Optimization of quantum Monte Carlo wave functions by energy minimization

Size: px
Start display at page:

Download "Optimization of quantum Monte Carlo wave functions by energy minimization"

Transcription

1 Optimization of quantum Monte Carlo wave functions by energy minimization Julien Toulouse, Roland Assaraf, Cyrus J. Umrigar Laboratoire de Chimie Théorique, Université Pierre et Marie Curie and CNRS, Paris, France. Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York, USA. Web page: Collaborators: Claudia Filippi (Lieden University), Richard G. Hennig (Cornell University), Sandro Sorella (SISSA, Trieste). January 2008

2 Outline 1 Wave function optimization 2 Calculation of pair densities 3 Conclusions

3 Outline 1 Wave function optimization 2 Calculation of pair densities 3 Conclusions

4 Trial wave function Jastrow-Slater wave function N CSF Ψ(p) = Ĵ(α) i=1 c i C i Ĵ(α) = Jastrow factor (with e-e, e-n, e-e-n terms) C i = Configuration state function (CSF) = linear combination of Slater determinants of given symmetry.

5 Trial wave function Jastrow-Slater wave function N CSF Ψ(p) = Ĵ(α) i=1 c i C i Ĵ(α) = Jastrow factor (with e-e, e-n, e-e-n terms) C i = Configuration state function (CSF) = linear combination of Slater determinants of given symmetry. The Slater determinants are made of orbitals expanded on a Slater basis: φ k (r) = N basis µ=1 λ kµ χ µ (r) χ(r) = N(ζ)r n 1 e ζr S l,m (θ,φ)

6 Trial wave function Jastrow-Slater wave function N CSF Ψ(p) = Ĵ(α) i=1 c i C i Ĵ(α) = Jastrow factor (with e-e, e-n, e-e-n terms) C i = Configuration state function (CSF) = linear combination of Slater determinants of given symmetry. The Slater determinants are made of orbitals expanded on a Slater basis: φ k (r) = N basis µ=1 λ kµ χ µ (r) χ(r) = N(ζ)r n 1 e ζr S l,m (θ,φ) Parameters to optimize p = {α, c, λ, ζ}: Jastrow parameters α, CSF coefficients c, orbital coefficients λ and basis exponents ζ

7 Wave function optimization: why and how? Important for both VMC and DMC in order to reduce the systematic error reduce the statistical uncertainty

8 Wave function optimization: why and how? Important for both VMC and DMC in order to reduce the systematic error reduce the statistical uncertainty How to optimize? Until recently: minimization of the variance of the energy OK for the few Jastrow parameters but does not work well for the many CSF and orbital parameters Since recently: minimization of the energy (+ possibly a small fraction of variance) in order to optimize well all the parameters and because the energy is a better criterion

9 Wave function parametrization Jastrow parameters α, CSF coefficients c, basis exponents ζ: no difficulty orbital coefficients λ are redundant = bad parametrization

10 Wave function parametrization Jastrow parameters α, CSF coefficients c, basis exponents ζ: no difficulty orbital coefficients λ are redundant = bad parametrization Reparametrization of orbital coefficients λ κ (used in MCSCF) N CSF Ψ(p) = Ĵ(α)eˆκ(κ) i=1 c i C i where ˆκ(κ) is the generator of rotations in orbital space (occupied and virtual): ˆκ(κ) = ) κ kl (Êk l Ê l k k<l and Êk l = â k âl + â k âl is the singlet excitation operator.

