Simulation in Manufacturing Technology

Size: px
Start display at page:

Download "Simulation in Manufacturing Technology"

Transcription

1 Simulation in Manufacturing Technology Lecture 8: Principles of Cutting Prof.Dr.-Ing. ritz Klocke Seite 1 Structure of the lecture Introduction: Metal Cutting The Cutting Part Tool-in-Hand System Terms at the Wedge Chip ormation Specification Shear Plane Model Machinability orce Components Tool Life Surface Integrity Chip orm Modeling of Machining E- Model of Chip ormation Seite 2

2 Structure of the lecture Introduction: Metal Cutting The Cutting Part Tool-in-Hand-System Terms at the Wedge Chip ormation Specification Shear Plane Model Machinability orce Components Tool Life Surface Integrity Chip orm Modeling of Machining E- Model of Chip ormation Seite 3 Cutting: Machining with geometrically defined cutting edge Manufacturing Processes major groups 1 primary shaping 2 secondar y shaping / forming 3 cutting 4 joining 5 coating 6 changing material properties source: DIN cutting with geometrically defined cutting edges (DIN ) Seite 4

3 Structure of the lecture Introduction: Metal Cutting The Cutting Part Tool-in-hand system Terms at the Wedge Chip ormation Specification Shear Plane Model Machinability orce Components Tool Life Surface Integrity Chip orm Modeling of Machining E-Model of Chip ormation Seite 5 Cutting edges on the cutting part of a turning tool primary motion shank feed motion major second face A γ minor cutting edge S' minor flank A' α major cutting edge S major second flank cutting edge corner A α Seite 6

4 Tool and workpiece motions trace of the plane of the face A g chip tool trace of the plane of the flank A a cutting speed η resultant cutting speed β ϕ workpiece feed speed trace of the plane of the transient surface Seite 7 Tool-in-hand system assumed working plane P f λ s P n cutting edge normal plane P n v r c tool cutting edge plane P s P s P p κ r v r f Pf P o tool orthogonal plane P o tool back plane P p P r tool reference plane P r Seite 8

5 Differences between reference systems assumed direction of primary motion tool back plane P p working back plane P pe direction of the resultant cutting speed assumed working plane P f v r c selected point on the cutting edge v r e working plane P fe assumed direction of feed motion tool-in-hand system tool-in-use system direction of feed motion tool reference plane P r working reference plane P re Seite 9 Tool-in-hand system (ISO 3002) assumed working plane P f tool cutting edge plane P s Variable with the process! P f P s κ r ix with the tool! v r f v r e v r c P n ix with the tool! cutting edge normal plane P n λ s ix with the machine by turning, if the cutting edge is positioned in the centre of the spindle. z C y B P r γ n i x with the tool! This is the plane of the face A γ. machine coordinate system A x (DIN EN ISO 841) tool reference plane P r Seite 10

6 Theoretical terms at the process trace of the working reference plane P re γ ne trace of the shear plane trace of the working cutting edge plane P e P se h r h r ch tool workpiece selected point on the cutting edge z P oe P fe P ne y Seite 11 Structure of the lecture Introduction: Metal Cutting The Cutting Part Tool-in-Hand System Terms at the Wedge Chip ormation Specification Shear Plane Model Machinability orce Components Tool Life Surface Integrity Chip orm Modeling of Machining E-Model of Chip ormation Seite 12

7 Chip formation: types of chips I segmented chip continuous chip chip with build-up edge Seite 13 Chip formation: types of chips II shearing chip discontinuous chip Seite 14

8 Chip formation: The cutting operation 1. bring up gathering 2. split up, crack segment formation 3. shearing and next bring up 4. second segment formation and bring up 5. shearing and next crack source: Codron third segment formation and bring up 7. shearing and next crack t dynamic cutting force Seite 15 Structure of the lecture Introduction: Metal Cutting The Cutting Part Tool-in-Hand system Terms at the Wedge Chip ormation Specification Shear Plane Model Machinability orce Components Tool Life Surface Integrity Chip orm Modeling of Machining E-Model of Chip ormation Seite 16

9 The shear plane model trace of P p shear plane accounts: plastic deformation only in the shear plane biaxial stress condition ideal sharpness of the cutting edge realisation: the orthogonal cut All the force components are in the tool orthogonal plane P o. tool cutting edge angle k r = 90 tool cutting edge inclination l s = 0 This model is acceptable, because the biaxial and the triaxial stress condition are in neighbourhood. Seite 17 Consideration of energy h shear plane h model v c v ch h ch x shear energy: specific shear energy: E e = s E s s = = = τ V A x x s A A = sin b h = sin Seite 18

10 Krystoff 1939: shear angle determination ( ρ ) + = 45 z γ o 2 n trace of the shear plane 90 major axis system machine coordinate system principle of maximum shear stress 3 y z workpiece ρ γ o tool γ o trace of the tool reference plane P r π = + γ o ρ 4 α o P o P f P n Seite 19 Ernst and Merchant 1941: force equilibrium and shear angle γn ρ f z n c ρ γ o trace of the shear plane shear stress in the shear plane: τ = A dτ = 0 d = ( cos sin ) c f b h π 1 = sin ( γ ρ ) o γ γ o trace of the tool reference plane P r workpiece tool α o P o P f P n Eugene M. Merchant Seite 20

