Electronic structure quantum Monte Carlo methods with variable spins and fixed-phase/node approximations

Size: px
Start display at page:

Download "Electronic structure quantum Monte Carlo methods with variable spins and fixed-phase/node approximations"

Transcription

1 Electronic structure quantum Monte Carlo methods with variable spins and fixed-phase/node approximations C. Melton, M.C. Bennett, L. Mitas with A. Ambrosetti, F. Pederiva North Carolina State University Universities of Trento and Padova SIGN 2017, INT, U. Washington, Seattle

2 projector QMC, Slater-Jastrow trial functions (single, multi-ref) and the fixed-node approximation standard model FNDMC Hamiltonian with (valence) electrons and ions QMC/DMC: ϕ0 =lim τ exp( τ H ) ψt (rial ) sampled in coord. space ϕ0 (r 1, r 2,...) = - trial function H ϕ0 =E 0 ϕ0 with fixed-node approx. ψt ϕ0, FN 0 ψt = k c k det k [ϕα ]det k [ϕβ ]exp[u corr ]

3 EoS FeO solid at high pressures: FNDMC transition at ~ 65 GPa (exper ); also agreement for cohesion, gaps, bulk moduli, etc ~ 95(2)% of E_corr J. Kolorenc & LM, PRL '08

4 but so far static spins only, while we need spins to vary spinless electrons-ions Hamiltonian spatial-only problem, ψ = c det [ϕ (r )]det spin channels factorized: α T k k k i k [ϕβ (r j )]exp[u corr ] now, include spin-orbit ϕ n (r i, si )=α ϕ (r i ) χ (s i )+β ϕ (r i ) χ (si ) determinant of spinors ψtrial =ψtrial (R, S )=det [ϕ n (r i, si )]exp(u corr ) spin coordinates : χ (1/ 2)=χ ( 1/ 2)=1 χ ( 1/ 2)=χ (1/ 2)=0

5 what is the problem then? variationally ok just sampling of a larger space d r 1... d r N σ... σ d r 1... d r N 1 N e.g., A. Ambrosetti, F. Pederiva, LM,, Phys. Rev. B 85, ('12) (also already in 1985 by J. Carlson and M. Kalos for nuclei...) VMC [ev] Exper. [ev] Tl J=3/2/g.s. J=1/2 0.85(5) 0.95 Pb J=1 /g.s J=0 0.88(7) 0.95 Pb J=2 /g.s. J=0 1.23(6) 1.31 Bi J=3/2 /g.s. J=3/ (8) 1.42

6 however, projection QMC (DMC etc) is less straightforward discrete moves between 2 N points: - moves of fixed length (no time step) - no smooth importance guiding - increased local energy fluctuations } inefficient with N more issues : - inherently complex wave functions - nonlocal SO pseudopots (PP) for heavy elements suggested ideas: - sample the spinors (Pederiva, Gandolfi, Ambrosetti 2000s) with gradual updates ( stochastic rotations of spinors ) - smooth out spin configurations + fixed-phase approximation (Melton, Ambrosetti, Pederiva, LM et al, 2016)

7 step one: smooth out spin configurations/paths we make spin configurations non-discrete by using continuous (overcomplete) and compact representation, possible choice: χ (s)=exp(+is), χ (s)=exp( is); s (0,2 π) different from rotating spinors, here: spinors are fixed since the spinors are fixed one can use projection onto trial function to eliminate nonlocality of PP and SO terms W SORPP = i [W (i)arpp + i W (iso) ] (i ) W (iso) = j, l v jl (r i ) P (i) l s P jl i i jl nonlocal SORPP term locality approximation (LM et al '91) W ℜ W Tℜ=ℜ[ ψ 1 T W ψt ]

8 step two: complex wave function fixed-phase (FP) ψ=ρ( R, S )exp[i ϕ( R, S )] the Schrodinger equation breaks into Re and Im t ρ=[t +V +W ℜ +(1/ 2)( ϕ)2 ]ρ t ϕ=[t ϕ ( ln ρ) ϕ+w ℑ ] the first equation gives the energy eigenvalue and we invoke the fixed-phase (FP) approximation (Ortiz et al '92) ϕ ϕt 2 V eff =(1/ 2)( ϕt ) FP seems like a step into an unknown territory, but it is not: fixed-node is a limit/special case of the fixed-phase for real wfs 2 ( ϕt ) C δ[ R R node,t ]

9 fixed-phase special case of fixed-node, sketch of a demonstration let ψt ( R) be real, fermionic, with nodes at subset R node,t construct ψ=ψ T +ia ψsymm,>0 ψ 2 ] ϕ =arctan [(ℜ ψ)/ then the limit of potential from the phase node 2 lima 0 ( ϕ ) C δ[ R Rnode,T ]

10 step three: sampling of the spin configurations fixed-phase spinorbit DMC (FPSODMC) effective free-particle Hamiltonian (kinetic term) for spins H H +H spin, 1 H spin (si )= 2μ s [ 2 +1 si2 ] H spin annihilates arbitrary spinor H spin (si )[α ϕ (r i )χ (s i )+β ϕ (r i ) χ (s i )]=0 therefore, to the leading order no contribution to the energy (subleading overshadowed by the fixed-phase bias since SO is small) - effective spin mass time step on the spin subspace (overall, basically two time steps, spatial and spin) FPSODMC method: tests on atomic and molecular systems

11 total energies: Pb atom with valence 6s26p2 FPSODMC(.) vs CI with ccpvxz basis( ) Arxiv:... J =0 ; J =0 ; 11 22

12 Cr and Mo atoms ground states 7S3 (d5s1) W atom is isovalent, what is its ground state? averaged SO, any method (DFT, CI, QMC) 7 S3 (5d56s1) explicit SO two-component, open-shell only CI 7 explicit SO two-component, full CI or FPSODMC/rCI 5 S3 (5d56s1) D0 (5d46s2) both SO and correlation needed to flip the state!