11 Wave function parametrization Reparametrization of orbital coefficients λ κ (used in MCSCF) N CSF Ψ(p) = Ĵ(α)eˆκ(κ) i=1 c i C i where ˆκ(κ) is the generator of rotations in orbital space (occupied and virtual): ˆκ(κ) = ) κ kl (Êk l Ê l k k<l and Êk l = â k âl + â k âl is the singlet excitation operator. Some points to note non-redundant parametrization orthonormalization of orbitals preserved if basis exponents are not varied can be generalized if basis exponents are varied

12 Energy minimization in VMC We have worked on three methods

13 Energy minimization in VMC We have worked on three methods Newton method E(p) E(p 0 ) + E(p 0 ) p i E(p 0 ) p i p j p i 2 p i p j i i,j

14 Energy minimization in VMC We have worked on three methods Newton method E(p) E(p 0 ) + E(p 0 ) p i E(p 0 ) p i p j p i 2 p i p j i i,j Linear method Ψ(p) Ψ(p 0 ) + i Ψ(p 0 ) p i p i = diagonalization of Ĥ in the basis {Ψ(p0 ), Ψ(p0 ) p i } H p = E S p

15 Energy minimization in VMC We have worked on three methods Newton method E(p) E(p 0 ) + E(p 0 ) p i E(p 0 ) p i p j p i 2 p i p j i i,j Linear method Ψ(p) Ψ(p 0 ) + i Ψ(p 0 ) p i p i = diagonalization of Ĥ in the basis {Ψ(p0 ), Ψ(p0 ) p i } Perturbative method H p = E S p approximate resolution of H p = E S p by nonorthogonal perturbation theory

16 Linear optimization method: principle Expansion of the wave function around p 0 to linear order in p = p p 0 : Ψ [1] (p) = Ψ 0 + j p j Ψ j where Ψ 0 = Ψ(p 0 ) and Ψ j = Ψ(p0 )) p j.

17 Linear optimization method: principle Expansion of the wave function around p 0 to linear order in p = p p 0 : Ψ [1] (p) = Ψ 0 + j p j Ψ j where Ψ 0 = Ψ(p 0 ) and Ψ j = Ψ(p0 )) p j. Normalization of wave function chosen so that the derivatives Ψ j are orthogonal to Ψ 0.

18 Linear optimization method: principle Expansion of the wave function around p 0 to linear order in p = p p 0 : Ψ [1] (p) = Ψ 0 + j p j Ψ j where Ψ 0 = Ψ(p 0 ) and Ψ j = Ψ(p0 )) p j. Normalization of wave function chosen so that the derivatives Ψ j are orthogonal to Ψ 0. Minimization of the energy = generalized eigenvalue equation: ( E0 g T )( ) ( )( ) / T 1 = E g/2 H p lin 0 S p where E 0 = Ψ 0 Ĥ Ψ 0, g i = E(p0 ) p i, H ij = Ψ i Ĥ Ψ j, S ij = Ψ i Ψ j.

19 Linear optimization method: principle Expansion of the wave function around p 0 to linear order in p = p p 0 : Ψ [1] (p) = Ψ 0 + j p j Ψ j where Ψ 0 = Ψ(p 0 ) and Ψ j = Ψ(p0 )) p j. Normalization of wave function chosen so that the derivatives Ψ j are orthogonal to Ψ 0. Minimization of the energy = generalized eigenvalue equation: ( E0 g T )( ) ( )( ) / T 1 = E g/2 H p lin 0 S p where E 0 = Ψ 0 Ĥ Ψ 0, g i = E(p0 ) p i, H ij = Ψ i Ĥ Ψ j, S ij = Ψ i Ψ j. Update of the parameters: p 0 p 0 + p.

20 Linear optimization method: robustness The linear method is equivalent to a stabilized Newton method: ( E0 g T )( ) ( )( ) / T 1 = E g/2 H p lin 0 S p { (h + 2 E S) p = g 2 E = g T p where h = 2(H E 0 S) is an approximate Hessian, and E = E 0 E lin > 0 is the energy stabilization. = more robust than Newton method

21 Linear optimization method: robustness The linear method is equivalent to a stabilized Newton method: ( E0 g T )( ) ( )( ) / T 1 = E g/2 H p lin 0 S p { (h + 2 E S) p = g 2 E = g T p where h = 2(H E 0 S) is an approximate Hessian, and E = E 0 E lin > 0 is the energy stabilization. = more robust than Newton method In quantum chemistry, it is known as super-ci method or augmented Hessian method.

