(Received 13 December 2011, accepted 27 December 2012) y(x) Y (k) = 1 [ d k ] dx k. x=0. y(x) = x k Y (k), (2) k=0. [ d k ] y(x) x k k!

Size: px
Start display at page:

Download "(Received 13 December 2011, accepted 27 December 2012) y(x) Y (k) = 1 [ d k ] dx k. x=0. y(x) = x k Y (k), (2) k=0. [ d k ] y(x) x k k!"

Transcription

1 ISSN (print), (online) International Journal of Nonlinear Science Vol.6(23) No.,pp.87-9 Solving a Class of Volterra Integral Equation Systems by the Differential Transform Method Ercan Celi, Khatereh Tabatabaei 2 Atatur University Faculty of Science, Department of Mathematics, 2524-Erzurum-Turey 2 Atatur University Faculty of Science, Department of Mathematics, 2524-Erzurum-Turey (Received 3 December 2, accepted 27 December 22) Abstract: In this paper, Numerical solution linear and non-linear systems of Volterra integral equations of the first ind and second ind is considered by differential transform method. We applied these method to three example. this powerful method catches the exact solution. This examples are prepared to show the efficiency and simplicity of the method. Keywords:Volterra integral equations system; differential transform method; taylor series expansion Introduction The solution of volterra integral equations have a major role in the fields of science and engineering.when a physical system is modeled under the differential sense; There are various techniques for solving a system of Volterra integral equations, e.g. Adomian decomposition method (ADM) [,2]. DTM is a semi analytical-numerical technique that depends on Taylor series. It was first introduced by Zhou in a study about electrical circuits [3], difference equations [4], differential difference equations [5], fractional differential equations [6], pantograph equations [7] by using this method. This paper outlines the application of DTM to the systems of volterra integral equations. Two problems for Volterra integral equation systems of the first ind and one problem for Volterra integral equation systems of the second ind are solved to mae clear the application of the transform. Differential transform method is based on taylor series expansion. 2 Differential transform method Differential transform of function y(x)is defined as follows: Y () = [ d ] y(x)! dx, () x= In equation (), y(x) is the original function and Y () is the transformed function, which is called the T-function. Differential inverse transform of Y () is defined as from equation () and (2), we obtain = x Y (), (2) = x! [ d ] y(x) dx, (3) x= Equation (3) implies that the concept of differential transform is derived from Taylor series expansion, but the method does not evaluate the derivatives symbolically. However, relative derivatives are calculated by an iterative way which are Corresponding author. address: erceli@atauni.edu.tr Copyright c World Academic Press, World Academic Union IJNS /747

2 88 International Journal of Nonlinear Science, Vol.6(23), No., pp described by the transformed equations of the original functions. In this study we use the lower case letter to represent the original function and upper case letter represent the transformed function. From the definitions of equations () and (2), it is easily proven that the transformed functions comply with the basic mathematics operations shown in Table. In actual applications, the function y(x) is expressed by a finite series and equation (2) can be written as m x Y (), (4) = Equation (3) implies that =m+ x Y () is negligibly small. In fact, m is decided by the convergence of natural frequency in this study. Table : The fundamental operations of one-dimensional differential transform method Original function Transformed function u(x) + v(x) Y () = U() + V () cw(x) Y () = cw () dw(x) dx Y () = ( + )W ( + ) dj w(x) dx Y () = ( + )( + 2)...( + j)w ( + j) j u(x)v(x) Y () = r= r) U(r)V {( x j Y () = δ( j) =, = j, j Theorem if x u(t)dt then Y () = U( ), where. Theorem 2 if x u (t)u 2 (t)dt then Y () = r= U (r)u 2 ( r ), where. Theorem 3 if x u (t)u 2 (t)...u n (t)u n (t)dt then Y () = U 2 ( 2 )...U n ( n n 2 )U n ( n ), where. 3 Numerical examples n n = n 2= 2 = = U ( ) Example. Consider the following system of integral equations of the first ind with the exact solutions u(x) = x 2 and v(x) = x. ( x 2 + t 2 )(u(t) + v 3 (t))dt = 2 x6 2 5 x5 + 4 x4 + 3 x3, By differentiation we have: (5 + x t)(u 3 (t) + v(t))dt = 5 2 x2 6 x x x8, (5) u(x) + v 3 (x) 2x (u(t) + v 3 (t))dt = 2 x5 2 3 x4 + x 3 + x 2, Then u 3 (x) v(x) + 5 (u 3 (t) v(t))dt = x x2 + x x7, (6) u(x) = 2 x5 2 3 x4 + x 3 + x 2 v 3 (x) + 2x v(x) = x + x2 x 6 35 x7 + u 3 (x) + 5 (u(t) + v 3 (t))dt, (u 3 (t) v(t))dt, (7) IJNS for contribution: editor@nonlinearscience.org.u

3 E. Celi, K. Tabatabaei : Solving a Class of Volterra Integral Equation Systems 89 Eq. (7) is transformed by using the fundamental operations of one-dimensional differential transform method in Table and Theorems 2 and 3 as follows: U() = 2 δ( 5) 2 δ( 4) + δ( 3) + δ( 2) = = l= V ( )V ( 2 )V ( 2 ) + ( l l 2δ( l ) 2 2= = l= 2δ( l )U(l ) l ) V ( )V ( 2 )V (l 2 ), (8) V () = δ( ) + δ( 2) δ( 6) δ( 7) = = 2 2= = U( )U( 2 )U( 2 ) U( )U( 2 )U( 2 ) V ( ), (9) 5 Note that the transformations of integral terms are considered for according to Theorems 2 and 3 The valuse U() and V () in =,, 2,... of Eqs.(8) and (9) can be evaluated as follows: U() =, U() =, U(2) =, U(i + ) =, i = 2, 3, 4,..., V () =, V () =, V (j + ) =, j =, 2, 3,... () by using the inverse transformation rule in Eq. (2), the following solution can be obtained: Example 2. Consider the following system of Volterra integral equations cos(x) 2 sin2 (x) + sin(x) x + u(x) = x 2, v(x) = x. () f 2 (s)ds + f (s)f 2 (s)ds = f (x), f 2 2 (s)ds = f (x), (2) where the exact solutions are f (x) = cos(x) and f 2 (x) = sin(x). By using the fundamental operations of one-dimensional differential transform method in Table, Eq. () transforms to the following recurrence relations.! cos(π 2 ) 2 l= l! sin(lπ 2 ) l)π sin(( ) + F (l)f 2 ( l ) = F (), (3) ( l)! 2! sin(π 2 ) δ( ) + F (l)f ( l ) + l= l= F 2 (l)f 2 ( l ) = F 2 (). (4) Note that the transformations of integral terms are considered for according to Theorems 2 and 3. The valuse F () and F 2 () in =,, 2,... of Eqs. (3) and (4) can be evaluated as follows: l= F () =, F () =, F (2) = 2, F (3) =, F (4) = 24, F (5) =, F (6) = 72, F (7) =, F (8) = 432,..., F 2 () =, F 2 () =, F 2 (2) =, F 2 (3) = 6, F 2(4) =, F 2 (5) = 2, F 2(6) =, F 2 (7) = 54, F 2(8) =, F 2 (9) =,... (5) IJNS homepage:

4 9 International Journal of Nonlinear Science, Vol.6(23), No., pp and then, by using the inverse transformation rule in Eq. (2), the following solution can be obtained: f (x) = 2! x2 + 4! x4 6! x6 + 8! x8... = cosx, f 2 (x) = x 3! x3 + 5! x5 7! x7 + 9! x9... = sinx, (6) Example 3.Consider the following system of linear integral equations with the exact solutions: f(x) = x 2 and g(x) = x. By differentiation with respect to x we have: and then: (( x 2 + t 2 )f(t) (2x t)g(t))dt = 3 x3 2 5 x5, ((x + t 2 )f(t) (2x t)g(t))dt = x 2 6 x3 + 3 x4 5 x5. (7) f(x) xg(x) 2 (x 2 + x)f(x) 2g(x) + f(x) = x x4 + xg(x) + 2 (xf(t) + g(t))dt = x x4, (f(t) g(t))dt = 2x x x3 + x 4, (8) g(x) = x x x3 + 2 x4 2 (x2 + x)f(x) 2 (xf(t) + g(t))dt, (f(t) g(t))dt, (9) Equation system (9) is transformed by using the fundamental operations of one-dimensional differential transform method in Table and Theorems and Theorems 2 to obtain the following recurrence relations: F () = δ( 2) 2 3 δ( 4) + δ(l )G( l) + 2 l= l= l δ( l )F (l l) + 2 G( l), (2) G() = δ( 2) 4 δ( 2) δ( 3) + δ( 4) 2 δ(l )F ( l) δ(l 2)F ( l) F ( l) + 2 G( l). (2) l= l= Note that the transformations of integral terms are considered for according to Theorems 2 and 3. The value F () and G() in =,, 2,... of Eqs. (9) and (2) can be evaluated as follows: F () =, F () =, F (2) =, F (i + ) =, i = 2, 3, 4,..., G() =, G() =, G(j + ) =, j =, 2, 3,... (22) by using the inverse transformation rule in Eq. (2), the following solution can be obtained: 4 Conclusion f(x) = x 2, g(x) = x. (23) In this study, the differential transform method for the solution of Volterra integral equation systems is successfully expanded. In the first two examples Volterra integral equation systems of the first ind and the last problem for Volterra integral equation systems of the second ind are considered. It is observed that the method is robust and is applicable to various types of integral equation systems. The method gives rapidly converging series solutions. The accuracy of the obtained solution can be improved by taing more terms in the solution. IJNS for contribution: editor@nonlinearscience.org.u

5 E. Celi, K. Tabatabaei : Solving a Class of Volterra Integral Equation Systems 9 References [] Arioglu A, Ozol I. Solution of differential?difference equations by using differential transform method. Appl. Math. Comput, 8 (26): [2] Arioglu A, Ozol I. Solution of fractional differential equations by using differential transform method. Chaos Soliton. Fract, 34 (27): [3] Biazar K, Babolian E, Islam R. Solution of a system of Volterra integral equations of the first ind by Adomian method. Appl. Math. Compute,39 (23): [4] Malenejad K, Mirzaee F, Abbasbandy S. TSolving linear integro-differential equations system by using rationalized Haar functions method. Appl.Math. Comput,55 (24): [5] Sadeghi Goghary H, Javadi Sh, Babolian E. Restarted Adomian method for system of nonlinear Volterra integral equations. Appl. Math. Comput, 6(25): [6] Kesin Y, Kurnaz A, Kiris M.E, Oturanc G. Approximate solutions of generalized pantograph equations by the differential transform method. Int. J.Nonlinear Sci, 8 (27): [7] Zhou J.K. Differential Transformation and its Application for Electrical Circuits. Huazhong University Press Wuhan, China, (986). IJNS homepage:

Numerical Solution of Duffing Equation by the Differential Transform Method

Numerical Solution of Duffing Equation by the Differential Transform Method Appl. Math. Inf. Sci. Lett. 2, No., -6 (204) Applied Mathematics & Information Sciences Letters An International Journal http://dx.doi.org/0.2785/amisl/0200 Numerical Solution of Duffing Equation by the

More information

THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION. Haldun Alpaslan Peker, Onur Karaoğlu and Galip Oturanç

THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION. Haldun Alpaslan Peker, Onur Karaoğlu and Galip Oturanç Mathematical and Computational Applications, Vol. 16, No., pp. 507-513, 011. Association for Scientific Research THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION

More information

Differential Transform Method for Solving. Linear and Nonlinear Systems of. Ordinary Differential Equations

Differential Transform Method for Solving. Linear and Nonlinear Systems of. Ordinary Differential Equations Applied Mathematical Sciences, Vol 5, 2011, no 70, 3465-3472 Differential Transform Method for Solving Linear and Nonlinear Systems of Ordinary Differential Equations Farshid Mirzaee Department of Mathematics

More information

On The Numerical Solution of Differential-Algebraic Equations(DAES) with Index-3 by Pade Approximation

On The Numerical Solution of Differential-Algebraic Equations(DAES) with Index-3 by Pade Approximation Appl. Math. Inf. Sci. Lett., No. 2, 7-23 (203) 7 Applied Mathematics & Information Sciences Letters An International Journal On The Numerical Solution of Differential-Algebraic Equations(DAES) with Index-3

