ANALYSIS OF DIPHTHERIA DISSEMINATION BY USING MULTI GROUPS OF DYNAMIC SYSTEM METHOD APPROACH

Size: px
Start display at page:

Download "ANALYSIS OF DIPHTHERIA DISSEMINATION BY USING MULTI GROUPS OF DYNAMIC SYSTEM METHOD APPROACH"

Transcription

1 ANALYSIS OF DIPHTHERIA DISSEMINATION BY USING MULTI GROUPS OF DYNAMIC SYSTEM METHOD APPROACH 1 NUR ASIYAH, 2 BASUKI WIDODO, 3 SUHUD WAHYUDI 1,2,3 Laboratory of Analysis and Algebra Faculty of Mathematics and Sciences Institut Teknologi Sepuluh Nopember- Indonesia nora@ matematika.its.ac.id Abstract- Diphtheria Dissemination is an infectious disease on a region which is become endemic or not, it can be analyzed by using a mathematical model approach in the form of differential equation systems. The disease dissemination in those populations can be clustered into some groups including group of under 15 years old and group of above 15 years old. Therefore, the diphtheria dissemination that occurred is cross-analyzed between the groups. This research consideres about analyzing multi-grup epidemic model with rate of nonlinear transmission for preventing the occurrence of endemic and evaluating the threshold, i.e. the basic reproduction values R 0, through stability of the free disease equilibrium point and the endemic equilibrium point in East Java areas. Data is taken from the year of The result of this research is expected to be able to give information about the characteristics of diphtheria patient through multi group of dynamic system model. The criteria of Routh Hurwitz is used to analyze the local stability and construct Liapunov function for the global stability by applying directed graph. Based on the theory of graph approach, the system can be described as a network, where each vertex is a homogeneus group and an edge(j, i)is existsif only if can be transmitted from group i to group j. Keywords- multi-grup analysis, stability analysis, basic reproduction I. INTRODUCTION Real time problem in this life can be accommodated by using certain assumptions to build a mathematical model which help us to easily find solutions of that problem analytically or numerically. Coupled system from nonlinear differential function on a network has been used to model many things such as: inspecting coupled system of nonlinear oscillator, understanding the spreading of contagious disease, and analyzing the stability and complexity of coupled system in a complex ecosystem model [1].Researches have been conducted to analysethe stability model of the spreading of contagious disease by neglecting the heterogeneity of a population [2], where this heterogeneity can be caused by many factors. A group of individuals can be divided into groups of homogenous according to their different relational pattern ontosomething such as group classification based on their age on the spreading of diphtheria. Due to possibility of different infection rate within each group, therefore a network concept on the spreading of contagious disease is needed. By using approach from graph theory, the system can be drawn as a network where each vertex shows a homogenous group and an edge (j, i) will be present if and only if the disease is infectious from groupito group j. Some vertexes will be connected by a vector edge indicating connection between vertexes in the system [3]. In this model, a vertex can present as an oscillator, a big ecology of community or a path, and can also present as homogenous groups for a common contagious disease, while the interaction between vertexes can be a physical connection between those oscillator, a spread between small groups in the path, or even a cross relation infection between homogenous groups within a heterogeneous group [1]. In this paper local and global stability of the epidemic model of two groups with nonlinear infection rate will be analysed. A Routh-Hurwitz criterion is utilized for the local stability analysis, while graph theory is implemented for the global stability. II. EPIDEMIC MODEL OF TWO GROUP AND THE SOLUTION AREA Compartment is a flow that describes the spread of disease from individuals. There are phases in a compartment, they are: S :Susceptible; healthy individual but is not immune to disease. E :Exposed; infected individual but hasn t shown a symptom (incubation area). I :Infective; Infected individual and also able to infect others. Epidemic model that consist of two groups are differential equation of epidemic model system with i, j = 1,2or can also be called as epidemic 2-Group. If given the equation of the infection rate f S, I = I S, then system of differential equations become : 55

2 Compartmentdiagramofthe model(1) -(6) are givenin Figure1: Figure 1. Compartment Diagram of Epidemic Two Group Model with Nonlinear Infection Rate Assuming that ϵ, ϵ > 0, and d > 0where d = min {d, d, d + γ }, d = d, d, d + γ, f S, I = I S > 0for S > 0, I > 0, and p, q is a positive constant. By adding equation 1-3 will give S + E + I = Λ d S β I S I + β I S (d + ϵ )E + ϵ E (d + γ )I = Λ d S d E (d + γ )I Λ d (S + E + I ) Therefore lim sup (S + E + I ), and the equations (4) (6) will give S + E + I = Λ d S β I S + β I S (d + ϵ )E + ϵ E (d + γ )I = Λ d S d E (d + γ )I Λ d (S + E + I ) and lim sup (S + E + I ) Thus the solutions area of the epidemic two group model can be written as There are four equilibrium points achieved. They are equilibrium point of disease free, endemic point, a point where first group are disease free while second group are endemic, and a point where first group are endemic while second group are disease free. 1.1 Disease Free Equilibrium Point When I, I = 0, it will have free disease equilibrium point P, where all the individuals are Susceptible or will have no any spread of disease in both of groups. By substituting I, I = 0to equation (10) and (13) will givee = 0 and E = 0. This result substituted to equation (8) and (11) resulting S = and S = Thus the disease free equilibrium point for this epidemic two group model can be written as P = (S, 0,0, S, 0,0)with S =, S =. 1.2 Endemic Equilibrium Point Endemic equilibrium point is a condition where the disease will always be inside the population in both of group. Endemic equilibrium point P = (S, E, I, S, E, I ) depend on the infected populations from contagious disease with I, I 0. It is given from taking = 0, = 0, = = 0.Thus the endemic 0, = 0, = 0, equilibrium point from the this two group model is P = (S, E, I, S, E, I )where equations below: S, E, I satisfy III. EQUILIBRIUM POINT Equilibrium point is a point where it s characteristic is invariant with time. Then the equilibrium points are taken from = 0, = 0, = 0 and the equation (1) ( 6) become: 56