11 Application: theory of the ideal plastic body Lee/Shaffer (1951) τ C A trace of the shear plane A σ = 0 τ = 0 B D C γ o η π 4 B trace of the tool reference plane P r Mohr s circle diagram τ a, d e η 2 ρ ρ b c, f σ workpiece α o tool P o P f P n π = + γ o ρ 4 Seite 21 Shear plane model: force calculation demonstration of the total force as a function of the shear stress with consideration of: shear work friction work at the face z τ b h = sin cos ( + ρ γ ) 0 By using the circle of Thales, the total force can be substitute with the two force components cutting force and feed force. (in the orthogonal cut) cos ( ρ γ o ) sin( ρ γ o ) τ b h fortho cos( + ρ λ ) sin cos( + ρ γ ) cortho = sin o = o τ b h Calculation of the force components with a physical and theoretical background! (advantage of analytical models) Seite 22

12 Structure of the lecture Introduction: Metal Cutting The Cutting Part Tool-in-Hand System Terms at the Wedge Chip ormation Specification Shear Plane Model Machinability orce Components Tool Life Surface Integrity Chip orm Modeling of Machining E-Model of Chip ormation Seite 23 orce components feed speed v e resultant cutting speed v c cutting speed the three force components c, f and p are perpendicular the total force z is their geometrical sum back force p does not influences the power v f primary motion (workpiece) back force p f feed force feed motion (tool) c a active force cutting force z total force Seite 24

13 Dependencies of the force components distribution of force c area of the rounded corner c force f p f force c f p v force c feed cutting speed tool cutting edge angle depth of cut c f p κ r force f p a p The maxima are produced by the build up cutting edge during the area of low cutting speed. At the area of the rounded corner the trend line of the force components are not linear! Seite 25 primary influence of the force components technical cutting mechanics technical terms: v c, v f, a p, geometrical relation k r, l s, a o, g o, theoretical cutting mechanics theoretical terms: b, h, h ch, In the theoretical cutting mechanics, the cross-sectional area was identified as primary factor and for the calculation the following parameters were defined: thickness of cut h width of cut b z = f ( b, h) Plagens has found a good approximation of the cutting force with a linear function of the width of cut (b). The approximation of the force components with a function of the thickness of cut h was often discussed and lead to empirical models: Seite 26

14 orce approximation: empirical models linear approximation: potential approximation: i = A b h + B b i = k i1.1 b h ( 1 ) m i result of a curve fit first part has a basis of the shear plane theory very easy function not so precise all calculations are not so protected (low number of user) Schlesinger (1931) Pohl (1934) Klein (1938) Richter (1954) Hucks (1956) Thomson (1962) Altintas (1998) researcher result of a curve fit calculation of the cutting force statistic protected very precise a theoretical reason is missing calculation of the other force components are not protected Taylor (1883/1902) ischer (1897) riedrich (1909) Hippler (1923) Salomon(1924) Kronenberg (1927) Klopstock (1932) Kienzle (1952) Seite 27 Example: linear approximation force / N Kraft [N] v c = 242 m min h = 100 µm v c =242 m/min h =100 µm c f c f force / N Kraft [N] Ac=131,69 N Bc=3,98 N/µm Af=154,71 N Bf=2,48 N/µm c242 f242 Linear it of Data1_c242 Linear it of Data1_f Zeit [s] time/ s Spanungsdicke [µm] thickness of cut / µm linear approximation: i = A b h + B b i i Seite 28

15 Example: potential approximation scaled force nomogram scaled force i ' / N/mm tane i =1-m i ' i B e i A log( ib )-log( ia ) log(h B )-log(h A ) 100 0,1 1 thickne ss of cu t h / mm i Otto Kienzle ( ) k = ki b h i 1. i = mi h k 1 logarithmic scale of the axes! triangle of the slope! potential approximation: i = k i1.1 b h 1 m i Seite 29 Structure of the lecture Introduction: Metal Cutting The Cutting Part Tool-in-hand System Terms at the Wedge Chip ormation Specification Shear Plane Model Machinability orce Components Tool Life Surface Integrity Chip orm Modeling of Machining E-Model of Chip ormation Seite 30

16 Types of wear face A γ tool clearance A α flank wear land crater C B A N A KM SV α VB B KT SV γ A K flank A α face Aγ Seite 31 Taylor s tool life theory Standzeitdiagramm tool life diagram tool life straight line or Taylor s straight line 100 y = m x + b Application of the general equation of a straight line! tool Standzeit life T T / min / min 10 Consideration of the logarithmic scale of the axes! log T + = tanδvc logvc logcv tanδ vc = kvc log T = k logv + logc vc c v δ vc k vc T = v c C v cutting speed v c / m/min Schnittgeschwindigkeit v c / m/min rederick Winslow Taylor ( ) Seite 32