13 W atom SO splitted sd-manifold of excitations Config. State 5d46s2 5 5d56s1 7 5d46s2 D1 COSCI DMC/COSCI CISD DMC/rCISD Exp (1) (1) 0.21 S (1) (1) D (1) (1) d46s (1) (1) d46s (1) (1) 0.77 D3 D4 FPSODMC agrees with experiment ok, but better RPPs needed!

14 FPSODMC applied to the PbH molecule (the averaged SO treatment off by 1 ev!) Method E_bind [ev] spin-average CCSD(T) 2.66 spin-average FNDMC 2.58(1) MRCIS/SO+pert. spin-average CCSD(T) FPSODMC 1.63(1) Exper. ~ 1.69(5)

15 Sn2 dimer should be simple, it is the fourth row but SO correction is ~ 0.5 ev! (small core SORPP, 44 val. e-) Exp. A. Ambrosetti et al, to appear in PRB

16 interestingly, one can go back to fixed-node, ie, recover the spin-labeled fixed-node trial form... consider spinors is χ α (r, s)=ϕα (r)e, χβ (r, s)=ϕβ (r)e is set variables to two values: {up }={s i } s, {down }={s j } s ', s s'

17 fixed-node trial form but with a complex twist spins factorize out of the determinant and we get up/down product: ψt =det [χ j ] ψt =const [sin (s s ' ) N/2 ] det [ϕi ] det [ϕ j ] - the most interesting regime: {up }={s i } s {down }={s j } s ', - basically the fixed-node limit but complexified, ie, has properties of the fixed-phase - this can be achieved by the choice of spin variables and by adjusting the time step for spin variables

18 two limits: slow spins fixed-node fast spins full fixed-phase - group the spins to two distinct values up, down and run FP C atom, all e- ~ 5 % E_corr fast spins limit: bias from complex phase in full space indep. calculated FN value (~ 95% of E_corr) 0 spin time step large

19 fixed-node vs fixed-phases biases from: independent FN real wf vs FP at the FN limit

20 fixed-phase: some considerations - has a form of effective (many-body) potential/field V ph =(1/ 2)( ϕ) 2 τ ρ=[ T +V +V ph ]ρ - ρ(r) 0, its zeros are codimension 2 (unlike FN codimension 1) - ergodicity generically ok (no artificial nodal domains important for calculations of other properties than energy) - smaller fluctuations and easier sampling (no recrossing)

21 fixed-phase amplitude zeros: codimension harmonic electrons, P(sp) state ψexact = g (r 1, r 2, r 12 )det [1,Y 11 ] fixed-node: V FN =V δ( x 1 x 2 ) fixed-phase: V ph = 4 2 Γ={( x 1= x 2 ) R } d =5 line ( x 12 + y 12 ) 4 Π0={( x 12+ y 12 =0) R } d =4 point ix iy ψt =det [1, e, e ] - three periodic electrons ix iy fixed-node: ψt =ℜ {det [1, e, e ]} 2 nodal domains fixed-phase: ρt = ψt one domain

22 coming back to spatial-only nodes: some properties - roots of 1D polynomial/function anchor its behavior - nodes are roots of multivariate polynomial/function (dn-1)-manifold a.e. given by ψ(r 1, r 2,..., r N )=ψ(r)=0 - in addition, nodes of eigenst. of Schrodinger equation are special: - nodal domain averages nda - nodal surface averages nsa

23 nda: nodal domain averages (not usual expectations, direct imprint from amplitudes) write the total energy as kinetic and potential components that are one-sided expectations, or, nodal domain averages (nda): nda nda E= E kin + E pot nda / E kin = Γ R ψ d R ψ d R E pot = V ( R) ψ d R / nda ψ d R nda E kin determined by R ψ solely on the node Γ={R ; ψ(r)=0 } - nda components enable to distinguish between degenerate states with different nodes (eg, different symmetries) - enables to show some unexpected equivalences, eg, fermionic and bosonic (excited) nodes equivalent, just rotated

24 different states, even different statistics, but equivalent nodes three atomic states, 2p2 occupation: 3P, 1S, 1D all have the same nda energy components 3 P, 1S, 1D (2p2) E tot E kin E pot E nda kin E nda pot -1/4 1/4-1/2 1/12-1/3 why? Consider the 5D node projected into 3D: 3 P : electron sees a plane defined by ang. mom. axis and the second el. 1 D : electron sees a plane which contains ang. mom. axis and is orthogonal to such plane defined by the second electron 1 S : electron sees a plane which is orthogonal to the position vector of the second electron in all three cases the node is a 5D hyperbolic surface in 6D arxiv:

25 nsa: nodal surface averages total energy as the following kinetic and potential components nsa nsa E= E kin +E pot E kin = Γ h( R) R ψ... expression is too long nsa 2 nsa / E pot = Γ h( R)V ( R) d R Γ h( R) d R h( R) is a weight function, all integrals only over the nodal surface - choose h( R) such that the average of potential over the node gives the eigenvalue (note: kinetic part vanishes) Γ h(r)[v ( R) E ] d R=0 - node is special: any other level set needs more information

26 summary - unifying formalism: FN and FP, static and variable spins - sampling advantages of codimension 2 (for excitations, especially) - wave functions with phase/spins are more general, possible additional variational freedom - nodal surfaces are unique properties can possibly reveal how to construct them more efficiently PRA 2016, JCP 2016, , to be submitted soon

27 total energies Bi atom with valence 6s26p3 FPSODMC/COS( _), FPSODMC/restr.CI(...) vs CI( Arxiv:... )

28 similar for molecules now including nonlocal ECPs and differences dimer atoms, example of N2 small difference but within the scale of FN biases

29 Bi atom excitations/splittings compared with experiment Bi atom SO splittings [ev] (w.r.t. to the g.s. J=3/2>) J; j1,j2,j3 > DF CI FPSODMC Exper. 3/2; > (1) /2; > (1) /2; > (1) /2; > (1) 1.42

30 key points about FPSODMC method - fixed-phase: no sign, basis or ergodicity problem ρ(r) is nonzero except for isolated points (ie, codimension 2) - zero variance property energy fluctuations decrease with ψt error squared (as for the fixed-node) ψt V eff one-to-one mapping for any state - treatment of SO terms natural to its nonlocality localization - reuse of much existing QMC methodology/codes from static spins

31 Green's function for spinor sampling y x x y example of Rashba SO in 2D*: V Rashba =λ j [ p j σ j p j σ j ] G spin j ( cos( γ δ r j ) = sin ( γ δ r j ) where γ λ and i δ y j +δ x j δrj δ r j,δ x j,δ y j sin ( γ δ r j ) i δ y j +δ x j δrj cos( γ δ r j ) ) are spatial displacements - similar to Hubbard-Stratonovitch approaches *A. Ambrosetti, F. Pederiva, E. Lipparini, S. Gandolfi, PRB 80, ('09)

32 2D fermion gas with Stoner and Rashba interactions: spin-polarization vs. interaction strength A. Ambrosetti, F. Pederiva, LM, et al, PRA 91, ('15)

33 FNDMC vs traditional correlated wf methods: nodes converge in basis very rapidly, augtzv or so (HF)2 dimer

Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node

Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node approximations Cody Melton, M. Chandler Bennett, L. Mitas, with A. Ambrosetti, F. Pederiva North Carolina State

More information

Quantum Monte Carlo methods

Quantum Monte Carlo methods Quantum Monte Carlo methods Lubos Mitas North Carolina State University Urbana, August 2006 Lubos_Mitas@ncsu.edu H= 1 2 i i 2 i, I Z I r ii i j 1 r ij E ion ion H r 1, r 2,... =E r 1, r 2,... - ground

More information

Topology of fermion nodes and pfaffian wavefunctions

Topology of fermion nodes and pfaffian wavefunctions Topology of fermion nodes and pfaffian wavefunctions Lubos Mitas North Carolina State University San Sebastian, July 2007 Lubos_Mitas@ncsu.edu Hmmm, fermion nodes... Fermion nodes is a challenging, rather

More information

Electronic structure quantum Monte Carlo: pfaffians and many-body nodes of ground and excited states

Electronic structure quantum Monte Carlo: pfaffians and many-body nodes of ground and excited states Electronic structure quantum Monte Carlo: pfaffians and many-body nodes of ground and excited states Jindrich Kolorenc (von Humboldt Fellow), U. Hamburg Michal Bajdich, ORNL Lubos Mitas, North Carolina

More information

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2.

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2. Quantum Monte Carlo Simulations of a Single Iron Impurity in MgO Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2 1 Department of Earth & Planetary Science University of California, Berkeley

More information

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

AFDMC Method for Nuclear Physics and Nuclear Astrophysics AFDMC Method for Nuclear Physics and Nuclear Astrophysics Thanks to INFN and to F. Pederiva (Trento) Outline Motivations: NN scattering data few body theory. Few-body many body experiments/observations?

More information

Quantum Monte Carlo wave functions and their optimization for quantum chemistry

Quantum Monte Carlo wave functions and their optimization for quantum chemistry Quantum Monte Carlo wave functions and their optimization for quantum chemistry Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France CEA Saclay, SPhN Orme des Merisiers April 2015 Outline

More information

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Julien Toulouse 1, Cyrus J. Umrigar 2, Roland Assaraf 1 1 Laboratoire de Chimie

More information

Quantum Monte Carlo calculations of two neutrons in finite volume

Quantum Monte Carlo calculations of two neutrons in finite volume Quantum Monte Carlo calculations of two neutrons in finite volume Philipp Klos with J. E. Lynn, I. Tews, S. Gandolfi, A. Gezerlis, H.-W. Hammer, M. Hoferichter, and A. Schwenk Nuclear Physics from Lattice

More information

QMC dissociation energy of the water dimer: Time step errors and backflow calculations

QMC dissociation energy of the water dimer: Time step errors and backflow calculations QMC dissociation energy of the water dimer: Time step errors and backflow calculations Idoia G. de Gurtubay and Richard J. Needs TCM group. Cavendish Laboratory University of Cambridge Idoia G. de Gurtubay.