22 Linear optimization method: robustness The linear method is equivalent to a stabilized Newton method: ( E0 g T )( ) ( )( ) / T 1 = E g/2 H p lin 0 S p { (h + 2 E S) p = g 2 E = g T p where h = 2(H E 0 S) is an approximate Hessian, and E = E 0 E lin > 0 is the energy stabilization. = more robust than Newton method In quantum chemistry, it is known as super-ci method or augmented Hessian method. Additional stabilization: H ij H ij + a δ ij where a 0.

23 Linear optimization method: on a finite VMC sample The generalized eigenvalue equation is estimated as ( E0 gr T/2 )( ) ( )( T 1 = E g L /2 H p lin 0 S p with Ψi (R) g L,i /2 = Ψ 0 (R) Ψi (R) H ij = Ψ 0 (R) H(R)Ψ 0 (R) Ψ 0 (R) H(R)Ψ j (R) Ψ 0 (R) non-symmetric! Ψ 2 0 Ψ 2 0 Ψ0 (R) H(R)Ψ j (R) and g R,j /2 = Ψ 0 (R) Ψ 0 (R) Ψi (R) Ψ j (R) and S ij = Ψ 0 (R) Ψ 0 (R) ) Ψ 2 0 Ψ 2 0

24 Linear optimization method: on a finite VMC sample The generalized eigenvalue equation is estimated as ( E0 gr T/2 )( ) ( )( T 1 = E g L /2 H p lin 0 S p with Ψi (R) g L,i /2 = Ψ 0 (R) Ψi (R) H ij = Ψ 0 (R) H(R)Ψ 0 (R) Ψ 0 (R) H(R)Ψ j (R) Ψ 0 (R) non-symmetric! Ψ 2 0 Ψ 2 0 Ψ0 (R) H(R)Ψ j (R) and g R,j /2 = Ψ 0 (R) Ψ 0 (R) Ψi (R) Ψ j (R) and S ij = Ψ 0 (R) Ψ 0 (R) = Zero-variance principle of Nightingale et al. (PRL 2001): If there is some p so that Ψ 0 (R) + j p j Ψ j (R) = Ψ exact (R) then p is found with zero variance. In practice, these non-symmetric estimators reduce the fluctuations on p by 1 or 2 orders of magnitude. ) Ψ 2 0 Ψ 2 0

25 Linear optimization method: mixing a fraction of variance How to minimize the energy variance with the linear method? { V = min V 0 + gv T p + 1 } p 2 pt h V p

26 Linear optimization method: mixing a fraction of variance How to minimize the energy variance with the linear method? { V = min V 0 + gv T p + 1 } p 2 pt h V p V = min p ( 1 p T ) ( V 0 gv T/2 )( 1 g V /2 h V /2 + V 0 S p ( 1 p T ) ( 1 0 T )( ) 1 0 S p )

27 Linear optimization method: mixing a fraction of variance How to minimize the energy variance with the linear method? { V = min V 0 + gv T p + 1 } p 2 pt h V p V = min p ( 1 p T ) ( V 0 gv T/2 )( 1 g V /2 h V /2 + V 0 S p ( 1 p T ) ( 1 0 T )( ) 1 0 S p ) ( V0 g T V /2 g V /2 h V /2 + V 0 S )( 1 p ) ( 1 0 T = V 0 S )( 1 p )

28 Linear optimization method: mixing a fraction of variance How to minimize the energy variance with the linear method? { V = min V 0 + gv T p + 1 } p 2 pt h V p V = min p ( 1 p T ) ( V 0 gv T/2 )( 1 g V /2 h V /2 + V 0 S p ( 1 p T ) ( 1 0 T )( ) 1 0 S p ) ( V0 g T V /2 g V /2 h V /2 + V 0 S )( 1 p matrix to add to the energy matrix ) ( 1 0 T = V 0 S )( 1 p )

29 Simultaneous optimization of all parameters in VMC Optimization of 24 Jastrow, 49 CSF, 64 orbital and 12 exponent parameters for the C 2 molecule: Energy (Hartree) Energy (Hartree) Iterations Iterations = The energy converges with an accuracy of 1 mhartree in about 4 or 5 iterations