More information

Applications Of Differential Transform Method To Integral Equations

Applications Of Differential Transform Method To Integral Equations American Journal of Engineering Research (AJER) 28 American Journal of Engineering Research (AJER) e-issn: 232-847 p-issn : 232-936 Volume-7, Issue-, pp-27-276 www.ajer.org Research Paper Open Access Applications

More information

Applications of Differential Transform Method To Initial Value Problems

Applications of Differential Transform Method To Initial Value Problems American Journal of Engineering Research (AJER) 207 American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-6, Issue-2, pp-365-37 www.ajer.org Research Paper Open Access

More information

Convergence of Differential Transform Method for Ordinary Differential Equations

Convergence of Differential Transform Method for Ordinary Differential Equations Journal of Advances in Mathematics and Computer Science 246: 1-17, 2017; Article no.jamcs.36489 Previously nown as British Journal of Mathematics & Computer Science ISSN: 2231-0851 Convergence of Differential

More information

A Maple program for computing Adomian polynomials

A Maple program for computing Adomian polynomials International Mathematical Forum, 1, 2006, no. 39, 1919-1924 A Maple program for computing Adomian polynomials Jafar Biazar 1 and Masumeh Pourabd Department of Mathematics, Faculty of Science Guilan University

More information

1. Introduction , Campus, Karaman, Turkey b Department of Mathematics, Science Faculty of Selcuk University, 42100, Campus-Konya, Turkey

1. Introduction , Campus, Karaman, Turkey b Department of Mathematics, Science Faculty of Selcuk University, 42100, Campus-Konya, Turkey Application of Differential Transform Method for El Nino Southern Oscillation (ENSO) Model with compared Adomian Decomposition and Variational Iteration Methods Murat Gubes a, H. Alpaslan Peer b, Galip

More information

Solution of Seventh Order Boundary Value Problem by Differential Transformation Method

Solution of Seventh Order Boundary Value Problem by Differential Transformation Method World Applied Sciences Journal 16 (11): 1521-1526, 212 ISSN 1818-4952 IDOSI Publications, 212 Solution of Seventh Order Boundary Value Problem by Differential Transformation Method Shahid S. Siddiqi, Ghazala

More information

BLOCK-PULSE FUNCTIONS AND THEIR APPLICATIONS TO SOLVING SYSTEMS OF HIGHER-ORDER NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

BLOCK-PULSE FUNCTIONS AND THEIR APPLICATIONS TO SOLVING SYSTEMS OF HIGHER-ORDER NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS Electronic Journal of Differential Equations, Vol. 214 (214), No. 54, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu BLOCK-PULSE FUNCTIONS

More information

Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations

Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations Applied Mathematical Sciences, Vol. 6, 2012, no. 10, 487-497 Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations A. R. Vahidi a and B. Jalalvand b (a) Department

More information

Differential transformation method for solving one-space-dimensional telegraph equation

Differential transformation method for solving one-space-dimensional telegraph equation Volume 3, N 3, pp 639 653, 2 Copyright 2 SBMAC ISSN -825 wwwscielobr/cam Differential transformation method for solving one-space-dimensional telegraph equation B SOLTANALIZADEH Young Researchers Club,

More information

Adomian Decomposition Method with Laguerre Polynomials for Solving Ordinary Differential Equation

Adomian Decomposition Method with Laguerre Polynomials for Solving Ordinary Differential Equation J. Basic. Appl. Sci. Res., 2(12)12236-12241, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal of Basic and Applied Scientific Research www.textroad.com Adomian Decomposition Method with Laguerre

More information

Exact Solutions for Systems of Volterra Integral Equations of the First Kind by Homotopy Perturbation Method

Exact Solutions for Systems of Volterra Integral Equations of the First Kind by Homotopy Perturbation Method Applied Mathematical Sciences, Vol. 2, 28, no. 54, 2691-2697 Eact Solutions for Systems of Volterra Integral Equations of the First Kind by Homotopy Perturbation Method J. Biazar 1, M. Eslami and H. Ghazvini

More information

SOLVING THE KLEIN-GORDON EQUATIONS VIA DIFFERENTIAL TRANSFORM METHOD

SOLVING THE KLEIN-GORDON EQUATIONS VIA DIFFERENTIAL TRANSFORM METHOD Journal of Science and Arts Year 15, No. 1(30), pp. 33-38, 2015 ORIGINAL PAPER SOLVING THE KLEIN-GORDON EQUATIONS VIA DIFFERENTIAL TRANSFORM METHOD JAMSHAD AHMAD 1, SANA BAJWA 2, IFFAT SIDDIQUE 3 Manuscript

More information

A New Numerical Scheme for Solving Systems of Integro-Differential Equations

A New Numerical Scheme for Solving Systems of Integro-Differential Equations Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol. 1, No. 2, 213, pp. 18-119 A New Numerical Scheme for Solving Systems of Integro-Differential Equations Esmail Hesameddini

More information

On a New Aftertreatment Technique for Differential Transformation Method and its Application to Non-linear Oscillatory Systems

On a New Aftertreatment Technique for Differential Transformation Method and its Application to Non-linear Oscillatory Systems ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.8(2009) No.4,pp.488-497 On a New Aftertreatment Technique for Differential Transformation Method and its Application

More information

A SEMI-ANALYTICAL ANALYSIS OF A FREE CONVECTION BOUNDARY-LAYER FLOW OVER A VERTICAL PLATE

A SEMI-ANALYTICAL ANALYSIS OF A FREE CONVECTION BOUNDARY-LAYER FLOW OVER A VERTICAL PLATE A SEMI-ANALYTICAL ANALYSIS OF A FREE CONVECTION BOUNDARY-LAYER FLOW OVER A VERTICAL PLATE Haldun Alpaslan PEKER and Galip OTURANÇ Department of Mathematics, Faculty of Science, Selcu University, 475, Konya,

More information

Properties of BPFs for Approximating the Solution of Nonlinear Fredholm Integro Differential Equation

Properties of BPFs for Approximating the Solution of Nonlinear Fredholm Integro Differential Equation Applied Mathematical Sciences, Vol. 6, 212, no. 32, 1563-1569 Properties of BPFs for Approximating the Solution of Nonlinear Fredholm Integro Differential Equation Ahmad Shahsavaran 1 and Abar Shahsavaran