More information

Methods of Fermion Monte Carlo

Methods of Fermion Monte Carlo Methods of Fermion Monte Carlo Malvin H. Kalos kalos@llnl.gov Institute for Nuclear Theory University of Washington Seattle, USA July, 2013 LLNL-PRES-XXXXXX This work was performed under the auspices of

More information

Fixed-Node quantum Monte Carlo for Chemistry

Fixed-Node quantum Monte Carlo for Chemistry Fixed-Node quantum Monte Carlo for Chemistry Michel Caffarel Lab. Physique et Chimie Quantiques, CNRS-IRSAMC, Université de Toulouse e-mail : caffarel@irsamc.ups-tlse.fr. p.1/29 The N-body problem of Chemistry

More information

Noncollinear spins in QMC: spiral Spin Density Waves in the HEG

Noncollinear spins in QMC: spiral Spin Density Waves in the HEG Noncollinear spins in QMC: spiral Spin Density Waves in the HEG Zoltán Radnai and Richard J. Needs Workshop at The Towler Institute July 2006 Overview What are noncollinear spin systems and why are they

More information

Optimization of quantum Monte Carlo wave functions by energy minimization

Optimization of quantum Monte Carlo wave functions by energy minimization Optimization of quantum Monte Carlo wave functions by energy minimization Julien Toulouse, Roland Assaraf, Cyrus J. Umrigar Laboratoire de Chimie Théorique, Université Pierre et Marie Curie and CNRS, Paris,

More information

Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign

Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign Understanding of correlated materials is mostly phenomenological FN- DMC

More information

Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization

Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization Julien Toulouse, Cyrus Umrigar, Roland Assaraf Cornell Theory Center, Cornell University, Ithaca, New York, USA. Laboratoire

More information

Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state

Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state TCM Electronic Structure Discussion Group James Shepherd (CUC3, Alavi Group)

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Size-extensive wave functions for QMC A linear-scaling GVB approach

Size-extensive wave functions for QMC A linear-scaling GVB approach Size-extensive wave functions for QMC A linear-scaling GVB approach Claudia Filippi, University of Twente, The Netherlands Francesco Fracchia, University of Pisa, Italy Claudio Amovilli, University of

More information

Ground State Projector QMC in the valence-bond basis

Ground State Projector QMC in the valence-bond basis Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012 Ground State Projector QMC in the valence-bond basis Anders. Sandvik, Boston University Outline: The

More information

Quantum Monte Carlo. QMC methods in the continuum

Quantum Monte Carlo. QMC methods in the continuum Quantum Monte Carlo Premise: need to use simulation techniques to solve manybody quantum problems just as you need them classically. Both the wavefunction and expectation values are determined by the simulations.

More information

Variational Monte Carlo Optimization and Excited States

Variational Monte Carlo Optimization and Excited States Variational Monte Carlo Optimization and Excited States Eric Neuscamman August 9, 2018 motivation charge transfer core spectroscopy double excitations the menu aperitif: number counting Jastrows main course:

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

The nature of superfluidity in the cold atomic unitary Fermi gas

The nature of superfluidity in the cold atomic unitary Fermi gas The nature of superfluidity in the cold atomic unitary Fermi gas Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo (AFMC) method The trapped unitary Fermi gas

More information

Observations on variational and projector Monte Carlo Methods

Observations on variational and projector Monte Carlo Methods Observations on variational and projector Monte Carlo Methods C. J. Umrigar Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA (Dated: September 29, 2015) Variational

More information

Chapter 2 Quantum chemistry using auxiliary field Monte Carlo

Chapter 2 Quantum chemistry using auxiliary field Monte Carlo Chapter 2 Quantum chemistry using auxiliary field Monte Carlo 1. The Hubbard-Stratonovich Transformation 2. Neuhauser s shifted contour 3. Calculation of forces and PESs 4. Multireference AFMC 5. Examples

More information

Ground-state properties, excitations, and response of the 2D Fermi gas

Ground-state properties, excitations, and response of the 2D Fermi gas Ground-state properties, excitations, and response of the 2D Fermi gas Introduction: 2D FG and a condensed matter perspective Auxiliary-field quantum Monte Carlo calculations - exact* here Results on spin-balanced

More information

Orbital-dependent backflow transformations in quantum Monte Carlo

Orbital-dependent backflow transformations in quantum Monte Carlo transformations in quantum Monte Carlo P. Seth, P. López Ríos, and R. J. Needs TCM group, Cavendish Laboratory, University of Cambridge 5 December 2012 VMC and DMC Optimization Wave functions Variational

More information

ALGORITHMS FOR FINITE TEMPERATURE QMC

ALGORITHMS FOR FINITE TEMPERATURE QMC ALGORITHMS FOR FINITE TEMPERATURE QMC Bryan Clark Station Q QMC INT Conference: June 12, 2013 Current de-facto standard for fermions at finite temperature Restricted Path Integral Monte Carlo! * see PIMC++

More information

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid?