30 Systematic improvement in QMC For C 2 molecule: total energies for a series of fully optimized Jastrow-Slater wave functions: Energy (Hartree) VMC CCSD(T)/cc-pVQZ Exact J*SD J*CAS(8,5) J*CAS(8,7) J*CAS(8,8) J*RAS(8,26) Wave function = Systematic improvement in VMC

31 Systematic improvement in QMC For C 2 molecule: total energies for a series of fully optimized Jastrow-Slater wave functions: Energy (Hartree) VMC DMC CCSD(T)/cc-pVQZ Exact J*SD J*CAS(8,5) J*CAS(8,7) J*CAS(8,8) J*RAS(8,26) Wave function = Systematic improvement in VMC and DMC!

32 Potential energy curve of the C 2 molecule ( 1 Σ + g ) With fully optimized Jastrow single-determinant wave functions: VMC J SD Energy (Hartree) DMC J SD Morse potential Interatomic distance (Bohr)

33 Potential energy curve of the C 2 molecule ( 1 Σ + g ) With fully optimized Jastrow single-determinant wave functions: VMC J SD Energy (Hartree) DMC J SD Morse potential Interatomic distance (Bohr) = Single-determinant DMC is size-consistent with broken spin-symmetry at dissociation, Ψ FN Ŝ2 Ψ FN = 2

34 Potential energy curve of the C 2 molecule ( 1 Σ + g ) With fully optimized Jastrow multi-determinant wave functions: Energy (Hartree) VMC J CAS(8,8) DMC J CAS(8,8) Morse potential Interatomic distance (Bohr)

35 Potential energy curve of the C 2 molecule ( 1 Σ + g ) With fully optimized Jastrow multi-determinant wave functions: Energy (Hartree) VMC J CAS(8,8) DMC J CAS(8,8) Morse potential Interatomic distance (Bohr) = Multi-determinant DMC gives a well depth with chemical accuracy (1 kcal/mol 0.04 ev): E DMC = 6.482(3) vs E exact = 6.44(2)

36 Well depths of second-row homonuclear diatomic molecules VMC and DMC errors in well depths for some fully optimized Jastrow-Slater wave functions: Error in well depth (ev) VMC J SD Li 2 Be 2 B 2 C 2 N 2 Molecules O 2 F 2

37 Well depths of second-row homonuclear diatomic molecules VMC and DMC errors in well depths for some fully optimized Jastrow-Slater wave functions: Error in well depth (ev) VMC J SD DMC J SD Li 2 Be 2 B 2 C 2 N 2 Molecules O 2 F 2

38 Well depths of second-row homonuclear diatomic molecules VMC and DMC errors in well depths for some fully optimized Jastrow-Slater wave functions: Error in well depth (ev) VMC J SD DMC J SD VMC J CAS Li 2 Be 2 B 2 C 2 N 2 Molecules O 2 F 2

39 Well depths of second-row homonuclear diatomic molecules VMC and DMC errors in well depths for some fully optimized Jastrow-Slater wave functions: Error in well depth (ev) DMC J SD DMC J CAS VMC J CAS -1.5 VMC J SD Li 2 Be 2 B 2 C 2 N 2 Molecules O 2 F 2 = Near chemical accuracy in DMC with Jastrow CAS

40 Outline 1 Wave function optimization 2 Calculation of pair densities 3 Conclusions

41 Calculation of pair densities Spherically and system-averaged pair density = intracule density I(u) = dωu drψ(r) 2 δ(r ij u) 4π i<j e.g., gives the Coulombic electron-electron interaction energy: Usefulness W ee = 0 du 4πu 2 I(u) 1 u qualitative analysis of electronic structure (Cioslowski, Gill, Ugalde, etc...) quantitative predictions beyond usual DFT (Gori-Giorgi, Perdew, Savin, etc...)