More information

Approximate Solution of an Integro-Differential Equation Arising in Oscillating Magnetic Fields Using the Differential Transformation Method

Approximate Solution of an Integro-Differential Equation Arising in Oscillating Magnetic Fields Using the Differential Transformation Method IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 5 Ver. I1 (Sep. - Oct. 2017), PP 90-97 www.iosrjournals.org Approximate Solution of an Integro-Differential

More information

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized ISSN 749-889 (print), 749-897 (online) International Journal of Nonlinear Science Vol.8(2009) No.4,pp.448-455 Homotopy Perturbation Method for the Fisher s Equation and Its Generalized M. Matinfar,M. Ghanbari

More information

Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy Analysis Method

Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy Analysis Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.9(21) No.4,pp.414-421 Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy

More information

Two Successive Schemes for Numerical Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind

Two Successive Schemes for Numerical Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind Australian Journal of Basic Applied Sciences 4(5): 817-825 2010 ISSN 1991-8178 Two Successive Schemes for Numerical Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind Omid Solaymani

More information

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations Nonlinear Analysis and Differential Equations, Vol. 3, 015, no. 3, 111-1 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/nade.015.416 The Modified Adomian Decomposition Method for Solving Nonlinear

More information

An efficient algorithm on timefractional. equations with variable coefficients. Research Article OPEN ACCESS. Jamshad Ahmad*, Syed Tauseef Mohyud-Din

An efficient algorithm on timefractional. equations with variable coefficients. Research Article OPEN ACCESS. Jamshad Ahmad*, Syed Tauseef Mohyud-Din OPEN ACCESS Research Article An efficient algorithm on timefractional partial differential equations with variable coefficients Jamshad Ahmad*, Syed Tauseef Mohyud-Din Department of Mathematics, Faculty

More information

Abdolamir Karbalaie 1, Hamed Hamid Muhammed 2, Maryam Shabani 3 Mohammad Mehdi Montazeri 4

Abdolamir Karbalaie 1, Hamed Hamid Muhammed 2, Maryam Shabani 3 Mohammad Mehdi Montazeri 4 ISSN 1749-3889 print, 1749-3897 online International Journal of Nonlinear Science Vol.172014 No.1,pp.84-90 Exact Solution of Partial Differential Equation Using Homo-Separation of Variables Abdolamir Karbalaie

More information

Application of Reduced Differential Transform Method for Solving Nonlinear Reaction-Diffusion-Convection Problems

Application of Reduced Differential Transform Method for Solving Nonlinear Reaction-Diffusion-Convection Problems Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 162 170 Applications and Applied Mathematics: An International Journal (AAM) Application of Reduced

More information

Numerical Simulation of the Generalized Hirota-Satsuma Coupled KdV Equations by Variational Iteration Method

Numerical Simulation of the Generalized Hirota-Satsuma Coupled KdV Equations by Variational Iteration Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.7(29) No.1,pp.67-74 Numerical Simulation of the Generalized Hirota-Satsuma Coupled KdV Equations by Variational

More information

(Received 10 December 2011, accepted 15 February 2012) x x 2 B(x) u, (1.2) A(x) +

(Received 10 December 2011, accepted 15 February 2012) x x 2 B(x) u, (1.2) A(x) + ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol13(212) No4,pp387-395 Numerical Solution of Fokker-Planck Equation Using the Flatlet Oblique Multiwavelets Mir Vahid

More information

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013)

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013) ISSN 749-3889 (print, 749-3897 (online International Journal of Nonlinear Science Vol.9(205 No.2,pp.3-20 Approimate Solutions of Fractional Linear and Nonlinear Differential Equations Using Laplace Homotopy

More information

International Journal of Modern Theoretical Physics, 2012, 1(1): International Journal of Modern Theoretical Physics

International Journal of Modern Theoretical Physics, 2012, 1(1): International Journal of Modern Theoretical Physics International Journal of Modern Theoretical Physics, 2012, 1(1): 13-22 International Journal of Modern Theoretical Physics Journal homepage:www.modernscientificpress.com/journals/ijmtp.aspx ISSN: 2169-7426

More information

ACTA UNIVERSITATIS APULENSIS No 18/2009 NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS BY USING MODIFIED HOMOTOPY PERTURBATION METHOD

ACTA UNIVERSITATIS APULENSIS No 18/2009 NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS BY USING MODIFIED HOMOTOPY PERTURBATION METHOD ACTA UNIVERSITATIS APULENSIS No 18/2009 NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS BY USING MODIFIED HOMOTOPY PERTURBATION METHOD Arif Rafiq and Amna Javeria Abstract In this paper, we establish

More information

VIBRATION ANALYSIS OF EULER AND TIMOSHENKO BEAMS USING DIFFERENTIAL TRANSFORMATION METHOD

VIBRATION ANALYSIS OF EULER AND TIMOSHENKO BEAMS USING DIFFERENTIAL TRANSFORMATION METHOD VIBRATION ANALYSIS OF EULER AND TIMOSHENKO BEAMS USING DIFFERENTIAL TRANSFORMATION METHOD Dona Varghese 1, M.G Rajendran 2 1 P G student, School of Civil Engineering, 2 Professor, School of Civil Engineering

More information

Solution of Conformable Fractional Ordinary Differential Equations via Differential Transform Method

Solution of Conformable Fractional Ordinary Differential Equations via Differential Transform Method Solution of Conformable Fractional Ordinary Differential Equations via Differential Transform Method Emrah Ünal a, Ahmet Gödoğan b a Department of Elementary Mathematics Education, Artvin Çoruh University,

More information

Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition Method

Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.4(2007) No.3,pp.227-234 Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition

More information

A Maple Program for Solving Systems of Linear and Nonlinear Integral Equations by Adomian Decomposition Method

A Maple Program for Solving Systems of Linear and Nonlinear Integral Equations by Adomian Decomposition Method Int. J. Contemp. Math. Sciences, Vol. 2, 2007, no. 29, 1425-1432 A Maple Program for Solving Systems of Linear and Nonlinear Integral Equations by Adomian Decomposition Method Jafar Biazar and Masumeh

More information

Numerical Solution of Volterra-Fredholm Integro-Differential Equation by Block Pulse Functions and Operational Matrices