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid? Is a system of fermions in the crossover BCS-BEC BEC regime a new type of superfluid? Finite temperature properties of a Fermi gas in the unitary regime Aurel Bulgac,, Joaquin E. Drut, Piotr Magierski

More information

φ α (R) φ α ψ 0 e nτ(e α E T ). (2)

φ α (R) φ α ψ 0 e nτ(e α E T ). (2) Atomic Scale Simulations Projector Quantum Monte Carlo Projector Monte Carlo We now turn to a potentially more powerful method where a function of the Hamiltonian projects out the the ground state, hence

More information

I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS

I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS Markus Holzmann LPMMC, UJF, Grenoble, and LPTMC, UPMC, Paris markus@lptl.jussieu.fr http://www.lptl.jussieu.fr/users/markus (Dated: January 24, 2012)

More information

Introduction to Path Integral Monte Carlo. Part I.

Introduction to Path Integral Monte Carlo. Part I. Introduction to Path Integral Monte Carlo. Part I. Alexey Filinov, Jens Böning, Michael Bonitz Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany

More information

Low- and High-Energy Excitations in the Unitary Fermi Gas

Low- and High-Energy Excitations in the Unitary Fermi Gas Low- and High-Energy Excitations in the Unitary Fermi Gas Introduction / Motivation Homogeneous Gas Momentum Distribution Quasi-Particle Spectrum Low Energy Excitations and Static Structure Function Inhomogeneous

More information

PROGRESS IN UNDERSTANDING THE PROPERTIED OF MANY-BODY SYSTEMS BY QUANTUM MONTE CARLO SIMULATIONS

PROGRESS IN UNDERSTANDING THE PROPERTIED OF MANY-BODY SYSTEMS BY QUANTUM MONTE CARLO SIMULATIONS PROGRESS IN UNDERSTANDING THE PROPERTIED OF MANY-BODY SYSTEMS BY QUANTUM MONTE CARLO SIMULATIONS Francesco Pederiva! Physics Department - University of Trento INFN - TIFPA, Trento Institute for Fundamental

More information

Typical quantum states at finite temperature

Typical quantum states at finite temperature Typical quantum states at finite temperature How should one think about typical quantum states at finite temperature? Density Matrices versus pure states Why eigenstates are not typical Measuring the heat

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University Quantum Monte Carlo Simulations in the Valence Bond Basis Anders Sandvik, Boston University Outline The valence bond basis for S=1/2 spins Projector QMC in the valence bond basis Heisenberg model with

More information

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems Formally simple -- a framework for going beyond DFT? Random walks in non-orthogonal Slater determinant

More information

Quantum Mechanics Solutions. λ i λ j v j v j v i v i.

Quantum Mechanics Solutions. λ i λ j v j v j v i v i. Quantum Mechanics Solutions 1. (a) If H has an orthonormal basis consisting of the eigenvectors { v i } of A with eigenvalues λ i C, then A can be written in terms of its spectral decomposition as A =

More information

Quantum Mechanics Exercises and solutions

Quantum Mechanics Exercises and solutions Quantum Mechanics Exercises and solutions P.J. Mulders Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam De Boelelaan 181, 181 HV Amsterdam, the Netherlands email:

More information

Ab-initio molecular dynamics for High pressure Hydrogen

Ab-initio molecular dynamics for High pressure Hydrogen Ab-initio molecular dynamics for High pressure Hydrogen Claudio Attaccalite Institut d'electronique, Microélectronique et Nanotechnologie (IEMN), Lille Outline A brief introduction to Quantum Monte Carlo

More information

Pairing wave functions for quantum Monte Carlo methods

Pairing wave functions for quantum Monte Carlo methods Pairing wave functions for quantum Monte Carlo methods KE Schmidt Department of Physics Arizona State University Tempe, AZ 85287 USA Auxiliary field formalism Represent importance sampled wave function

More information

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 5 Hartree-Fock Theory WS2010/11: Introduction to Nuclear and Particle Physics Particle-number representation: General formalism The simplest starting point for a many-body state is a system of

More information

Unitary Fermi Gas: Quarky Methods

Unitary Fermi Gas: Quarky Methods Unitary Fermi Gas: Quarky Methods Matthew Wingate DAMTP, U. of Cambridge Outline Fermion Lagrangian Monte Carlo calculation of Tc Superfluid EFT Random matrix theory Fermion L Dilute Fermi gas, 2 spins

More information

Building a wavefunction within the Complete-Active. Cluster with Singles and Doubles formalism: straightforward description of quasidegeneracy

Building a wavefunction within the Complete-Active. Cluster with Singles and Doubles formalism: straightforward description of quasidegeneracy Building a wavefunction within the Complete-Active Active-Space Coupled-Cluster Cluster with Singles and Doubles formalism: straightforward description of quasidegeneracy Dmitry I. Lyakh (Karazin Kharkiv

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis

Quantum Monte Carlo Simulations in the Valence Bond Basis NUMERICAL APPROACHES TO QUANTUM MANY-BODY SYSTEMS, IPAM, January 29, 2009 Quantum Monte Carlo Simulations in the Valence Bond Basis Anders W. Sandvik, Boston University Collaborators Kevin Beach (U. of

More information

Semistochastic Quantum Monte Carlo A Hybrid of Exact Diagonalization and QMC Methods and Optimization of FN-PMC energies and FN-PMC forces

Semistochastic Quantum Monte Carlo A Hybrid of Exact Diagonalization and QMC Methods and Optimization of FN-PMC energies and FN-PMC forces Semistochastic Quantum Monte Carlo A Hybrid of Exact Diagonalization and QMC Methods and Optimization of FN-PMC energies and FN-PMC forces Cyrus Umrigar Physics Department, Cornell University, Ithaca.

