Solving the Kuramoto Sivashinsky Equation

More information

Generalized Differential Transform Method to Space- Time Fractional Non-linear Schrodinger Equation

Generalized Differential Transform Method to Space- Time Fractional Non-linear Schrodinger Equation International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 455-737 Volume, Issue, December 7, PP 7-3 Generalized Differential Transform Method to Space- Time Fractional Non-linear

More information