Numerical Solution of Volterra-Fredholm Integro-Differential Equation by Block Pulse Functions and Operational Matrices Gen. Math. Notes, Vol. 4, No. 2, June 211, pp. 37-48 ISSN 2219-7184; Copyright c ICSRS Publication, 211 www.i-csrs.org Available free online at http://www.gean.in Nuerical Solution of Volterra-Fredhol

More information

Analytical solution for determination the control parameter in the inverse parabolic equation using HAM

Analytical solution for determination the control parameter in the inverse parabolic equation using HAM Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 12, Issue 2 (December 2017, pp. 1072 1087 Applications and Applied Mathematics: An International Journal (AAM Analytical solution

More information

On Numerical Solutions of Systems of. Ordinary Differential Equations. by Numerical-Analytical Method

On Numerical Solutions of Systems of. Ordinary Differential Equations. by Numerical-Analytical Method Applied Mathematical Sciences, Vol. 8, 2014, no. 164, 8199-8207 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.12988/ams.2014.410807 On Numerical Solutions of Systems of Ordinary Differential Equations

More information

Taylor polynomial approach for systems of linear differential equations in normal form and residual error estimation

Taylor polynomial approach for systems of linear differential equations in normal form and residual error estimation NTMSCI 3, No 3, 116-128 (2015) 116 New Trends in Mathematical Sciences http://wwwntmscicom Taylor polynomial approach for systems of linear differential equations in normal form and residual error estimation

More information

ADOMIAN-TAU OPERATIONAL METHOD FOR SOLVING NON-LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS WITH PADE APPROXIMANT. A. Khani

ADOMIAN-TAU OPERATIONAL METHOD FOR SOLVING NON-LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS WITH PADE APPROXIMANT. A. Khani Acta Universitatis Apulensis ISSN: 1582-5329 No 38/214 pp 11-22 ADOMIAN-TAU OPERATIONAL METHOD FOR SOLVING NON-LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS WITH PADE APPROXIMANT A Khani Abstract In this

More information

DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF LANE-EMDEN TYPE

DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF LANE-EMDEN TYPE Mathematical and Computational Applications, Vol, No 3, pp 35-39, 7 Association for Scientific Research DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF LANE-EMDEN TYPE Vedat Suat

More information

Differential Transform Method for Solving the Linear and Nonlinear Westervelt Equation

Differential Transform Method for Solving the Linear and Nonlinear Westervelt Equation Journal of Mathematical Extension Vol. 6, No. 3, (2012, 81-91 Differential Transform Method for Solving the Linear and Nonlinear Westervelt Equation M. Bagheri Islamic Azad University-Ahar Branch J. Manafianheris

More information

2 One-dimensional differential transform

2 One-dimensional differential transform International Mathematical Forum, Vol. 7, 2012, no. 42, 2061-2069 On Solving Differential Equations with Discontinuities Using the Differential Transformation Method: Short Note Abdelhalim Ebaid and Mona

More information

Generalized Differential Transform Method to Space- Time Fractional Non-linear Schrodinger Equation

Generalized Differential Transform Method to Space- Time Fractional Non-linear Schrodinger Equation International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 455-737 Volume, Issue, December 7, PP 7-3 Generalized Differential Transform Method to Space- Time Fractional Non-linear

More information

Exact Solution of Some Linear Fractional Differential Equations by Laplace Transform. 1 Introduction. 2 Preliminaries and notations

Exact Solution of Some Linear Fractional Differential Equations by Laplace Transform. 1 Introduction. 2 Preliminaries and notations ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.16(213) No.1,pp.3-11 Exact Solution of Some Linear Fractional Differential Equations by Laplace Transform Saeed

More information

Nonlinear Integro-differential Equations by Differential Transform Method with Adomian Polynomials

Nonlinear Integro-differential Equations by Differential Transform Method with Adomian Polynomials Math Sci Lett No - Mathematical Science Letters An International Journal http://ddoior//msl/ Nonlinear Intero-dierential Equations b Dierential Transorm Method with Adomian Polnomials S H Behir General

More information

Applications of Differential Transform Method for ENSO Model with compared ADM and VIM M. Gübeş

Applications of Differential Transform Method for ENSO Model with compared ADM and VIM M. Gübeş Applications of Differential Transform Method for ENSO Model with compared ADM and VIM M. Gübeş Department of Mathematics, Karamanoğlu Mehmetbey University, Karaman/TÜRKİYE Abstract: We consider some of

More information

RELIABLE TREATMENT FOR SOLVING BOUNDARY VALUE PROBLEMS OF PANTOGRAPH DELAY DIFFERENTIAL EQUATION

RELIABLE TREATMENT FOR SOLVING BOUNDARY VALUE PROBLEMS OF PANTOGRAPH DELAY DIFFERENTIAL EQUATION (c) 216 217 Rom. Rep. Phys. (for accepted papers only) RELIABLE TREATMENT FOR SOLVING BOUNDARY VALUE PROBLEMS OF PANTOGRAPH DELAY DIFFERENTIAL EQUATION ABDUL-MAJID WAZWAZ 1,a, MUHAMMAD ASIF ZAHOOR RAJA

More information

Adomian decomposition method for fuzzy differential equations with linear differential operator

Adomian decomposition method for fuzzy differential equations with linear differential operator ISSN 1746-7659 England UK Journal of Information and Computing Science Vol 11 No 4 2016 pp243-250 Adomian decomposition method for fuzzy differential equations with linear differential operator Suvankar

More information

Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations

Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations Applied Mathematical Sciences, Vol 6, 2012, no 96, 4787-4800 Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations A A Hemeda Department of Mathematics, Faculty of Science Tanta

More information

On the Homotopy Perturbation Method and the Adomian Decomposition Method for Solving Abel Integral Equations of the Second Kind

On the Homotopy Perturbation Method and the Adomian Decomposition Method for Solving Abel Integral Equations of the Second Kind Applied Mathematical Sciences, Vol. 5, 211, no. 16, 799-84 On the Homotopy Perturbation Method and the Adomian Decomposition Method for Solving Abel Integral Equations of the Second Kind A. R. Vahidi Department

More information

Numerical Solution of Two-Point Boundary Value Problems via Differential Transform Method