More information

An Overview of Quantum Monte Carlo Methods. David M. Ceperley

An Overview of Quantum Monte Carlo Methods. David M. Ceperley An Overview of Quantum Monte Carlo Methods David M. Ceperley Department of Physics and National Center for Supercomputing Applications University of Illinois Urbana-Champaign Urbana, Illinois 61801 In

More information

Quantum Monte Carlo methods: recent developments and applications

Quantum Monte Carlo methods: recent developments and applications Quantum Monte Carlo methods: recent developments and applications Lucas Wagner, Michal Bajdich, Gabriel Drobny Zack Helms, Lubos Mitas North Carolina State University in collab. with Jeffrey Grossman,

More information

Continuum variational and diffusion quantum Monte Carlo calculations

Continuum variational and diffusion quantum Monte Carlo calculations Continuum variational and diffusion quantum Monte Carlo calculations R J Needs, M D Towler, N D Drummond and P López Ríos Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge CB3 0HE, UK Abstract.

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

Solution of Second Midterm Examination Thursday November 09, 2017

Solution of Second Midterm Examination Thursday November 09, 2017 Department of Physics Quantum Mechanics II, Physics 570 Temple University Instructor: Z.-E. Meziani Solution of Second Midterm Examination Thursday November 09, 017 Problem 1. (10pts Consider a system

More information

Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations?

Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations? Image: Peter Engels group at WSU Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations? Doerte Blume and Kevin M. Daily Dept. of Physics and Astronomy, Washington State University,

More information

3: Many electrons. Orbital symmetries. l =2 1. m l

3: Many electrons. Orbital symmetries. l =2 1. m l 3: Many electrons Orbital symmetries Atomic orbitals are labelled according to the principal quantum number, n, and the orbital angular momentum quantum number, l. Electrons in a diatomic molecule experience

More information

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Aurel Bulgac,, Joaquin E. Drut and Piotr Magierski University of Washington, Seattle, WA

More information

Time-dependent linear-response variational Monte Carlo.

Time-dependent linear-response variational Monte Carlo. Time-dependent linear-response variational Monte Carlo. Bastien Mussard bastien.mussard@colorado.edu https://mussard.github.io/ Julien Toulouse julien.toulouse@upmc.fr Sorbonne University, Paris (web)

More information

Quantum Monte Carlo for excited state calculations

Quantum Monte Carlo for excited state calculations Quantum Monte Carlo for excited state calculations Claudia Filippi MESA+ Institute for Nanotechnology, Universiteit Twente, The Netherlands Winter School in Theoretical Chemistry, Helsinki, Finland, Dec

More information

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in Lecture #3. Incorporating a vector potential into the Hamiltonian. Spin postulates 3. Description of spin states 4. Identical particles in classical and QM 5. Exchange degeneracy - the fundamental problem

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoría del Funcional de la Densidad (Density Functional Theory) Motivation: limitations of the standard approach based on the wave function. The electronic density n(r) as the key variable: Functionals

More information

Diffusion Monte Carlo

Diffusion Monte Carlo Diffusion Monte Carlo Notes for Boulder Summer School 2010 Bryan Clark July 22, 2010 Diffusion Monte Carlo The big idea: VMC is a useful technique, but often we want to sample observables of the true ground

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid

Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid N. D. Drummond and R. J. Needs TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge

More information

QMC dissociation energies of three-electron hemibonded radical cation dimers... and water clusters

QMC dissociation energies of three-electron hemibonded radical cation dimers... and water clusters QMC dissociation energies of three-electron hemibonded radical cation dimers... and water clusters Idoia G. de Gurtubay TCM group. Cavendish Laboratory University of Cambridge Idoia G. de Gurtubay. Quantum

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

The Nuclear Many-Body Problem. Lecture 2

The Nuclear Many-Body Problem. Lecture 2 The Nuclear Many-Body Problem Lecture 2 How do we describe nuclei? Shell structure in nuclei and the phenomenological shell model approach to nuclear structure. Ab-initio approach to nuclear structure.