42 Calculation of intracules in QMC Usual histogram method I(u) dωu 4π i<j drψ(r) 2 1 [u u/2, u+ u/2](r ij ) u 3 Problems large statistical uncertainties due to large variances, especially at small u systematic errors due to approximate Ψ(R) but also due to discretization over u

43 Calculation of an observable in VMC Energy Estimator: E L (R) = H(R)Ψ(R) Ψ(R) Systematic error: δe = O(δΨ 2 ) Variance: σ 2 (E L ) = O(δΨ 2 ) } Quadratic Zero-Variance Zero-Bias property

44 Calculation of an observable in VMC Energy Estimator: E L (R) = H(R)Ψ(R) Ψ(R) Systematic error: δe = O(δΨ 2 ) Variance: σ 2 (E L ) = O(δΨ 2 ) } Quadratic Zero-Variance Zero-Bias property Arbitrary observable Ô (which does not commute with Ĥ) Estimator: O L (R) = O(R)Ψ(R) Ψ(R) } Systematic error: δo = O(δΨ) Quadratic Zero-Variance Variance: σ 2 (O L ) = O(1) Zero-Bias property

45 Zero-Variance Zero-Bias estimators (Assaraf & Caffarel) Consider the λ-dependent Hamiltonian Ĥ λ = Ĥ + λô with an associated trial wave function Ψ λ = Ψ + λψ +

46 Zero-Variance Zero-Bias estimators (Assaraf & Caffarel) Consider the λ-dependent Hamiltonian Ĥ λ = Ĥ + λô with an associated trial wave function Ψ λ = Ψ + λψ + Hellmann-Feynman theorem suggests to define ZVZB estimator ( ) de OL ZVZB λ (R) Ψ 2 = = dλ λ=0 O L (R) Ψ 2 + OL ZV (R) + O ZB Ψ 2 L Ψ (R), 2 with the ZV term [ H(R)Ψ OL ZV ] (R) = (R) Ψ (R) Ψ E L (R) (R) Ψ(R) and the ZB term O ZB L (R) = 2[E L(R) E] Ψ (R) Ψ(R)

47 Zero-Variance Zero-Bias estimators (Assaraf & Caffarel) Hellmann-Feynman theorem suggests to define ZVZB estimator ( ) de OL ZVZB λ (R) Ψ 2 = = dλ λ=0 O L (R) Ψ 2 + OL ZV (R) + O ZB Ψ 2 L Ψ (R), 2 with the ZV term [ H(R)Ψ OL ZV ] (R) = (R) Ψ (R) Ψ E L (R) (R) Ψ(R) and the ZB term O ZB L (R) = 2[E L(R) E] Ψ (R) Ψ(R) Quadratic Zero-Variance Zero-Bias property Systematic error: δo ZVZB = O(δΨ 2 + δψ δψ ( ) ) Variance: σ 2 OL ZVZB = O(δΨ 2 + δψ 2 + δψ δψ )

48 Calculation of intracules in QMC Simplest approximate wave function derivative: Ψ (R) = 1 dωu 1 4π 4π r ij u Ψ(R) ZVZB improved estimator I(u) = 1 2π i<j dωu 4π (+ possible refinements) Advantages reduction of variance i<j + (E L (R) E) reduction of systematic error [ drψ(r) 2 rj Ψ(R) r ij u Ψ(R) r ij u 3 ] 1 r ij u

49 Comparison of the estimators Intracule I(u) of the He atom in VMC ( configurations): accurate intracule histogram estimator with HF wave function 0.2 I(u) (a.u.) Interelectronic distance u (a.u.)

50 Comparison of the estimators Intracule I(u) of the He atom in VMC ( configurations): accurate intracule histogram estimator with HF wave function ZV estimator with HF wave function 0.2 I(u) (a.u.) Interelectronic distance u (a.u.) = reduction of statistical uncertainty and systematic error by several orders of magnitude

51 Comparison of the estimators Intracule I(u) of the He atom in VMC ( configurations): accurate intracule histogram estimator with HF wave function ZV estimator with HF wave function ZVZB estimator with HF wave function 0.2 I(u) (a.u.) Interelectronic distance u (a.u.) = reduction of statistical uncertainty and systematic error by several orders of magnitude

52 Systematic improvement of the intracule Correlation hole 4πu 2 [I(u) I HF (u)] of the C 2 molecule in VMC for a series of wave functions: Jastrow HF 4 π u 2 [ I (u) - I HF (u) ] (a.u.) Interelectronic distance u (a.u.)