17 Wear diagram: flank wear Verschleißdiagramm wear the choice of the tool life criterion VB / mm 0,4 vc=160 m/min 0,3 vc=200 m/min vc=300 m/min 0,2 under fix 0,1 cutting edge geometries and 0 cutting conditions t c / min determination of the tool life consideration of the boundary conditions Seite 33 Tool life straight line determination of the cutting speed for a tool life of 15 minutes 100 Standzeitdiagramm tool life diagram T=15 min Standzeit tool life / T / min 10 HW - P Schnittgeschwindigkeit Cutting speed / m/min / m/min m v15 VB 0,3 = 170 min Seite 34

18 Structure of the lecture Introduction: Metal Cutting The Cutting Part Tool-in-hand System Terms at the Wedge Chip ormation Specification Shear Plane Model Machinability orce Components Tool Life Surface Integrity Chip orm Modeling of Machining E-Model of Chip ormation Seite 35 Engagement conditions P r κ r tool reference plane P r P 1 R t x P 2 rε rε Rt f/2 z Tschebyschow (1874): Milling Bauer (1934): Turning R t = rε rε f 4 2 R t 2 f 8 r ε Seite 36

19 Structure of the lecture Introduction: Metal Cutting The Cutting Part Tool-in-Hand System Terms at the Wedge Chip ormation Specification Shear Plane Model Machinability orce Components Tool Life Surface Integrity Chip orm Modeling of Machining E-Model of Chip ormation Seite 37 Chip forms source: Stahl-Eisen Prüfblatt Seite 38

20 Structure of the lecture Introduction: Metal Cutting The Cutting Part Tool-in-Hand System Terms at the Wedge Chip ormation Specification Shear Plane Model Machinability orce Components Tool Life Surface Integrity Chip orm Modeling of Machining E-Model of Chip formation Seite 39 E-Model: orthogonal cut CAD-data of the tool plastomechanic calculation thermodynamic calculation flow stress / MPa material data temperature / C strain rate E-Software nonlinear E multiphysics modeling results: stress distribution of the tool temperature distribution of the tool Seite 40

1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION

1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION Module 6 Lecture 40 Evaluation of Soil Settlement - 6 Topics 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5.1 Definition of Stress Path 1.5. Stress and Strain Path for Consolidated Undrained Undrained

More information

MECHANICS OF METAL CUTTING

MECHANICS OF METAL CUTTING MECHANICS OF METAL CUTTING Radial force (feed force) Tool feed direction Main Cutting force Topics to be covered Tool terminologies and geometry Orthogonal Vs Oblique cutting Turning Forces Velocity diagram

More information

CHAPTER 4 Stress Transformation

CHAPTER 4 Stress Transformation CHAPTER 4 Stress Transformation ANALYSIS OF STRESS For this topic, the stresses to be considered are not on the perpendicular and parallel planes only but also on other inclined planes. A P a a b b P z

More information

Combined Stresses and Mohr s Circle. General Case of Combined Stresses. General Case of Combined Stresses con t. Two-dimensional stress condition

Combined Stresses and Mohr s Circle. General Case of Combined Stresses. General Case of Combined Stresses con t. Two-dimensional stress condition Combined Stresses and Mohr s Circle Material in this lecture was taken from chapter 4 of General Case of Combined Stresses Two-dimensional stress condition General Case of Combined Stresses con t The normal

More information

CHAPER THREE ANALYSIS OF PLANE STRESS AND STRAIN

CHAPER THREE ANALYSIS OF PLANE STRESS AND STRAIN CHAPER THREE ANALYSIS OF PLANE STRESS AND STRAIN Introduction This chapter is concerned with finding normal and shear stresses acting on inclined sections cut through a member, because these stresses may

More information

Strain Transformation equations

Strain Transformation equations Strain Transformation equations R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Stress transformation

More information

ME 243. Lecture 10: Combined stresses

ME 243. Lecture 10: Combined stresses ME 243 Mechanics of Solids Lecture 10: Combined stresses Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

A Numerical Approach on the Design of a Sustainable Turning Insert

A Numerical Approach on the Design of a Sustainable Turning Insert Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences 54 (4): 339 345 (2017) Copyright Pakistan Academy of Sciences ISSN: 2518-4245 (print), 2518-4253 (online) Pakistan

More information

Failure from static loading

Failure from static loading Failure from static loading Topics Quiz /1/07 Failures from static loading Reading Chapter 5 Homework HW 3 due /1 HW 4 due /8 What is Failure? Failure any change in a machine part which makes it unable

More information

3D Finite Element Analysis of Drilling of Ti-6Al-4V Alloy

3D Finite Element Analysis of Drilling of Ti-6Al-4V Alloy International Conference on Computer Information Systems and Industrial Applications (CISIA 215) 3D Finite Element Analysis of Drilling of Ti-6Al-4V Alloy Y. Su, D.D. Chen, L. Gong College of Mechanical

More information

Machining Dynamics. Experimental characterization of machining processes. TEQIP Workshop on. Dr. Mohit Law

Machining Dynamics. Experimental characterization of machining processes. TEQIP Workshop on. Dr. Mohit Law TEQIP Workshop on Machining Dynamics Machining Process Modelling + Machine Tool Dynamic Testing + Avoidance of Chatter Vibrations 18-22 July 2016 Experimental characterization of machining processes Dr.