More information

Origin of the first Hund rule in He-like atoms and 2-electron quantum dots

Origin of the first Hund rule in He-like atoms and 2-electron quantum dots in He-like atoms and 2-electron quantum dots T Sako 1, A Ichimura 2, J Paldus 3 and GHF Diercksen 4 1 Nihon University, College of Science and Technology, Funabashi, JAPAN 2 Institute of Space and Astronautical

More information

Pseudopotential generation and test by the ld1.x atomic code: an introduction

Pseudopotential generation and test by the ld1.x atomic code: an introduction and test by the ld1.x atomic code: an introduction SISSA and DEMOCRITOS Trieste (Italy) Outline 1 2 3 Spherical symmetry - I The Kohn and Sham (KS) equation is (in atomic units): [ 1 ] 2 2 + V ext (r)

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry Chemicum 4th floor vesa.hanninen@helsinki.fi September 10, 2013 Lecture 3. Electron correlation methods September

More information

Quantum Mechanics Solutions

Quantum Mechanics Solutions Quantum Mechanics Solutions (a (i f A and B are Hermitian, since (AB = B A = BA, operator AB is Hermitian if and only if A and B commute So, we know that [A,B] = 0, which means that the Hilbert space H

More information

Resonating Valence Bond wave function with molecular orbitals: application to diatomic molecules

Resonating Valence Bond wave function with molecular orbitals: application to diatomic molecules Resonating Valence Bond wave function with molecular orbitals: application to diatomic molecules M. Marchi 1,2, S. Azadi 2, M. Casula 3, S. Sorella 1,2 1 DEMOCRITOS, National Simulation Center, 34014,

More information

arxiv: v1 [cond-mat.mtrl-sci] 21 Dec 2007

arxiv: v1 [cond-mat.mtrl-sci] 21 Dec 2007 Quantum Monte Carlo calculations of structural properties of FeO under pressure Jindřich Kolorenč and Lubos Mitas Department of Physics and CHiPS, North Carolina State University, Raleigh, North Carolina

More information

Spin liquid phases in strongly correlated lattice models

Spin liquid phases in strongly correlated lattice models Spin liquid phases in strongly correlated lattice models Sandro Sorella Wenjun Hu, F. Becca SISSA, IOM DEMOCRITOS, Trieste Seiji Yunoki, Y. Otsuka Riken, Kobe, Japan (K-computer) Williamsburg, 14 June

More information

The search for the nodes of the fermionic ground state

The search for the nodes of the fermionic ground state The search for the nodes of the fermionic ground state ψ ( R) = 0 + - + - - + - + Some believe that unicorns are just shy and difficult to find. However, most people believe blue ones do not exist. We

More information

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier Ab initio calculations for potential energy surfaces D. Talbi GRAAL- Montpellier A theoretical study of a reaction is a two step process I-Electronic calculations : techniques of quantum chemistry potential

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Neutron Matter: EOS, Spin and Density Response

Neutron Matter: EOS, Spin and Density Response Neutron Matter: EOS, Spin and Density Response LANL : A. Gezerlis, M. Dupuis, S. Reddy, J. Carlson ANL: S. Pieper, R.B. Wiringa How can microscopic theories constrain mean-field theories and properties

More information

I. CSFs Are Used to Express the Full N-Electron Wavefunction

I. CSFs Are Used to Express the Full N-Electron Wavefunction Chapter 11 One Must be Able to Evaluate the Matrix Elements Among Properly Symmetry Adapted N- Electron Configuration Functions for Any Operator, the Electronic Hamiltonian in Particular. The Slater-Condon

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

The Hartree-Fock approximation

The Hartree-Fock approximation Contents The Born-Oppenheimer approximation Literature Quantum mechanics 2 - Lecture 7 November 21, 2012 Contents The Born-Oppenheimer approximation Literature 1 The Born-Oppenheimer approximation 2 3

More information

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Piotr Magierski (Warsaw University of Technology/ University of Washington, Seattle) Collaborators: Aurel Bulgac (Seattle)

More information

Time Evolving Block Decimation Algorithm

Time Evolving Block Decimation Algorithm Time Evolving Block Decimation Algorithm Application to bosons on a lattice Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,

More information

Accelerating QMC on quantum computers. Matthias Troyer

Accelerating QMC on quantum computers. Matthias Troyer Accelerating QMC on quantum computers Matthias Troyer International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982 Simulating Physics with Computers Richard P. Feynman Department of Physics, California

More information

Cluster-gas-like states and monopole excitations. T. Yamada

Cluster-gas-like states and monopole excitations. T. Yamada Cluster-gas-like states and monopole excitations T. Yamada Cluster-gas-like states and monopole excitations Isoscalar monopole excitations in light nuclei Cluster-gas-likes states: C, 16 O, 11 B, 13 C

More information

QUANTUM CHEMISTRY FOR TRANSITION METALS

QUANTUM CHEMISTRY FOR TRANSITION METALS QUANTUM CHEMISTRY FOR TRANSITION METALS Outline I Introduction II Correlation Static correlation effects MC methods DFT III Relativity Generalities From 4 to 1 components Effective core potential Outline

More information

v(r i r j ) = h(r i )+ 1 N

v(r i r j ) = h(r i )+ 1 N Chapter 1 Hartree-Fock Theory 1.1 Formalism For N electrons in an external potential V ext (r), the many-electron Hamiltonian can be written as follows: N H = [ p i i=1 m +V ext(r i )]+ 1 N N v(r i r j