Numerical Solution of Two-Point Boundary Value Problems via Differential Transform Method Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 11, Number 2 (2015), pp. 801-806 Research India Publications http://www.ripublication.com Numerical Solution of Two-Point Boundary

More information

RESEARCH ARTICLE. Spectral Method for Solving The General Form Linear Fredholm Volterra Integro Differential Equations Based on Chebyshev Polynomials

RESEARCH ARTICLE. Spectral Method for Solving The General Form Linear Fredholm Volterra Integro Differential Equations Based on Chebyshev Polynomials Journal of Modern Methods in Numerical Mathematics ISSN: 29-477 online Vol, No, 2, c 2 Modern Science Publishers wwwm-sciencescom RESEARCH ARTICLE Spectral Method for Solving The General Form Linear Fredholm

More information

(Received 05 August 2013, accepted 15 July 2014)

(Received 05 August 2013, accepted 15 July 2014) ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.18(2014) No.1,pp.71-77 Spectral Collocation Method for the Numerical Solution of the Gardner and Huxley Equations

More information

APPLICATION OF DIFFERENTIAL TRANSFORMATION METHOD FOR THE STATIC ANALYSIS OF EULER-BERNOULLI BEAM

APPLICATION OF DIFFERENTIAL TRANSFORMATION METHOD FOR THE STATIC ANALYSIS OF EULER-BERNOULLI BEAM APPLICATION OF DIFFERENTIAL TRANSFORMATION METHOD FOR THE STATIC ANALYSIS OF EULER-BERNOULLI BEAM Evin Varghese 1, C.S.C. Devadass 2, M.G. Rajendran 3 1 P G student, School of Civil Engineering, Karunya

More information

Solutions of the coupled system of Burgers equations and coupled Klein-Gordon equation by RDT Method

Solutions of the coupled system of Burgers equations and coupled Klein-Gordon equation by RDT Method International Journal of Advances in Applied Mathematics and Mechanics Volume 1, Issue 2 : (2013) pp. 133-145 IJAAMM Available online at www.ijaamm.com ISSN: 2347-2529 Solutions of the coupled system of

More information

A Numerical-Computational Technique for Solving. Transformed Cauchy-Euler Equidimensional. Equations of Homogeneous Type

A Numerical-Computational Technique for Solving. Transformed Cauchy-Euler Equidimensional. Equations of Homogeneous Type Advanced Studies in Theoretical Physics Vol. 9, 015, no., 85-9 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/astp.015.41160 A Numerical-Computational Technique for Solving Transformed Cauchy-Euler

More information

Explicit Solution of Axisymmetric Stagnation. Flow towards a Shrinking Sheet by DTM-Padé

Explicit Solution of Axisymmetric Stagnation. Flow towards a Shrinking Sheet by DTM-Padé Applied Mathematical Sciences, Vol. 4, 2, no. 53, 267-2632 Explicit Solution of Axisymmetric Stagnation Flow towards a Shrining Sheet by DTM-Padé Mohammad Mehdi Rashidi * Engineering Faculty of Bu-Ali

More information

FREE VIBRATION OF UNIFORM AND NON-UNIFORM EULER BEAMS USING THE DIFFERENTIAL TRANSFORMATION METHOD. 1. Introduction

FREE VIBRATION OF UNIFORM AND NON-UNIFORM EULER BEAMS USING THE DIFFERENTIAL TRANSFORMATION METHOD. 1. Introduction ASIAN JOURNAL OF MATHEMATICS AND APPLICATIONS Volume 13, Article ID ama97, 16 pages ISSN 37-7743 http://scienceasia.asia FREE VIBRATION OF UNIFORM AND NON-UNIFORM EULER BEAMS USING THE DIFFERENTIAL TRANSFORMATION

More information

Different Approaches to the Solution of Damped Forced Oscillator Problem by Decomposition Method

Different Approaches to the Solution of Damped Forced Oscillator Problem by Decomposition Method Australian Journal of Basic and Applied Sciences, 3(3): 2249-2254, 2009 ISSN 1991-8178 Different Approaches to the Solution of Damped Forced Oscillator Problem by Decomposition Method A.R. Vahidi Department

More information

APPROXIMATING THE FORTH ORDER STRUM-LIOUVILLE EIGENVALUE PROBLEMS BY HOMOTOPY ANALYSIS METHOD

APPROXIMATING THE FORTH ORDER STRUM-LIOUVILLE EIGENVALUE PROBLEMS BY HOMOTOPY ANALYSIS METHOD APPROXIMATING THE FORTH ORDER STRUM-LIOUVILLE EIGENVALUE PROBLEMS BY HOMOTOPY ANALYSIS METHOD * Nader Rafatimaleki Department of Mathematics, College of Science, Islamic Azad University, Tabriz Branch,

More information

GENERALIZED DIFFERENTIAL TRANSFORM METHOD FOR SOLUTIONS OF NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

GENERALIZED DIFFERENTIAL TRANSFORM METHOD FOR SOLUTIONS OF NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER December 7 Volume Issue JETIR (ISSN-39-56) GENERALIZED DIFFERENTIAL TRANSFORM METHOD FOR SOLTIONS OF NON-LINEAR PARTIAL DIFFERENTIAL EQATIONS OF FRACTIONAL ORDER Deepanjan Das Department of Matematics

More information

Biological population model and its solution by reduced differential transform method

Biological population model and its solution by reduced differential transform method Asia Pacific Journal of Engineering Science and Technology () (05) -0 Asia Pacific Journal of Engineering Science and Technology journal homepage: www.apjest.com Full length article Biological population

More information

A Multistage Adomian Decomposition Method for Solving The Autonomous Van Der Pol System

A Multistage Adomian Decomposition Method for Solving The Autonomous Van Der Pol System Australian Journal of Basic Applied Sciences, 3(4): 4397-4407, 2009 ISSN 1991-8178 A Multistage Adomian Decomposition Method for Solving The Autonomous Van Der Pol System Dr. Abbas Y. AL_ Bayati Dr. Ann

More information

Solving Fuzzy Duffing s Equation by the Laplace. Transform Decomposition

Solving Fuzzy Duffing s Equation by the Laplace. Transform Decomposition Applied Mathematical Sciences, Vol 6, 202, no 59, 2935-2944 Solving Fuzzy Duffing s Equation by the Laplace Transform Decomposition, Mustafa, J and Nor,3,4 Department of Science and Mathematics, Faculty