More information

Tool edge radius effect on cutting temperature in micro-end-milling process

Tool edge radius effect on cutting temperature in micro-end-milling process Int J Adv Manuf Technol (2011) 52:905 912 DOI 10.1007/s00170-010-2795-z ORIGINAL ARTICLE Tool edge radius effect on cutting temperature in micro-end-milling process Kai Yang & Ying-chun Liang & Kang-ning

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 50 Module 4: Lecture 1 on Stress-strain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin p-q space; Mohr-Coulomb failure

More information

King Saud University College of Engineering Industrial Engineering Dept.

King Saud University College of Engineering Industrial Engineering Dept. IE-352 Section 1, CRN: 13536 Section 2, CRN: 30521 First Semester 1432-33 H (Fall-2011) 4(4,1,1) MANUFACTURING PROCESSES - 2 Machining Exercises Name: Student Number: 42 Answer ALL of the following questions

More information

Cutting with geometrically undefined cutting edges

Cutting with geometrically undefined cutting edges Cutting with geometrically undefined cutting edges Simulation Techniques in Manufacturing Technology Lecture 10 Laboratory for Machine Tools and Production Engineering Chair of Manufacturing Technology

More information

Stress transformation and Mohr s circle for stresses

Stress transformation and Mohr s circle for stresses Stress transformation and Mohr s circle for stresses 1.1 General State of stress Consider a certain body, subjected to external force. The force F is acting on the surface over an area da of the surface.

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

MAE 322 Machine Design. Dr. Hodge Jenkins Mercer University

MAE 322 Machine Design. Dr. Hodge Jenkins Mercer University MAE 322 Machine Design Dr. Hodge Jenkins Mercer University What is this Machine Design course really about? What you will learn: How to design machine elements 1) Design so they won t break under varying

More information

dnom 2 Substituting known values, the nominal depth of cut (in mm) is

dnom 2 Substituting known values, the nominal depth of cut (in mm) is 35 Given: boring number of teeth, N t = corner radius, r ε = 0 lead angle, ψ r = 15 back rake angle, γ p = 0 side rake angle, γ f = 0 feed rate, f r = 040 mm/rev spindle speed, n s =600 rpm initial workpiece

More information

A Study of the Cutting Temperature in Milling Stainless Steels with Chamfered Main Cutting Edge Sharp Worn Tools

A Study of the Cutting Temperature in Milling Stainless Steels with Chamfered Main Cutting Edge Sharp Worn Tools Copyright 2012 Tech Science Press SL, vol.8, no.3, pp.159-171, 2012 A Study of the Cutting Temperature in Milling Stainless Steels with Chamfered Main Cutting Edge Sharp Worn Tools Chung-Shin Chang 1 Abstract:

More information

Maejo International Journal of Science and Technology

Maejo International Journal of Science and Technology Maejo Int. J. Sci. Technol. 29, 3(2), 343-351 Full Paper Maejo International Journal of Science and Technology ISSN 195-7873 Available online at www.mijst.mju.ac.th Determination of proportionality constants

More information

both an analytical approach and the pole method, determine: (a) the direction of the

both an analytical approach and the pole method, determine: (a) the direction of the Quantitative Problems Problem 4-3 Figure 4-45 shows the state of stress at a point within a soil deposit. Using both an analytical approach and the pole method, determine: (a) the direction of the principal

More information

Finite Element Modeling of Chip Formation Process: Possibilities and Drawbacks

Finite Element Modeling of Chip Formation Process: Possibilities and Drawbacks Finite Element Modeling of Chip Formation Process: Possibilities and Drawbacks Pedro-J. ARRAZOLA; pjarrazola@eps.mondragon.edu Done UGARTE Mondragon University, Mondragon, Spain (www.eps.mondragon.edu);

More information

Deformation Processing - Drawing

Deformation Processing - Drawing eformation Processing - rawing ver. Overview escription Characteristics Mechanical Analysis Thermal Analysis Tube drawing Geometry b α a F b, σ xb F a, σ xa 3 4 Equipment 5 Cold rawing 6 A. urer - Wire

More information

Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

More information

Stability of orthogonal turning processes

Stability of orthogonal turning processes Stability of orthogonal turning processes M.A.M. Haring DC 21.16 Traineeship report Coach: A. Aygun, M.A.Sc. candidate (The University of British Columbia) Supervisors: Prof. H. Nijmeijer Prof. Y. Altintas

More information

This is an author-deposited version published in: Handle ID:.http://hdl.handle.net/10985/7495

This is an author-deposited version published in:  Handle ID:.http://hdl.handle.net/10985/7495 Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible. This is an author-deposited