3 IV. BASIC REPRODUCTION NUMBER AccordingDriesscheandWatmoughmethod [1], the basicreproduction numberis formulatedwith β ϵ C (S ) R = ρ (d + ϵ )(d + γ ) Assuming that if R = ρ(m ) with β M = M(S, S ϵ C (S ) ) = (d + ϵ )(d + γ ), becausef S, I = I S then C (S ) = p I S Therefore R β ϵ p I S β ϵ p I S (d = ρ + ϵ )(d + γ ) (d + ϵ )(d + γ ) β ϵ p I S β ϵ p I S (d + ϵ )(d + γ ) (d + ϵ )(d + γ ) To find R it should be found the Eigen value of the matrix M ie det M λi = 0 giving R = = 1 β ϵ p I S 2 (d + ϵ )(d + γ ) + β ϵ p I S (d + ϵ )(d + γ ) + β ϵ p I S (d + ϵ )(d + γ ) β ϵ p I S (d + ϵ )(d + γ ) + 4 β ϵ p I S β ϵ p I S (d + ϵ )(d + γ )(d + ϵ )(d + γ ) This R represents basic reproduction number for the two group epidemic model with nonlinear infection rate. V. LOCAL EQUILIBRIUM POINT STABILITY Localstabilityof criticalpointsis divided into3conditions. The firstcondition is localequilibriumpointstability of freedisease, second condition is local equilibriumpoint of bothgroupsare endemic and thirdconditionis local pointstability of the firstgroup is freedisease and the secondgroup is endemic [4]. 1.3 Local Equilibrium Point Stability of Free Disease Condition On the free disease equilibrium point P = (S, 0,0, S, 0,0)with S =, S =, it is known that β = β = ϵ = ϵ = γ = γ = 0, so then its Jacobian matrix: d d d J(P ) = d d d The Eigen value can be taken from det J(P ) λi = 0, therefore resulting: λ = d, λ = d, λ = d, λ = d, λ = d, λ = d Due to Eigen value of (λ, λ, λ, λ, λ, λ )are negative on the real components, therefore the equilibrium point P =, 0,0,, 0,0is asymptotic stable [4]. 1.4 Local Equilibrium Point of Both Groups Are Endemic On the equilibrium point of P = (S, E, I, S, E, I ), both groups are on endemic condition. So that its Jacobian matrix is: with : Then it should be found det J λi = 0 Resulting characteristic equation with model of a λ + a λ + a λ + a λ + a λ + a λ + a = 0 with a =1 Then Routh-Hurwitz criterion stability is used to analyze the stability of the endemic equilibrium point. 57

4 VI. RESULT AND DISCUSSION To interpret the analysis result of this two group epidemic model, a simulation is made by using Matlab. And the analysis of simulation is done on endemic equilibrium point where R > 1.In this casewedo an analysisof datafrom diphtheriaineastern Javain Group division is performed as follows: - The first group is children under the age of 15 years - The second group is adults with age above 15 years Epidemicmodels is: ϵ : The rate of incubation in children ϵ : The rate of incubation in adult Result of the data processing diphtheria East Java in 2013 are presented in Table 1 Table 1. Data processing diphtheria East Java in 2013 Where : S : Population of childrenwho aresusceptible tothe disease (susceptible) S : Adult populationsusceptible tothe disease (susceptible) E : Population in children who contract the disease and can transmit the disease but has not shown any symptoms of the disease early (Exposed) E : Theadultpopulationinfectedandcantransmit the diseasebuthas not shown anysymptoms ofthe diseaseearly (Exposed) I : Populationin childrenwhohave symptoms of(infected, contagiousandundiagnosed) I : The adult population experience symptoms (infected, contagious and undiagnosed) d : Natural mortality rate of S d : Natural mortality rate ofs d : Natural mortality rate ofe d : Natural mortality rate of E d : Natural mortality rate of I d : Natural mortality rate of I Λ : The rate of recruitment of the children population Λ : The rate of recruitment of the adult population β :The chances of cross infection between group S and I β :The chances of cross infection between group S andi β :The chances of cross infection between group S andi β :The chances of cross infection between group S andi γ : The rate of healing of infected individuals in children γ : The rate of healing of infected individuals in adult By using Table 1, we obtain Ro = While the simulation of the model we obtain the results as shown in Figure 2 Figure 2. Analysis of Diptheria Dissemination by Using Multi Group of Dynamic System Method Approach in East Java 2013 In Figure 2, we obtain that when S 1 (the number of children vulnerable populations - children) decreases, then I 1 (the number of the infected population in children - children) becomes increase, and E 1 (the population of carriers of the disease in children - children) increases due to the individual vulnerable populations into the population are carriers of the disease and infected. This also applies to the adult population. CONCLUSION 1. The number of patients with diphtheria always Ro = , which means that every month the patient can transmit the disease to 6 up to 7 people. 2. Based on the graph 2, it may be seen that the human population is infected and exposed to a sharp 58

5 increase in the first 1.5 months. It needs to be taken the reduction of the rate of transmission.. REFERENCE [1] Li, M. Y., Shuai, Z., 2010.Global-stability for Coupled Systems of Differential Equation on Network. J. Differential Equation [2] Wiggins, S Introduction to Applied Nonlinear Dynamical Systems and Chaos. New York : Splinger-Verlag. [3] J. L. Gross and J. Yellen, 2006, Graph Theory and Its Application, Chapman Hall C R C, 2-nd edition [4] Finizio N.and Ladas G Ordinary Differential Equations with Modern Applications. California : Wadsworth Publishing Company Belmont. 59

Dynamical Analysis of Plant Disease Model with Roguing, Replanting and Preventive Treatment

Dynamical Analysis of Plant Disease Model with Roguing, Replanting and Preventive Treatment 4 th ICRIEMS Proceedings Published by The Faculty Of Mathematics And Natural Sciences Yogyakarta State University, ISBN 978-62-74529-2-3 Dynamical Analysis of Plant Disease Model with Roguing, Replanting