More information

ACTA UNIVERSITATIS APULENSIS No 20/2009 AN EFFECTIVE METHOD FOR SOLVING FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS. Wen-Hua Wang

ACTA UNIVERSITATIS APULENSIS No 20/2009 AN EFFECTIVE METHOD FOR SOLVING FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS. Wen-Hua Wang ACTA UNIVERSITATIS APULENSIS No 2/29 AN EFFECTIVE METHOD FOR SOLVING FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS Wen-Hua Wang Abstract. In this paper, a modification of variational iteration method is applied

More information

Application of Taylor-Padé technique for obtaining approximate solution for system of linear Fredholm integro-differential equations

Application of Taylor-Padé technique for obtaining approximate solution for system of linear Fredholm integro-differential equations Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 12, Issue 1 (June 2017), pp. 392 404 Applications and Applied Mathematics: An International Journal (AAM) Application of Taylor-Padé

More information

On the coupling of Homotopy perturbation method and Laplace transformation

On the coupling of Homotopy perturbation method and Laplace transformation Shiraz University of Technology From the SelectedWorks of Habibolla Latifizadeh 011 On the coupling of Homotopy perturbation method and Laplace transformation Habibolla Latifizadeh, Shiraz University of

More information

SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD

SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD R. C. Mittal 1 and Ruchi Nigam 2 1 Department of Mathematics, I.I.T. Roorkee, Roorkee, India-247667. Email: rcmmmfma@iitr.ernet.in

More information

Research Article A Matrix Method Based on the Fibonacci Polynomials to the Generalized Pantograph Equations with Functional Arguments

Research Article A Matrix Method Based on the Fibonacci Polynomials to the Generalized Pantograph Equations with Functional Arguments Advances in Mathematical Physics, Article ID 694580, 5 pages http://dx.doi.org/10.1155/2014/694580 Research Article A Matrix Method Based on the Fibonacci Polynomials to the Generalized Pantograph Equations

More information

Numerical solution of system of linear integral equations via improvement of block-pulse functions

Numerical solution of system of linear integral equations via improvement of block-pulse functions Journal of Mathematical Modeling Vol. 4, No., 16, pp. 133-159 JMM Numerical solution of system of linear integral equations via improvement of block-pulse functions Farshid Mirzaee Faculty of Mathematical

More information

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method International Journal of Mathematical Analysis Vol. 9, 2015, no. 39, 1919-1928 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.54124 Improvements in Newton-Rapshon Method for Nonlinear

More information

Modified Adomian Decomposition Method for Solving Particular Third-Order Ordinary Differential Equations

Modified Adomian Decomposition Method for Solving Particular Third-Order Ordinary Differential Equations Applied Mathematical Sciences, Vol. 6, 212, no. 3, 1463-1469 Modified Adomian Decomposition Method for Solving Particular Third-Order Ordinary Differential Equations P. Pue-on 1 and N. Viriyapong 2 Department

More information

A Study On Linear and Non linear Schrodinger Equations by Reduced Differential Transform Method

A Study On Linear and Non linear Schrodinger Equations by Reduced Differential Transform Method Malaya J. Mat. 4(1)(2016) 59-64 A Study On Linear and Non linear Schrodinger Equations by Reduced Differential Transform Method T.R. Ramesh Rao a, a Department of Mathematics and Actuarial Science, B.S.

More information

On the convergence of the homotopy analysis method to solve the system of partial differential equations

On the convergence of the homotopy analysis method to solve the system of partial differential equations Journal of Linear and Topological Algebra Vol. 04, No. 0, 015, 87-100 On the convergence of the homotopy analysis method to solve the system of partial differential equations A. Fallahzadeh a, M. A. Fariborzi

More information

Zhenjiang, Jiangsu, , P.R. China (Received 7 June 2010, accepted xx, will be set by the editor)

Zhenjiang, Jiangsu, , P.R. China (Received 7 June 2010, accepted xx, will be set by the editor) ISSN 1749-3889 print), 1749-3897 online) International Journal of Nonlinear Science Vol.132012) No.3,pp.380-384 Fractal Interpolation Functions on the Stability of Vertical Scale Factor Jiao Xu 1, Zhigang

More information

An approximation to the solution of parabolic equation by Adomian decomposition method and comparing the result with Crank-Nicolson method

An approximation to the solution of parabolic equation by Adomian decomposition method and comparing the result with Crank-Nicolson method International Mathematical Forum, 1, 26, no. 39, 1925-1933 An approximation to the solution of parabolic equation by Adomian decomposition method and comparing the result with Crank-Nicolson method J.

More information

Generalized Differential Transform Method for non-linear Inhomogeneous Time Fractional Partial differential Equation

Generalized Differential Transform Method for non-linear Inhomogeneous Time Fractional Partial differential Equation International Journal of Sciences & Applied Research www.ijsar.in Generalized Differential Transform Method for non-linear Inhomogeneous Time Fractional Partial differential Equation D. Das 1 * and R.

More information

A new approach to solve fuzzy system of linear equations by Homotopy perturbation method

A new approach to solve fuzzy system of linear equations by Homotopy perturbation method Journal of Linear and Topological Algebra Vol. 02, No. 02, 2013, 105-115 A new approach to solve fuzzy system of linear equations by Homotopy perturbation method M. Paripour a,, J. Saeidian b and A. Sadeghi

More information

The Hausdorff Measure of the Attractor of an Iterated Function System with Parameter

The Hausdorff Measure of the Attractor of an Iterated Function System with Parameter ISSN 1479-3889 (print), 1479-3897 (online) International Journal of Nonlinear Science Vol. 3 (2007) No. 2, pp. 150-154 The Hausdorff Measure of the Attractor of an Iterated Function System with Parameter

More information

The Laplace-Adomian Decomposition Method Applied to the Kundu-Eckhaus Equation

The Laplace-Adomian Decomposition Method Applied to the Kundu-Eckhaus Equation International Journal of Mathematics And its Applications Volume 5, Issue 1 A (2017), 1 12 ISSN: 2347-1557 Available Online: http://ijmaain/ International Journal 2347-1557 of Mathematics Applications