More information

DYNAMIC ISSUES AND PROCEDURE TO OBTAIN USEFUL DOMAIN OF DYNAMOMETERS USED IN MACHINE TOOL RESEARCH ARIA

DYNAMIC ISSUES AND PROCEDURE TO OBTAIN USEFUL DOMAIN OF DYNAMOMETERS USED IN MACHINE TOOL RESEARCH ARIA 7 th INTERNATIONAL MULTIDISCIPLINARY CONFERENCE Baia Mare, Romania, May 17-18, 2007 ISSN -1224-3264 DYNAMIC ISSUES AND PROCEDURE TO OBTAIN USEFUL DOMAIN OF DYNAMOMETERS USED IN MACHINE TOOL RESEARCH ARIA

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 51 Module 4: Lecture 2 on Stress-strain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin p-q space; Mohr-coulomb failure

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION A - INTRODUCTION INTRODUCTION M.N.Tamin, CSMLab, UTM Course Content: A - INTRODUCTION Mechanical failure modes; Review of load and stress analysis equilibrium equations, complex stresses, stress transformation,

More information

Structural Analysis I Chapter 4 - Torsion TORSION

Structural Analysis I Chapter 4 - Torsion TORSION ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate

More information

A SIMPLIFIED MODEL FOR PLOUGHING FORCES IN TURNING

A SIMPLIFIED MODEL FOR PLOUGHING FORCES IN TURNING A SIMPLIFIED MODEL FOR PLOUGHING FORCES IN TURNING Daniel J. Waldorf Industrial and Manufacturing Engineering Department Cal Poly State University San Luis Obispo, CA KEYWORDS Machining, Forces, Edge Geometry,

More information

7. STRESS ANALYSIS AND STRESS PATHS

7. STRESS ANALYSIS AND STRESS PATHS 7-1 7. STRESS ANALYSIS AND STRESS PATHS 7.1 THE MOHR CIRCLE The discussions in Chapters and 5 were largely concerned with vertical stresses. A more detailed examination of soil behaviour requires a knowledge

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure

More information

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Tectonics Lecture 12 Earthquake Faulting Plane strain 3 Strain occurs only in a plane. In the third direction strain is zero. 1 ε 2 = 0 3 2 Assumption of plane strain for faulting e.g., reverse fault:

More information

Effect offriction onthe Cutting Forces in High Speed Orthogonal Turning of Al 6061-T6

Effect offriction onthe Cutting Forces in High Speed Orthogonal Turning of Al 6061-T6 IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 2 Ver. VII (Mar- Apr. 2014), PP 78-83 Effect offriction onthe Cutting Forces in High Speed

More information

Ch 4a Stress, Strain and Shearing

Ch 4a Stress, Strain and Shearing Ch. 4a - Stress, Strain, Shearing Page 1 Ch 4a Stress, Strain and Shearing Reading Assignment Ch. 4a Lecture Notes Sections 4.1-4.3 (Salgado) Other Materials Handout 4 Homework Assignment 3 Problems 4-13,

More information

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing

More information

Heat flux and temperature distribution in gear hobbing operations

Heat flux and temperature distribution in gear hobbing operations Available online at www.sciencedirect.com Procedia CIRP 8 (2013 ) 456 461 14 th CIRP Conference on Modeling of Machining Operations (CIRP CMMO) Heat flux and temperature distribution in gear hobbing operations

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

Lecture Triaxial Stress and Yield Criteria. When does yielding occurs in multi-axial stress states?

Lecture Triaxial Stress and Yield Criteria. When does yielding occurs in multi-axial stress states? Lecture 5.11 Triaial Stress and Yield Criteria When does ielding occurs in multi-aial stress states? Representing stress as a tensor operational stress sstem Compressive stress sstems Triaial stresses:

More information

DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA

DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA Ghasemloy Takantapeh Sasan, *Akhlaghi Tohid and Bahadori Hadi Department

More information

Bulk Metal Forming II

Bulk Metal Forming II Bulk Metal Forming II Simulation Techniques in Manufacturing Technology Lecture 2 Laboratory for Machine Tools and Production Engineering Chair of Manufacturing Technology Prof. Dr.-Ing. Dr.-Ing. E.h.

More information

9. Stress Transformation

9. Stress Transformation 9.7 ABSOLUTE MAXIMUM SHEAR STRESS A pt in a body subjected to a general 3-D state of stress will have a normal stress and shear-stress components acting on each of its faces. We can develop stress-transformation

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Cutting Forces Modeling in Finish Turning of Inconel 718 Alloy with Round Inserts

Cutting Forces Modeling in Finish Turning of Inconel 718 Alloy with Round Inserts Cutting Forces Modeling in Finish Turning of Inconel 718 Alloy with Round Inserts Sébastien Campocasso, Jean-Philippe Costes, Gérard Poulachon, Alexis Perez-Duarte To cite this version: Sébastien Campocasso,