More information

Modelling of the Hand-Foot-Mouth-Disease with the Carrier Population

Modelling of the Hand-Foot-Mouth-Disease with the Carrier Population Modelling of the Hand-Foot-Mouth-Disease with the Carrier Population Ruzhang Zhao, Lijun Yang Department of Mathematical Science, Tsinghua University, China. Corresponding author. Email: lyang@math.tsinghua.edu.cn,

More information

Global Stability of a Computer Virus Model with Cure and Vertical Transmission

Global Stability of a Computer Virus Model with Cure and Vertical Transmission International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume 3, Issue 1, January 016, PP 16-4 ISSN 349-4840 (Print) & ISSN 349-4859 (Online) www.arcjournals.org Global

More information

Stability of SEIR Model of Infectious Diseases with Human Immunity

Stability of SEIR Model of Infectious Diseases with Human Immunity Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 6 (2017), pp. 1811 1819 Research India Publications http://www.ripublication.com/gjpam.htm Stability of SEIR Model of Infectious

More information

The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model

The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model Journal of Physics: Conference Series PAPER OPEN ACCESS The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model Related content - Anomalous ion conduction from toroidal

More information

Smoking as Epidemic: Modeling and Simulation Study

Smoking as Epidemic: Modeling and Simulation Study American Journal of Applied Mathematics 2017; 5(1): 31-38 http://www.sciencepublishinggroup.com/j/ajam doi: 10.11648/j.ajam.20170501.14 ISSN: 2330-0043 (Print); ISSN: 2330-006X (Online) Smoking as Epidemic:

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com A SIR Transmission Model of Political Figure Fever 1 Benny Yong and 2 Nor Azah Samat 1

More information

Advances in Environmental Biology

Advances in Environmental Biology Adances in Enironmental Biology, 9() Special 5, Pages: 6- AENSI Journals Adances in Enironmental Biology ISSN-995-756 EISSN-998-66 Journal home page: http://www.aensiweb.com/aeb/ Mathematical Model for

More information

Mathematical Analysis of Epidemiological Models: Introduction

Mathematical Analysis of Epidemiological Models: Introduction Mathematical Analysis of Epidemiological Models: Introduction Jan Medlock Clemson University Department of Mathematical Sciences 8 February 2010 1. Introduction. The effectiveness of improved sanitation,

More information

Mathematical Model of Tuberculosis Spread within Two Groups of Infected Population

Mathematical Model of Tuberculosis Spread within Two Groups of Infected Population Applied Mathematical Sciences, Vol. 10, 2016, no. 43, 2131-2140 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.63130 Mathematical Model of Tuberculosis Spread within Two Groups of Infected

More information

Australian Journal of Basic and Applied Sciences. Effect of Education Campaign on Transmission Model of Conjunctivitis

Australian Journal of Basic and Applied Sciences. Effect of Education Campaign on Transmission Model of Conjunctivitis ISSN:99-878 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com ffect of ducation Campaign on Transmission Model of Conjunctivitis Suratchata Sangthongjeen, Anake Sudchumnong

More information

Australian Journal of Basic and Applied Sciences. Effect of Personal Hygiene Campaign on the Transmission Model of Hepatitis A

Australian Journal of Basic and Applied Sciences. Effect of Personal Hygiene Campaign on the Transmission Model of Hepatitis A Australian Journal of Basic and Applied Sciences, 9(13) Special 15, Pages: 67-73 ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: wwwajbaswebcom Effect of Personal Hygiene

More information

Introduction to SEIR Models

Introduction to SEIR Models Department of Epidemiology and Public Health Health Systems Research and Dynamical Modelling Unit Introduction to SEIR Models Nakul Chitnis Workshop on Mathematical Models of Climate Variability, Environmental

More information

Stability Analysis of a SIS Epidemic Model with Standard Incidence

Stability Analysis of a SIS Epidemic Model with Standard Incidence tability Analysis of a I Epidemic Model with tandard Incidence Cruz Vargas-De-León Received 19 April 2011; Accepted 19 Octuber 2011 leoncruz82@yahoo.com.mx Abstract In this paper, we study the global properties

More information

A New Mathematical Approach for. Rabies Endemy

A New Mathematical Approach for. Rabies Endemy Applied Mathematical Sciences, Vol. 8, 2014, no. 2, 59-67 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.39525 A New Mathematical Approach for Rabies Endemy Elif Demirci Ankara University

More information

Modeling the Existence of Basic Offspring Number on Basic Reproductive Ratio of Dengue without Vertical Transmission

Modeling the Existence of Basic Offspring Number on Basic Reproductive Ratio of Dengue without Vertical Transmission International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 232-869 Modeling the Existence of Basic Offspring Number on Basic Reproductive Ratio of Dengue without Vertical

More information

Epidemics in Complex Networks and Phase Transitions

Epidemics in Complex Networks and Phase Transitions Master M2 Sciences de la Matière ENS de Lyon 2015-2016 Phase Transitions and Critical Phenomena Epidemics in Complex Networks and Phase Transitions Jordan Cambe January 13, 2016 Abstract Spreading phenomena

More information

SIR Epidemic Model with total Population size

SIR Epidemic Model with total Population size Advances in Applied Mathematical Biosciences. ISSN 2248-9983 Volume 7, Number 1 (2016), pp. 33-39 International Research Publication House http://www.irphouse.com SIR Epidemic Model with total Population

More information

Simple Mathematical Model for Malaria Transmission

Simple Mathematical Model for Malaria Transmission Journal of Advances in Mathematics and Computer Science 25(6): 1-24, 217; Article no.jamcs.37843 ISSN: 2456-9968 (Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-851) Simple

More information

Fixed Point Analysis of Kermack Mckendrick SIR Model

Fixed Point Analysis of Kermack Mckendrick SIR Model Kalpa Publications in Computing Volume, 17, Pages 13 19 ICRISET17. International Conference on Research and Innovations in Science, Engineering &Technology. Selected Papers in Computing Fixed Point Analysis

More information

Mathematical Modeling Applied to Understand the Dynamical Behavior of HIV Infection