More information

Simultaneous Accumulation Points to Sets of d-tuples

Simultaneous Accumulation Points to Sets of d-tuples ISSN 1749-3889 print, 1749-3897 online International Journal of Nonlinear Science Vol.92010 No.2,pp.224-228 Simultaneous Accumulation Points to Sets of d-tuples Zhaoxin Yin, Meifeng Dai Nonlinear Scientific

More information

Adomian Polynomial and Elzaki Transform Method of Solving Third Order Korteweg-De Vries Equations

Adomian Polynomial and Elzaki Transform Method of Solving Third Order Korteweg-De Vries Equations Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 15, Number 3 (2019), pp 261 277 c Research India Publications http://www.ripublication.com Adomian Polynomial and Elzaki Transform

More information

Conformable variational iteration method

Conformable variational iteration method NTMSCI 5, No. 1, 172-178 (217) 172 New Trends in Mathematical Sciences http://dx.doi.org/1.2852/ntmsci.217.135 Conformable variational iteration method Omer Acan 1,2 Omer Firat 3 Yildiray Keskin 1 Galip

More information

You are expected to abide by the University s rules concerning Academic Honesty.

You are expected to abide by the University s rules concerning Academic Honesty. Math 180 Final Exam Name (Print): UIN: 12/10/2015 UIC Email: Time Limit: 2 Hours This exam contains 12 pages (including this cover page) and 13 problems. After starting the exam, check to see if any pages

More information

The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation

The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation M. M. KHADER Faculty of Science, Benha University Department of Mathematics Benha EGYPT mohamedmbd@yahoo.com N. H. SWETLAM

More information

A NEW SOLUTION OF SIR MODEL BY USING THE DIFFERENTIAL FRACTIONAL TRANSFORMATION METHOD

A NEW SOLUTION OF SIR MODEL BY USING THE DIFFERENTIAL FRACTIONAL TRANSFORMATION METHOD April, 4. Vol. 4, No. - 4 EAAS & ARF. All rights reserved ISSN35-869 A NEW SOLUTION OF SIR MODEL BY USING THE DIFFERENTIAL FRACTIONAL TRANSFORMATION METHOD Ahmed A. M. Hassan, S. H. Hoda Ibrahim, Amr M.

More information

A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems

A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems Weonbae Kim a and Changbum Chun b a Department of Mathematics, Daejin University, Pocheon, Gyeonggi-do

More information

2. The generalized Benjamin- Bona-Mahony (BBM) equation with variable coefficients [30]

2. The generalized Benjamin- Bona-Mahony (BBM) equation with variable coefficients [30] ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.12(2011) No.1,pp.95-99 The Modified Sine-Cosine Method and Its Applications to the Generalized K(n,n) and BBM Equations

More information

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x . Define f n, g n : [, ] R by f n (x) = Advanced Calculus Math 27B, Winter 25 Solutions: Final nx2 + n 2 x, g n(x) = n2 x 2 + n 2 x. 2 Show that the sequences (f n ), (g n ) converge pointwise on [, ],

More information

NEW ITERATIVE METHODS BASED ON SPLINE FUNCTIONS FOR SOLVING NONLINEAR EQUATIONS

NEW ITERATIVE METHODS BASED ON SPLINE FUNCTIONS FOR SOLVING NONLINEAR EQUATIONS Bulletin of Mathematical Analysis and Applications ISSN: 181-191, URL: http://www.bmathaa.org Volume 3 Issue 4(011, Pages 31-37. NEW ITERATIVE METHODS BASED ON SPLINE FUNCTIONS FOR SOLVING NONLINEAR EQUATIONS

More information

Comparisons between the Solutions of the Generalized Ito System by Different Methods

Comparisons between the Solutions of the Generalized Ito System by Different Methods Comparisons between the Solutions of the Generalized Ito System by Different Methods Hassan Zedan 1&2, Wafaa Albarakati 1 and Eman El Adrous 1 1 Department of Mathematics, Faculty of Science, king Abdualziz

More information

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 3, 143-150 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2016.613 Solution of Differential Equations of Lane-Emden Type by

More information

ANALYSIS OF NONLINEAR DYNAMIC BEHAVIOUR OF NANOBEAM RESTING ON WINKLER AND PASTERNAK FOUNDATIONS USING VARIATIONAL ITERATION METHOD

ANALYSIS OF NONLINEAR DYNAMIC BEHAVIOUR OF NANOBEAM RESTING ON WINKLER AND PASTERNAK FOUNDATIONS USING VARIATIONAL ITERATION METHOD ANALYSIS OF NONLINEAR DYNAMIC BEHAVIOUR OF NANOBEAM RESTING ON WINKLER AND PASTERNAK FOUNDATIONS USING VARIATIONAL ITERATION METHOD M. G. Sobamowo * and G. A. Oguntala Department of Mechanical Engineering,

More information

Solution of Linear and Nonlinear Schrodinger Equations by Combine Elzaki Transform and Homotopy Perturbation Method

Solution of Linear and Nonlinear Schrodinger Equations by Combine Elzaki Transform and Homotopy Perturbation Method American Journal of Theoretical and Applied Statistics 2015; 4(6): 534-538 Published online October 29, 2015 (http://wwwsciencepublishinggroupcom/j/ajtas) doi: 1011648/jajtas2015040624 ISSN: 2326-8999

More information

New Class of Boundary Value Problems

New Class of Boundary Value Problems Inf. Sci. Lett. 1 No. 2, 67-76 (2012) Information Science Letters An International Journal 67 @ 2012 NSP Natural Sciences Publishing Cor. New Class of Boundary Value Problems Abdon Atangana Institute for

More information

Variational Homotopy Perturbation Method for the Fisher s Equation

Variational Homotopy Perturbation Method for the Fisher s Equation ISSN 749-3889 (print), 749-3897 (online) International Journal of Nonlinear Science Vol.9() No.3,pp.374-378 Variational Homotopy Perturbation Method for the Fisher s Equation M. Matinfar, Z. Raeisi, M.

More information

Parametric Spline Method for Solving Bratu s Problem

Parametric Spline Method for Solving Bratu s Problem ISSN 749-3889 print, 749-3897 online International Journal of Nonlinear Science Vol4202 No,pp3-0 Parametric Spline Metod for Solving Bratu s Problem M Zarebnia, Z Sarvari 2,2 Department of Matematics,

More information