More information

COMPUTER AIDED NONLINEAR ANALYSIS OF MACHINE TOOL VIBRATIONS AND A DEVELOPED COMPUTER SOFTWARE

COMPUTER AIDED NONLINEAR ANALYSIS OF MACHINE TOOL VIBRATIONS AND A DEVELOPED COMPUTER SOFTWARE Mathematical and Computational Applications, Vol. 10, No. 3, pp. 377-385, 005. Association for Scientific Research COMPUTER AIDED NONLINEAR ANALYSIS OF MACHINE TOOL VIBRATIONS AND A DEVELOPED COMPUTER

More information

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 24, Time Allowed: 150 Minutes Maximum Marks: 30

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 24, Time Allowed: 150 Minutes Maximum Marks: 30 NATIONAL BOARD FOR HIGHER MATHEMATICS M. A. and M.Sc. Scholarship Test September 24, 2011 Time Allowed: 150 Minutes Maximum Marks: 30 Please read, carefully, the instructions on the following page 1 INSTRUCTIONS

More information

6. Bending CHAPTER OBJECTIVES

6. Bending CHAPTER OBJECTIVES CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where

More information

On The Temperature and Residual Stress Field During Grinding

On The Temperature and Residual Stress Field During Grinding On The Temperature and Residual Stress Field During Grinding S. M. H-Gangaraj, G. H. Farrahi and H. Ghadbeigi Abstract Grinding is widely used for manufacturing of components that require fine surface

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 56 Module 4: Lecture 7 on Stress-strain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin p-q space; Mohr-Coulomb failure

More information

ANALYTICAL MODELING AND SIMULATION OF METAL CUTTING FORCES FOR ENGINEERING ALLOYS

ANALYTICAL MODELING AND SIMULATION OF METAL CUTTING FORCES FOR ENGINEERING ALLOYS ANALYTICAL MODELING AND SIMULATION OF METAL CUTTING FORCES FOR ENGINEERING ALLOYS by Lei Pang A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in The

More information

Principal Stresses, Yielding Criteria, wall structures

Principal Stresses, Yielding Criteria, wall structures Principal Stresses, Yielding Criteria, St i thi Stresses in thin wall structures Introduction The most general state of stress at a point may be represented by 6 components, x, y, z τ xy, τ yz, τ zx normal

More information

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ APPLIED MECHANICS Study Support Leo Václavek Ostrava 2015 Title:Applied Mechanics Code: Author: doc. Ing.

More information

Foundation Analysis LATERAL EARTH PRESSURE

Foundation Analysis LATERAL EARTH PRESSURE Foundation Analysis LATERAL EARTH PRESSURE INTRODUCTION Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other

More information

Application nr. 7 (Connections) Strength of bolted connections to EN (Eurocode 3, Part 1.8)

Application nr. 7 (Connections) Strength of bolted connections to EN (Eurocode 3, Part 1.8) Application nr. 7 (Connections) Strength of bolted connections to EN 1993-1-8 (Eurocode 3, Part 1.8) PART 1: Bolted shear connection (Category A bearing type, to EN1993-1-8) Structural element Tension

More information

IDENTIFICATION OF NONLINEAR CUTTING PROCESS MODEL IN TURNING

IDENTIFICATION OF NONLINEAR CUTTING PROCESS MODEL IN TURNING ADVANCES IN MANUFACTURING SCIENCE AND TECHNOLOGY Vol. 33, No. 3, 2009 IDENTIFICATION OF NONLINEAR CUTTING PROCESS MODEL IN TURNING Bartosz Powałka, Mirosław Pajor, Stefan Berczyński S u m m a r y This

More information

A New Model and Analysis of Orthogonal Machining With an Edge-Radiused Tool

A New Model and Analysis of Orthogonal Machining With an Edge-Radiused Tool A New Model and Analysis of Orthogonal Machining With an Edge-Radiused Tool Jairam Manjunathaiah William J. Endres Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann

More information

Lecture Notes 5

Lecture Notes 5 1.5 Lecture Notes 5 Quantities in Different Coordinate Systems How to express quantities in different coordinate systems? x 3 x 3 P Direction Cosines Axis φ 11 φ 3 φ 1 x x x x 3 11 1 13 x 1 3 x 3 31 3

More information

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Somnath Bhowmick Materials Science and Engineering, IIT Kanpur April 6, 2018 Tensile test and Hooke s Law Upto certain strain (0.75),

More information

Supplementary Information. Multifunctional graphene woven fabrics

Supplementary Information. Multifunctional graphene woven fabrics Supplementary Information Multifunctional graphene woven fabrics Xiao Li 1, Pengzhan Sun 1, Lili Fan 1, Miao Zhu 1,2, Kunlin Wang 1, Dehai Wu 1, Yao Cheng 2,3 and Hongwei Zhu 1,2* 1 Department of Mechanical

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering Torsion Torsion: Torsion refers to the twisting of a structural member that is loaded by couples (torque) that produce rotation about the member s longitudinal axis. In other words, the member is loaded