Mathematical Modeling Applied to Understand the Dynamical Behavior of HIV Infection Open Journal of Modelling and Simulation, 217, 5, 145-157 http://wwwscirporg/journal/ojmsi ISSN Online: 2327-426 ISSN Print: 2327-418 Mathematical Modeling Applied to Understand the Dynamical Behavior

More information

Delay SIR Model with Nonlinear Incident Rate and Varying Total Population

Delay SIR Model with Nonlinear Incident Rate and Varying Total Population Delay SIR Model with Nonlinear Incident Rate Varying Total Population Rujira Ouncharoen, Salinthip Daengkongkho, Thongchai Dumrongpokaphan, Yongwimon Lenbury Abstract Recently, models describing the behavior

More information

A Mathematical Model for Transmission of Dengue

A Mathematical Model for Transmission of Dengue Applied Mathematical Sciences, Vol. 10, 2016, no. 7, 345-355 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.510662 A Mathematical Model for Transmission of Dengue Luis Eduardo López Departamento

More information

GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS

GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS CANADIAN APPIED MATHEMATICS QUARTERY Volume 13, Number 4, Winter 2005 GOBA DYNAMICS OF A MATHEMATICA MODE OF TUBERCUOSIS HONGBIN GUO ABSTRACT. Mathematical analysis is carried out for a mathematical model

More information

Department of Mathematics, Faculty of Sciences and Mathematics, Diponegoro University,Semarang, Indonesia

Department of Mathematics, Faculty of Sciences and Mathematics, Diponegoro University,Semarang, Indonesia ISS: 978-602-71169-7-9 Proceeding of 5th International Seminar on ew Paradigm and Innovation on atural Science and Its Application (5th ISPISA) Mathematical Modeling of worm infection on computer in a

More information

Thursday. Threshold and Sensitivity Analysis

Thursday. Threshold and Sensitivity Analysis Thursday Threshold and Sensitivity Analysis SIR Model without Demography ds dt di dt dr dt = βsi (2.1) = βsi γi (2.2) = γi (2.3) With initial conditions S(0) > 0, I(0) > 0, and R(0) = 0. This model can

More information

Spread of Malicious Objects in Computer Network: A Fuzzy Approach

Spread of Malicious Objects in Computer Network: A Fuzzy Approach Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 8, Issue 2 (December 213), pp. 684 7 Applications and Applied Mathematics: An International Journal (AAM) Spread of Malicious Objects

More information

Dynamics of Disease Spread. in a Predator-Prey System

Dynamics of Disease Spread. in a Predator-Prey System Advanced Studies in Biology, vol. 6, 2014, no. 4, 169-179 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/asb.2014.4845 Dynamics of Disease Spread in a Predator-Prey System Asrul Sani 1, Edi Cahyono

More information

The E ect of Occasional Smokers on the Dynamics of a Smoking Model

The E ect of Occasional Smokers on the Dynamics of a Smoking Model International Mathematical Forum, Vol. 9, 2014, no. 25, 1207-1222 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.46120 The E ect of Occasional Smokers on the Dynamics of a Smoking Model

More information

MATHEMATICAL MODELS Vol. III - Mathematical Models in Epidemiology - M. G. Roberts, J. A. P. Heesterbeek

MATHEMATICAL MODELS Vol. III - Mathematical Models in Epidemiology - M. G. Roberts, J. A. P. Heesterbeek MATHEMATICAL MODELS I EPIDEMIOLOGY M. G. Roberts Institute of Information and Mathematical Sciences, Massey University, Auckland, ew Zealand J. A. P. Heesterbeek Faculty of Veterinary Medicine, Utrecht

More information

Stability Analysis of an HIV/AIDS Epidemic Model with Screening

Stability Analysis of an HIV/AIDS Epidemic Model with Screening International Mathematical Forum, Vol. 6, 11, no. 66, 351-373 Stability Analysis of an HIV/AIDS Epidemic Model with Screening Sarah Al-Sheikh Department of Mathematics King Abdulaziz University Jeddah,

More information

Qualitative Analysis of a Discrete SIR Epidemic Model

Qualitative Analysis of a Discrete SIR Epidemic Model ISSN (e): 2250 3005 Volume, 05 Issue, 03 March 2015 International Journal of Computational Engineering Research (IJCER) Qualitative Analysis of a Discrete SIR Epidemic Model A. George Maria Selvam 1, D.

More information

A Note on the Spread of Infectious Diseases. in a Large Susceptible Population

A Note on the Spread of Infectious Diseases. in a Large Susceptible Population International Mathematical Forum, Vol. 7, 2012, no. 50, 2481-2492 A Note on the Spread of Infectious Diseases in a Large Susceptible Population B. Barnes Department of Mathematics Kwame Nkrumah University

More information

Non-Linear Models Cont d: Infectious Diseases. Non-Linear Models Cont d: Infectious Diseases

Non-Linear Models Cont d: Infectious Diseases. Non-Linear Models Cont d: Infectious Diseases Cont d: Infectious Diseases Infectious Diseases Can be classified into 2 broad categories: 1 those caused by viruses & bacteria (microparasitic diseases e.g. smallpox, measles), 2 those due to vectors

More information

A Mathematical Analysis on the Transmission Dynamics of Neisseria gonorrhoeae. Yk j N k j

A Mathematical Analysis on the Transmission Dynamics of Neisseria gonorrhoeae. Yk j N k j North Carolina Journal of Mathematics and Statistics Volume 3, Pages 7 20 (Accepted June 23, 2017, published June 30, 2017 ISSN 2380-7539 A Mathematical Analysis on the Transmission Dynamics of Neisseria

More information

The dynamics of disease transmission in a Prey Predator System with harvesting of prey

The dynamics of disease transmission in a Prey Predator System with harvesting of prey ISSN: 78 Volume, Issue, April The dynamics of disease transmission in a Prey Predator System with harvesting of prey, Kul Bhushan Agnihotri* Department of Applied Sciences and Humanties Shaheed Bhagat

More information

Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor. August 15, 2005

Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor. August 15, 2005 Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor August 15, 2005 1 Outline 1. Compartmental Thinking 2. Simple Epidemic (a) Epidemic Curve 1:

More information

Spotlight on Modeling: The Possum Plague

Spotlight on Modeling: The Possum Plague 70 Spotlight on Modeling: The Possum Plague Reference: Sections 2.6, 7.2 and 7.3. The ecological balance in New Zealand has been disturbed by the introduction of the Australian possum, a marsupial the

More information

GLOBAL STABILITY OF SIR MODELS WITH NONLINEAR INCIDENCE AND DISCONTINUOUS TREATMENT

GLOBAL STABILITY OF SIR MODELS WITH NONLINEAR INCIDENCE AND DISCONTINUOUS TREATMENT Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 304, pp. 1 8. SSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu GLOBAL STABLTY

More information

Mathematical Epidemiology Lecture 1. Matylda Jabłońska-Sabuka

Mathematical Epidemiology Lecture 1. Matylda Jabłońska-Sabuka Lecture 1 Lappeenranta University of Technology Wrocław, Fall 2013 What is? Basic terminology Epidemiology is the subject that studies the spread of diseases in populations, and primarily the human populations.

More information

The Fractional-order SIR and SIRS Epidemic Models with Variable Population Size

The Fractional-order SIR and SIRS Epidemic Models with Variable Population Size Math. Sci. Lett. 2, No. 3, 195-200 (2013) 195 Mathematical Sciences Letters An International Journal http://dx.doi.org/10.12785/msl/020308 The Fractional-order SIR and SIRS Epidemic Models with Variable

More information

Mathematical Modeling and Analysis of Infectious Disease Dynamics

Mathematical Modeling and Analysis of Infectious Disease Dynamics Mathematical Modeling and Analysis of Infectious Disease Dynamics V. A. Bokil Department of Mathematics Oregon State University Corvallis, OR MTH 323: Mathematical Modeling May 22, 2017 V. A. Bokil (OSU-Math)

More information

ECS 289 / MAE 298, Lecture 7 April 22, Percolation and Epidemiology on Networks, Part 2 Searching on networks

ECS 289 / MAE 298, Lecture 7 April 22, Percolation and Epidemiology on Networks, Part 2 Searching on networks ECS 289 / MAE 298, Lecture 7 April 22, 2014 Percolation and Epidemiology on Networks, Part 2 Searching on networks 28 project pitches turned in Announcements We are compiling them into one file to share

More information

Analysis of Numerical and Exact solutions of certain SIR and SIS Epidemic models

Analysis of Numerical and Exact solutions of certain SIR and SIS Epidemic models Journal of Mathematical Modelling and Application 2011, Vol. 1, No. 4, 51-56 ISSN: 2178-2423 Analysis of Numerical and Exact solutions of certain SIR and SIS Epidemic models S O Maliki Department of Industrial

More information

Applied Mathematics Letters

Applied Mathematics Letters Applied athematics Letters 25 (212) 156 16 Contents lists available at SciVerse ScienceDirect Applied athematics Letters journal homepage: www.elsevier.com/locate/aml Globally stable endemicity for infectious

More information

Dynamical models of HIV-AIDS e ect on population growth

Dynamical models of HIV-AIDS e ect on population growth Dynamical models of HV-ADS e ect on population growth David Gurarie May 11, 2005 Abstract We review some known dynamical models of epidemics, given by coupled systems of di erential equations, and propose

More information

Available online at Commun. Math. Biol. Neurosci. 2015, 2015:29 ISSN:

Available online at   Commun. Math. Biol. Neurosci. 2015, 2015:29 ISSN: Available online at http://scik.org Commun. Math. Biol. Neurosci. 215, 215:29 ISSN: 252-2541 AGE-STRUCTURED MATHEMATICAL MODEL FOR HIV/AIDS IN A TWO-DIMENSIONAL HETEROGENEOUS POPULATION PRATIBHA RANI 1,

More information

Available online at J. Math. Comput. Sci. 2 (2012), No. 6, ISSN:

Available online at   J. Math. Comput. Sci. 2 (2012), No. 6, ISSN: Available online at http://scik.org J. Math. Comput. Sci. 2 (2012), No. 6, 1671-1684 ISSN: 1927-5307 A MATHEMATICAL MODEL FOR THE TRANSMISSION DYNAMICS OF HIV/AIDS IN A TWO-SEX POPULATION CONSIDERING COUNSELING

More information

A mathematical model for malaria involving differential susceptibility, exposedness and infectivity of human host

A mathematical model for malaria involving differential susceptibility, exposedness and infectivity of human host A mathematical model for malaria involving differential susceptibility exposedness and infectivity of human host A. DUCROT 1 B. SOME 2 S. B. SIRIMA 3 and P. ZONGO 12 May 23 2008 1 INRIA-Anubis Sud-Ouest

More information

Behavior Stability in two SIR-Style. Models for HIV

Behavior Stability in two SIR-Style. Models for HIV Int. Journal of Math. Analysis, Vol. 4, 2010, no. 9, 427-434 Behavior Stability in two SIR-Style Models for HIV S. Seddighi Chaharborj 2,1, M. R. Abu Bakar 2, I. Fudziah 2 I. Noor Akma 2, A. H. Malik 2,

More information

Hepatitis C Mathematical Model

Hepatitis C Mathematical Model Hepatitis C Mathematical Model Syed Ali Raza May 18, 2012 1 Introduction Hepatitis C is an infectious disease that really harms the liver. It is caused by the hepatitis C virus. The infection leads to

More information

Global Analysis of a Mathematical Model of HCV Transmission among Injecting Drug Users and the Impact of Vaccination

Global Analysis of a Mathematical Model of HCV Transmission among Injecting Drug Users and the Impact of Vaccination Applied Mathematical Sciences, Vol. 8, 2014, no. 128, 6379-6388 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.48625 Global Analysis of a Mathematical Model of HCV Transmission among

More information

Resilience and stability of harvested predator-prey systems to infectious diseases in the predator

Resilience and stability of harvested predator-prey systems to infectious diseases in the predator Resilience and stability of harvested predator-prey systems to infectious diseases in the predator Morgane Chevé Ronan Congar Papa A. Diop November 1, 2010 Abstract In the context of global change, emerging