More information

Specific heat of a fermionic atomic cloud in the bulk and in traps

Specific heat of a fermionic atomic cloud in the bulk and in traps Specific heat of a fermionic atomic cloud in the bulk and in traps Aurel Bulgac,, Joaquin E. Drut, Piotr Magierski University of Washington, Seattle, WA Also in Warsaw Outline Some general remarks Path

More information

2.4. Quantum Mechanical description of hydrogen atom

2.4. Quantum Mechanical description of hydrogen atom 2.4. Quantum Mechanical description of hydrogen atom Atomic units Quantity Atomic unit SI Conversion Ang. mom. h [J s] h = 1, 05459 10 34 Js Mass m e [kg] m e = 9, 1094 10 31 kg Charge e [C] e = 1, 6022

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

PHYS852 Quantum Mechanics II, Spring 2010 HOMEWORK ASSIGNMENT 8: Solutions. Topics covered: hydrogen fine structure

PHYS852 Quantum Mechanics II, Spring 2010 HOMEWORK ASSIGNMENT 8: Solutions. Topics covered: hydrogen fine structure PHYS85 Quantum Mechanics II, Spring HOMEWORK ASSIGNMENT 8: Solutions Topics covered: hydrogen fine structure. [ pts] Let the Hamiltonian H depend on the parameter λ, so that H = H(λ). The eigenstates and

More information

Superstripes and the excitation spectrum of a spin-orbit-coupled BEC

Superstripes and the excitation spectrum of a spin-orbit-coupled BEC INO ISTITUTO NAZIONALE DI OTTICA UNIVERSITA DEGLI STUDI DI TRENTO Superstripes and the excitation spectrum of a spin-orbit-coupled BEC Yun Li, Giovanni I. Martone, Lev P. Pitaevskii, and Sandro Stringari

More information

Physics 239/139 Spring 2018 Assignment 2 Solutions

Physics 239/139 Spring 2018 Assignment 2 Solutions University of California at San Diego Department of Physics Prof. John McGreevy Physics 39/139 Spring 018 Assignment Solutions Due 1:30pm Monday, April 16, 018 1. Classical circuits brain-warmer. (a) Show

More information

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure Stefano Gandolfi Los Alamos National Laboratory (LANL) Nuclear Structure and Reactions: Weak, Strange and Exotic International

More information

Bayero Journal of Pure and Applied Sciences, 3(1): Received: September, 2009 Accepted: May, 2010

Bayero Journal of Pure and Applied Sciences, 3(1): Received: September, 2009 Accepted: May, 2010 Bajopas Volume 3 Number June Bayero Journal of Pure and Applied Sciences, 3(: - 7 Received: September, 9 Accepted: May, VARIAIONAL QUANUM MON CARLO CALCULAION OF H GROUND SA NRG OF HDROGN MOLCUL Suleiman,

More information

Quantum Monte Carlo tutorial. Lucas K. Wagner Dept. of Physics; University of Illinois at Urbana-Champaign

Quantum Monte Carlo tutorial. Lucas K. Wagner Dept. of Physics; University of Illinois at Urbana-Champaign Quantum Monte Carlo tutorial Lucas K. Wagner Dept. of Physics; University of Illinois at Urbana-Champaign QMC: what is it good for? Theoretical gap (ev) 5 4 3 2 1 FN-DMC DFT(PBE) VO 2 (monoclinic) La 2

More information

NON-EQUILIBRIUM DYNAMICS IN

NON-EQUILIBRIUM DYNAMICS IN NON-EQUILIBRIUM DYNAMICS IN ISOLATED QUANTUM SYSTEMS Masud Haque Maynooth University Dept. Mathematical Physics Maynooth, Ireland Max-Planck Institute for Physics of Complex Systems (MPI-PKS) Dresden,

More information

A note on SU(6) spin-flavor symmetry.

A note on SU(6) spin-flavor symmetry. A note on SU(6) spin-flavor symmetry. 1 3 j = 0,, 1,, 2,... SU(2) : 2 2 dim = 1, 2, 3, 4, 5 SU(3) : u d s dim = 1,3, 3,8,10,10,27... u u d SU(6) : dim = 1,6,6,35,56,70,... d s s SU(6) irrep 56 + (l=0)

More information

Introduction to Quantum Monte Carlo Methods Applied to the Electron Gas

Introduction to Quantum Monte Carlo Methods Applied to the Electron Gas Introduction to Quantum Monte Carlo Methods Applied to the Electron Gas D. M. Ceperley Physics Department and NCSA, University of Illinois Urbana-Champaign, Urbana, IL, USA 1. Introduction In these lectures,

More information

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Question 1: Basis sets Consider the split valence SV3-21G one electron basis set for formaldehyde

More information

DFT in practice : Part II. Ersen Mete

DFT in practice : Part II. Ersen Mete pseudopotentials Department of Physics Balıkesir University, Balıkesir - Turkey August 13, 2009 - NanoDFT 09, İzmir Institute of Technology, İzmir Outline Pseudopotentials Basic Ideas Norm-conserving pseudopotentials

More information

PHYS 508 (2015-1) Final Exam January 27, Wednesday.

PHYS 508 (2015-1) Final Exam January 27, Wednesday. PHYS 508 (2015-1) Final Exam January 27, Wednesday. Q1. Scattering with identical particles The quantum statistics have some interesting consequences for the scattering of identical particles. This is

More information