More information

Analysis of forming - Slab Method

Analysis of forming - Slab Method Analysis of forming - Slab Method Forming of materials is a complex process, involving either biaxial or triaxial state of stress on the material being formed. Analysis of the forming process, therefore

More information

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME:

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME: MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY EXAMINER: WM BESTER SUBJECT CODE: COMRMC EXAMINATION DATE: OCTOBER 2017 TIME: MODERATOR: H YILMAZ TOTAL MARKS: [100] PASS MARK: (60%)

More information

Lecture #8: Ductile Fracture (Theory & Experiments)

Lecture #8: Ductile Fracture (Theory & Experiments) Lecture #8: Ductile Fracture (Theory & Experiments) by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing 2015 1 1 1 Ductile

More information

Chapter 3. Load and Stress Analysis. Lecture Slides

Chapter 3. Load and Stress Analysis. Lecture Slides Lecture Slides Chapter 3 Load and Stress Analysis 2015 by McGraw Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner.

More information

Lecture #6: 3D Rate-independent Plasticity (cont.) Pressure-dependent plasticity

Lecture #6: 3D Rate-independent Plasticity (cont.) Pressure-dependent plasticity Lecture #6: 3D Rate-independent Plasticity (cont.) Pressure-dependent plasticity by Borja Erice and Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling

More information

Ratcheting deformation in thin film structures

Ratcheting deformation in thin film structures Ratcheting deformation in thin film structures Z. SUO Princeton University Work with MIN HUANG, Rui Huang, Jim Liang, Jean Prevost Princeton University Q. MA, H. Fujimoto, J. He Intel Corporation Interconnect

More information

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 1 Introduction MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University Concept of Stress Contents Concept of Stress

More information

Modeling and Estimation of Grinding Forces for Mono Layer cbn Grinding Wheel

Modeling and Estimation of Grinding Forces for Mono Layer cbn Grinding Wheel Research Article International Journal of Current Engineering and Technology E-ISSN 2277 46, P-ISSN 2347-5161 14 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Modeling

More information

(Refer Slide Time: 04:21 min)

(Refer Slide Time: 04:21 min) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 44 Shear Strength of Soils Lecture No.2 Dear students today we shall go through yet

More information

STEEL. General Information

STEEL. General Information General Information General Information TYPICAL STRESS-STRAIN CURVE Below is a typical stress-strain curve. Each material has its own unique stress-strain curve. Tensile Properties Tensile properties indicate

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Contact analysis for the modelling of anchors in concrete structures H. Walter*, L. Baillet** & M. Brunet* *Laboratoire de Mecanique des Solides **Laboratoire de Mecanique des Contacts-CNRS UMR 5514 Institut

More information

PREDICTION MODEL FOR BURR FORMATION

PREDICTION MODEL FOR BURR FORMATION PREDICTION MODEL FOR BURR FORMATION Prof. Dr.-Ing. habil. Hans-Michael Beier FHTW Berlin Berlin, Germany dr.beier@beier-entgrattechnik.de Dil.-Ing. Reinhard Nothnagel Dr. Beier-Entgrattechnik Altlandsberg,

More information

SOIL MECHANICS Assignment #7: Shear Strength Solution.

SOIL MECHANICS Assignment #7: Shear Strength Solution. 14.330 SOIL MECHANICS Assignment #7: Shear Strength Solution. PROBLEM #1: GIVEN: Direct Shear test results from a SP soil shown in Figure A (from 14.330_2012_Assignment_#8_P1.csv on the course website).

More information

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9 Table of Contents 1. Plasticity:... 3 1.1 Plastic Deformation,

More information

3D Elasticity Theory

3D Elasticity Theory 3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.

More information

Influence of a DLC Coating on the Temperature and Friction in a Helical Tooth Flank Contact

Influence of a DLC Coating on the Temperature and Friction in a Helical Tooth Flank Contact Influence of a DLC Coating on the Temperature and Friction in a Helical Tooth Flank Contact, Lars Bobach, Dirk Bartel Institute of Machine Design Chair of Machine Elements and Tribology Otto von Guericke

More information

Cracks Jacques Besson

Cracks Jacques Besson Jacques Besson Centre des Matériaux UMR 7633 Mines ParisTech PSL Research University Institut Mines Télécom Aγνωστ oς Θεoς Outline 1 Some definitions 2 in a linear elastic material 3 in a plastic material

More information

SHEAR STRENGTH OF SOIL UNCONFINED COMPRESSION TEST

SHEAR STRENGTH OF SOIL UNCONFINED COMPRESSION TEST SHEAR STRENGTH OF SOIL DEFINITION The shear strength of the soil mass is the internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it. INTRODUCTION

More information

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004 Elements of Continuum Elasticity David M. Parks Mechanics and Materials II 2.002 February 25, 2004 Solid Mechanics in 3 Dimensions: stress/equilibrium, strain/displacement, and intro to linear elastic

More information

Module 5: Theories of Failure

Module 5: Theories of Failure Module 5: Theories of Failure Objectives: The objectives/outcomes of this lecture on Theories of Failure is to enable students for 1. Recognize loading on Structural Members/Machine elements and allowable

More information

Analysis of forming- Slipline Field Method

Analysis of forming- Slipline Field Method Analysis of forming- Slipline Field Method R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 7 Table of Contents 1.