More information

STABILITY ANALYSIS OF A GENERAL SIR EPIDEMIC MODEL

STABILITY ANALYSIS OF A GENERAL SIR EPIDEMIC MODEL VFAST Transactions on Mathematics http://vfast.org/index.php/vtm@ 2013 ISSN: 2309-0022 Volume 1, Number 1, May-June, 2013 pp. 16 20 STABILITY ANALYSIS OF A GENERAL SIR EPIDEMIC MODEL Roman Ullah 1, Gul

More information

Impact of Heterosexuality and Homosexuality on the transmission and dynamics of HIV/AIDS

Impact of Heterosexuality and Homosexuality on the transmission and dynamics of HIV/AIDS IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 12, Issue 6 Ver. V (Nov. - Dec.216), PP 38-49 www.iosrjournals.org Impact of Heterosexuality and Homosexuality on the

More information

Fractional Calculus Model for Childhood Diseases and Vaccines

Fractional Calculus Model for Childhood Diseases and Vaccines Applied Mathematical Sciences, Vol. 8, 2014, no. 98, 4859-4866 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4294 Fractional Calculus Model for Childhood Diseases and Vaccines Moustafa

More information

Keywords and phrases: Syphilis, Heterogeneous, Complications Mathematics Subject Classification: 92B05; 92D25; 92D30; 93D05; 34K20; 34K25

Keywords and phrases: Syphilis, Heterogeneous, Complications Mathematics Subject Classification: 92B05; 92D25; 92D30; 93D05; 34K20; 34K25 Journal of the Vol. 36, Issue 3, pp. 479-490, 2017 Nigerian Mathematical Society c Nigerian Mathematical Society MATHEMATICAL MODELLING OF SYPHILIS IN A HETEROGENEOUS SETTING WITH COMPLICATIONS R. B. OYENIYI,

More information

Analysis of SIR Mathematical Model for Malaria disease with the inclusion of Infected Immigrants

Analysis of SIR Mathematical Model for Malaria disease with the inclusion of Infected Immigrants IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 14, Issue 5 Ver. I (Sep - Oct 218), PP 1-21 www.iosrjournals.org Analysis of SIR Mathematical Model for Malaria disease

More information

Mathematical Modeling, Simulation, and Time Series Analysis of Seasonal Epidemics.

Mathematical Modeling, Simulation, and Time Series Analysis of Seasonal Epidemics. East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations 12-2010 Mathematical Modeling, Simulation, and Time Series Analysis of Seasonal Epidemics.

More information

Electronic appendices are refereed with the text. However, no attempt has been made to impose a uniform editorial style on the electronic appendices.

Electronic appendices are refereed with the text. However, no attempt has been made to impose a uniform editorial style on the electronic appendices. This is an electronic appendix to the paper by Alun L. Lloyd 2001 Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods. Proc. R. Soc. Lond. B 268, 985-993.

More information

The Spreading of Epidemics in Complex Networks

The Spreading of Epidemics in Complex Networks The Spreading of Epidemics in Complex Networks Xiangyu Song PHY 563 Term Paper, Department of Physics, UIUC May 8, 2017 Abstract The spreading of epidemics in complex networks has been extensively studied

More information

The SIRS Model Approach to Host/Parasite Relationships

The SIRS Model Approach to Host/Parasite Relationships = B I + y (N I ) 1 8 6 4 2 I = B I v I N = 5 v = 25 The IR Model Approach to Host/Parasite Relationships Brianne Gill May 16, 28 5 1 15 2 The IR Model... Abstract In this paper, we shall explore examples

More information

Introduction: What one must do to analyze any model Prove the positivity and boundedness of the solutions Determine the disease free equilibrium

Introduction: What one must do to analyze any model Prove the positivity and boundedness of the solutions Determine the disease free equilibrium Introduction: What one must do to analyze any model Prove the positivity and boundedness of the solutions Determine the disease free equilibrium point and the model reproduction number Prove the stability

More information

Quantifying the impact of decay in bed-net efficacy on malaria transmission

Quantifying the impact of decay in bed-net efficacy on malaria transmission Quantifying the impact of decay in bed-net efficacy on malaria transmission The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

More information

An Improved Computer Multi-Virus Propagation Model with User Awareness

An Improved Computer Multi-Virus Propagation Model with User Awareness Journal of Information & Computational Science 8: 16 (2011) 4301 4308 Available at http://www.joics.com An Improved Computer Multi-Virus Propagation Model with User Awareness Xiaoqin ZHANG a,, Shuyu CHEN

More information

Analysis of a model for hepatitis C virus transmission that includes the effects of vaccination and waning immunity

Analysis of a model for hepatitis C virus transmission that includes the effects of vaccination and waning immunity Analysis of a model for hepatitis C virus transmission that includes the effects of vaccination and waning immunity Daniah Tahir Uppsala University Department of Mathematics 7516 Uppsala Sweden daniahtahir@gmailcom

More information

Project 1 Modeling of Epidemics

Project 1 Modeling of Epidemics 532 Chapter 7 Nonlinear Differential Equations and tability ection 7.5 Nonlinear systems, unlike linear systems, sometimes have periodic solutions, or limit cycles, that attract other nearby solutions.

More information

ME 406 S-I-R Model of Epidemics Part 2 Vital Dynamics Included

ME 406 S-I-R Model of Epidemics Part 2 Vital Dynamics Included ME 406 S-I-R Model of Epidemics Part 2 Vital Dynamics Included sysid Mathematica 6.0.3, DynPac 11.01, 1ê13ê9 1. Introduction Description of the Model In this notebook, we include births and deaths in the

More information

Dynamics of a Networked Connectivity Model of Waterborne Disease Epidemics

Dynamics of a Networked Connectivity Model of Waterborne Disease Epidemics Dynamics of a Networked Connectivity Model of Waterborne Disease Epidemics A. Edwards, D. Mercadante, C. Retamoza REU Final Presentation July 31, 214 Overview Background on waterborne diseases Introduction

More information

SI j RS E-Epidemic Model With Multiple Groups of Infection In Computer Network. 1 Introduction. Bimal Kumar Mishra 1, Aditya Kumar Singh 2