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

3.032 Problem Set 2 Solutions Fall 2007 Due: Start of Lecture,

3.032 Problem Set 2 Solutions Fall 2007 Due: Start of Lecture, 3.032 Problem Set 2 Solutions Fall 2007 Due: Start of Lecture, 09.21.07 1. In the beam considered in PS1, steel beams carried the distributed weight of the rooms above. To reduce stress on the beam, it

More information

M A N U F A C T U R I N G P R O C E S S E S ME A S S I G N M E N T

M A N U F A C T U R I N G P R O C E S S E S ME A S S I G N M E N T H.- J. Steinmetz, Jan. 004 M A N U F A C T U R I N G P R O C E S S E S ME 38.3 A S S I G N M E N T 0 0 4 A machine shop has 15 workers and one shop foreman. The shop has to manufacture a quantity of 800

More information

Design of reinforced concrete sections according to EN and EN

Design of reinforced concrete sections according to EN and EN Design of reinforced concrete sections according to EN 1992-1-1 and EN 1992-2 Validation Examples Brno, 21.10.2010 IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, 616 00 BRNO tel.: +420-511

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 009 The McGraw-Hill Companies, Inc. All rights reserved. Fifth SI Edition CHAPTER 7 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Transformations of

More information

UNCERTAINTY PROPAGATION FOR SELECTED ANALYTICAL MILLING STABILITY LIMIT ANALYSES

UNCERTAINTY PROPAGATION FOR SELECTED ANALYTICAL MILLING STABILITY LIMIT ANALYSES UNCERTAINTY PROPAGATION FOR SELECTED ANALYTICAL MILLING STABILITY LIMIT ANALYSES G. Scott Duncan, Mohammad H. Kurdi, Tony L. Schmitz Department of Mechanical and Aerospace Engineering University of Florida

More information

1.8 Unconfined Compression Test

1.8 Unconfined Compression Test 1-49 1.8 Unconfined Compression Test - It gives a quick and simple measurement of the undrained strength of cohesive, undisturbed soil specimens. 1) Testing method i) Trimming a sample. Length-diameter

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

Tentamen/Examination TMHL61

Tentamen/Examination TMHL61 Avd Hållfasthetslära, IKP, Linköpings Universitet Tentamen/Examination TMHL61 Tentamen i Skademekanik och livslängdsanalys TMHL61 lördagen den 14/10 2000, kl 8-12 Solid Mechanics, IKP, Linköping University

More information

Geology for Engineers Rock Mechanics and Deformation of Earth Materials

Geology for Engineers Rock Mechanics and Deformation of Earth Materials 89.325 Geology for Engineers Rock Mechanics and Deformation of Earth Materials Why do rocks break? Rock mechanics experiments a first order understanding. Faults and Fractures Triaxial load machine. a)

More information

Observational Methods and

Observational Methods and Observational Methods and NATM System for Observational approach to tunnel design Eurocode 7 (EC7) includes the following remarks concerning an observational method. Four requirements shall all be made

More information

Table of Contents. Preface...xvii. Part 1. Level

Table of Contents. Preface...xvii. Part 1. Level Preface...xvii Part 1. Level 1... 1 Chapter 1. The Basics of Linear Elastic Behavior... 3 1.1. Cohesion forces... 4 1.2. The notion of stress... 6 1.2.1. Definition... 6 1.2.2. Graphical representation...

More information

Advanced Friction Modeling in Sheet Metal Forming

Advanced Friction Modeling in Sheet Metal Forming Advanced Friction Modeling in Sheet Metal Forming J.Hol 1,a, M.V. Cid Alfaro 2, T. Meinders 3, J. Huétink 3 1 Materials innovation institute (M2i), P.O. box 58, 26 GA Delft, The Netherlands 2 Tata Steel

More information

Stress Distribution Analysis in Non-Involute Region of Spur Gear

Stress Distribution Analysis in Non-Involute Region of Spur Gear Stress Distribution Analysis in Non-Involute Region of Spur Gear Korde A. 1 & Soni S 2 1 Department of Mechanical Engineering, Faculty of Technology and Bionics Hochschule Rhein-Waal, Kleve, NRW, Germany,

More information

STEP Support Programme. Mechanics STEP Questions

STEP Support Programme. Mechanics STEP Questions STEP Support Programme Mechanics STEP Questions This is a selection of mainly STEP I questions with a couple of STEP II questions at the end. STEP I and STEP II papers follow the same specification, the

More information

Civil Engineering Design (1) Analysis and Design of Slabs 2006/7

Civil Engineering Design (1) Analysis and Design of Slabs 2006/7 Civil Engineering Design (1) Analysis and Design of Slabs 006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Elastic Methods... 3 1.1 Introduction... 3 1. Grillage Analysis... 4 1.3 Finite Element

More information