SI j RS E-Epidemic Model With Multiple Groups of Infection In Computer Network. 1 Introduction. Bimal Kumar Mishra 1, Aditya Kumar Singh 2 ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.13(2012) No.3,pp.357-362 SI j RS E-Epidemic Model With Multiple Groups of Infection In Computer Network Bimal Kumar

More information

Research Article Modeling Computer Virus and Its Dynamics

Research Article Modeling Computer Virus and Its Dynamics Mathematical Problems in Engineering Volume 213, Article ID 842614, 5 pages http://dx.doi.org/1.1155/213/842614 Research Article Modeling Computer Virus and Its Dynamics Mei Peng, 1 Xing He, 2 Junjian

More information

The SEIR Dynamical Transmission Model of Dengue Disease with and Without the Vertical Transmission of the Virus

The SEIR Dynamical Transmission Model of Dengue Disease with and Without the Vertical Transmission of the Virus American Journal of Applied Sciences Original Research Paper The SEIR Dynamical Transmission Model of Dengue Disease with and Without the ertical Transmission of the irus 1 Pratchaya Chanprasopchai, I.

More information

Mathematical Model of Dengue Disease Transmission Dynamics with Control Measures

Mathematical Model of Dengue Disease Transmission Dynamics with Control Measures Journal of Advances in Mathematics and Computer Science 23(3): 1-12, 2017; Article no.jamcs.33955 Previously known as British Journal of Mathematics & Computer Science ISSN: 2231-0851 Mathematical Model

More information

Accepted Manuscript. Backward Bifurcations in Dengue Transmission Dynamics. S.M. Garba, A.B. Gumel, M.R. Abu Bakar

Accepted Manuscript. Backward Bifurcations in Dengue Transmission Dynamics. S.M. Garba, A.B. Gumel, M.R. Abu Bakar Accepted Manuscript Backward Bifurcations in Dengue Transmission Dynamics S.M. Garba, A.B. Gumel, M.R. Abu Bakar PII: S0025-5564(08)00073-4 DOI: 10.1016/j.mbs.2008.05.002 Reference: MBS 6860 To appear

More information

Mathematical Model of Dengue Disease Transmission with Severe DHF Compartment

Mathematical Model of Dengue Disease Transmission with Severe DHF Compartment BULLETIN of the Malaysian Mathematical Sciences Society http://math.usm.my/bulletin Bull. Malays. Math. Sci. Soc. (2) 30(2) (2007), 143 157 Mathematical Model of Dengue Disease Transmission with Severe

More information

STUDY OF THE DYNAMICAL MODEL OF HIV

STUDY OF THE DYNAMICAL MODEL OF HIV STUDY OF THE DYNAMICAL MODEL OF HIV M.A. Lapshova, E.A. Shchepakina Samara National Research University, Samara, Russia Abstract. The paper is devoted to the study of the dynamical model of HIV. An application

More information

Research Article Mathematical Modeling of Transmission Dynamics and Optimal Control of Vaccination and Treatment for Hepatitis B Virus

Research Article Mathematical Modeling of Transmission Dynamics and Optimal Control of Vaccination and Treatment for Hepatitis B Virus Computational and Mathematical Methods in Medicine, Article ID 475451, 15 pages http://dx.doi.org/10.1155/2014/475451 Research Article Mathematical Modeling of Transmission Dynamics and Optimal Control

More information

Three Disguises of 1 x = e λx

Three Disguises of 1 x = e λx Three Disguises of 1 x = e λx Chathuri Karunarathna Mudiyanselage Rabi K.C. Winfried Just Department of Mathematics, Ohio University Mathematical Biology and Dynamical Systems Seminar Ohio University November

More information

Modeling and Global Stability Analysis of Ebola Models

Modeling and Global Stability Analysis of Ebola Models Modeling and Global Stability Analysis of Ebola Models T. Stoller Department of Mathematics, Statistics, and Physics Wichita State University REU July 27, 2016 T. Stoller REU 1 / 95 Outline Background

More information

Applications in Biology

Applications in Biology 11 Applications in Biology In this chapter we make use of the techniques developed in the previous few chapters to examine some nonlinear systems that have been used as mathematical models for a variety

More information

A GRAPH-THEORETIC APPROACH TO THE METHOD OF GLOBAL LYAPUNOV FUNCTIONS

A GRAPH-THEORETIC APPROACH TO THE METHOD OF GLOBAL LYAPUNOV FUNCTIONS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 8, August 2008, Pages 2793 2802 S 0002-993908)09341-6 Article electronically published on March 27, 2008 A GRAPH-THEORETIC APPROACH TO

More information

GLOBAL STABILITY OF A VACCINATION MODEL WITH IMMIGRATION

GLOBAL STABILITY OF A VACCINATION MODEL WITH IMMIGRATION Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 92, pp. 1 10. SSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu GLOBAL STABLTY

More information

Introduction to Epidemic Modeling

Introduction to Epidemic Modeling Chapter 2 Introduction to Epidemic Modeling 2.1 Kermack McKendrick SIR Epidemic Model Introduction to epidemic modeling is usually made through one of the first epidemic models proposed by Kermack and

More information

ON FRACTIONAL ORDER CANCER MODEL

ON FRACTIONAL ORDER CANCER MODEL Journal of Fractional Calculus and Applications, Vol.. July, No., pp. 6. ISSN: 9-5858. http://www.fcaj.webs.com/ ON FRACTIONAL ORDER CANCER MODEL E. AHMED, A.H. HASHIS, F.A. RIHAN Abstract. In this work

More information

S. L. Lee K. W. Liang X. B. Pan RogerC.E.Tan. Department of Mathematics,

S. L. Lee K. W. Liang X. B. Pan RogerC.E.Tan. Department of Mathematics, SEIR MODEL: SARS OUTSIDE THE HOSPITAL S. L. Lee K. W. Liang X. B. Pan RogerC.E.Tan Department of Mathematics, NUS Typeset by AMS-TEX 1 2 Some Questions of SARS Epidemic ² Epidemics in hospital vs. outside

More information

A comparison of delayed SIR and SEIR epidemic models

A comparison of delayed SIR and SEIR epidemic models Nonlinear Analysis: Modelling and Control, 2011, Vol. 16, No. 2, 181 190 181 A comparison of delayed SIR and SEIR epidemic models Abdelilah Kaddar a, Abdelhadi Abta b, Hamad Talibi Alaoui b a Université

More information

Final Project Descriptions Introduction to Mathematical Biology Professor: Paul J. Atzberger. Project I: Predator-Prey Equations

Final Project Descriptions Introduction to Mathematical Biology Professor: Paul J. Atzberger. Project I: Predator-Prey Equations Final Project Descriptions Introduction to Mathematical Biology Professor: Paul J. Atzberger Project I: Predator-Prey Equations The Lotka-Volterra Predator-Prey Model is given by: du dv = αu βuv = ρβuv

More information

HETEROGENEOUS MIXING IN EPIDEMIC MODELS

HETEROGENEOUS MIXING IN EPIDEMIC MODELS CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 2, Number 1, Spring 212 HETEROGENEOUS MIXING IN EPIDEMIC MODELS FRED BRAUER ABSTRACT. We extend the relation between the basic reproduction number and the

More information

A Delayed HIV Infection Model with Specific Nonlinear Incidence Rate and Cure of Infected Cells in Eclipse Stage

A Delayed HIV Infection Model with Specific Nonlinear Incidence Rate and Cure of Infected Cells in Eclipse Stage Applied Mathematical Sciences, Vol. 1, 216, no. 43, 2121-213 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.216.63128 A Delayed HIV Infection Model with Specific Nonlinear Incidence Rate and

More information

TRANSMISSION DYNAMICS OF CHOLERA EPIDEMIC MODEL WITH LATENT AND HYGIENE COMPLIANT CLASS

TRANSMISSION DYNAMICS OF CHOLERA EPIDEMIC MODEL WITH LATENT AND HYGIENE COMPLIANT CLASS Electronic Journal of Mathematical Analysis and Applications Vol. 7(2) July 2019, pp. 138-150. ISSN: 2090-729X(online) http://math-frac.org/journals/ejmaa/ TRANSMISSION DYNAMICS OF CHOLERA EPIDEMIC MODEL

More information

Sensitivity and Stability Analysis of Hepatitis B Virus Model with Non-Cytolytic Cure Process and Logistic Hepatocyte Growth

Sensitivity and Stability Analysis of Hepatitis B Virus Model with Non-Cytolytic Cure Process and Logistic Hepatocyte Growth Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 3 2016), pp. 2297 2312 Research India Publications http://www.ripublication.com/gjpam.htm Sensitivity and Stability Analysis

More information

Stability of a Numerical Discretisation Scheme for the SIS Epidemic Model with a Delay

Stability of a Numerical Discretisation Scheme for the SIS Epidemic Model with a Delay Stability of a Numerical Discretisation Scheme for the SIS Epidemic Model with a Delay Ekkachai Kunnawuttipreechachan Abstract This paper deals with stability properties of the discrete numerical scheme

More information

Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate

Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate Chun-Hsien Li a, a Department of Mathematics, National Kaohsiung Normal University, Yanchao District, Kaohsiung City 82444,

More information

Modeling the Spread of Epidemic Cholera: an Age-Structured Model

Modeling the Spread of Epidemic Cholera: an Age-Structured Model Modeling the Spread of Epidemic Cholera: an Age-Structured Model Alen Agheksanterian Matthias K. Gobbert November 20, 2007 Abstract Occasional outbreaks of cholera epidemics across the world demonstrate

More information

Modeling Social Media Memes as a Contagious Process

Modeling Social Media Memes as a Contagious Process Modeling Social Media Memes as a Contagious Process S.Towers 1,, A.Person 2, C.Castillo-Chavez 1 1 Arizona State University, Tempe, AZ, USA 2 Some University, Nowhereville, NE, USA E-mail: smtowers@asu.edu

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 0

MATH 56A: STOCHASTIC PROCESSES CHAPTER 0 MATH 56A: STOCHASTIC PROCESSES CHAPTER 0 0. Chapter 0 I reviewed basic properties of linear differential equations in one variable. I still need to do the theory for several variables. 0.1. linear differential

More information

A Modeling Approach for Assessing the Spread of Tuberculosis and Human Immunodeficiency Virus Co-Infections in Thailand

A Modeling Approach for Assessing the Spread of Tuberculosis and Human Immunodeficiency Virus Co-Infections in Thailand Kasetsart J. (at. Sci.) 49 : 99 - (5) A Modeling Approach for Assessing the Spread of Tuberculosis and uman Immunodeficiency Virus Co-Infections in Thailand Kornkanok Bunwong,3, Wichuta Sae-jie,3,* and

More information

Understanding the contribution of space on the spread of Influenza using an Individual-based model approach

Understanding the contribution of space on the spread of Influenza using an Individual-based model approach Understanding the contribution of space on the spread of Influenza using an Individual-based model approach Shrupa Shah Joint PhD Candidate School of Mathematics and Statistics School of Population and

More information

A Model on the Impact of Treating Typhoid with Anti-malarial: Dynamics of Malaria Concurrent and Co-infection with Typhoid

A Model on the Impact of Treating Typhoid with Anti-malarial: Dynamics of Malaria Concurrent and Co-infection with Typhoid International Journal of Mathematical Analysis Vol. 9, 2015, no. 11, 541-551 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.412403 A Model on the Impact of Treating Typhoid with Anti-malarial:

More information

Supplemental Information Population Dynamics of Epidemic and Endemic States of Drug-Resistance Emergence in Infectious Diseases

Supplemental Information Population Dynamics of Epidemic and Endemic States of Drug-Resistance Emergence in Infectious Diseases 1 2 3 4 Supplemental Information Population Dynamics of Epidemic and Endemic States of Drug-Resistance Emergence in Infectious Diseases 5 Diána Knipl, 1 Gergely Röst, 2 Seyed M. Moghadas 3, 6 7 8 9 1 1

More information