53 Systematic improvement of the intracule Correlation hole 4πu 2 [I(u) I HF (u)] of the C 2 molecule in VMC for a series of wave functions: Jastrow HF Jastrow SD 4 π u 2 [ I (u) - I HF (u) ] (a.u.) Interelectronic distance u (a.u.)

54 Systematic improvement of the intracule Correlation hole 4πu 2 [I(u) I HF (u)] of the C 2 molecule in VMC for a series of wave functions: 4 π u 2 [ I (u) - I HF (u) ] (a.u.) Jastrow HF Jastrow SD Jastrow CAS(8,5) Interelectronic distance u (a.u.)

55 Systematic improvement of the intracule Correlation hole 4πu 2 [I(u) I HF (u)] of the C 2 molecule in VMC for a series of wave functions: 4 π u 2 [ I (u) - I HF (u) ] (a.u.) Jastrow HF Jastrow SD Jastrow CAS(8,5) Jastrow CAS(8,7) Interelectronic distance u (a.u.)

56 Systematic improvement of the intracule Correlation hole 4πu 2 [I(u) I HF (u)] of the C 2 molecule in VMC for a series of wave functions: 4 π u 2 [ I (u) - I HF (u) ] (a.u.) Jastrow HF Jastrow SD Jastrow CAS(8,5) Jastrow CAS(8,7) Jastrow CAS(8,8) Interelectronic distance u (a.u.)

57 Outline 1 Wave function optimization 2 Calculation of pair densities 3 Conclusions

58 Conclusions Summary Efficient wave function optimization method by energy minimization in VMC. Achievement of systematic improvement and near chemical accuracy. Improved QMC estimators for calculating pair densities. Toulouse, Umrigar, JCP 126, (2007) Umrigar, Toulouse, Filippi, Sorella, Hennig, PRL 98, (2007) Toulouse, Assaraf, Umrigar, JCP 126, (2007) Web page: Future work Direct minimization of the DMC energy. Optimization of molecular geometries. Wave function optimization for excited states.

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Julien Toulouse 1, Cyrus J. Umrigar 2, Roland Assaraf 1 1 Laboratoire de Chimie

More information

Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization

Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization Julien Toulouse, Cyrus Umrigar, Roland Assaraf Cornell Theory Center, Cornell University, Ithaca, New York, USA. Laboratoire

More information

Quantum Monte Carlo wave functions and their optimization for quantum chemistry

Quantum Monte Carlo wave functions and their optimization for quantum chemistry Quantum Monte Carlo wave functions and their optimization for quantum chemistry Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France CEA Saclay, SPhN Orme des Merisiers April 2015 Outline

More information

Time-dependent linear-response variational Monte Carlo.

Time-dependent linear-response variational Monte Carlo. Time-dependent linear-response variational Monte Carlo. Bastien Mussard bastien.mussard@colorado.edu https://mussard.github.io/ Julien Toulouse julien.toulouse@upmc.fr Sorbonne University, Paris (web)

More information

Wave Function Optimization and VMC

Wave Function Optimization and VMC Wave Function Optimization and VMC Jeremy McMinis The University of Illinois July 26, 2012 Outline Motivation History of Wave Function Optimization Optimization in QMCPACK Multideterminant Example Motivation:

More information

Zero-variance zero-bias quantum Monte Carlo estimators of the spherically and system-averaged pair density

Zero-variance zero-bias quantum Monte Carlo estimators of the spherically and system-averaged pair density THE JOURNAL OF CHEMICAL PHYSICS 126, 244112 2007 Zero-variance zero-bias quantum Monte Carlo estimators of the spherically and system-averaged pair density Julien Toulouse a Cornell Theory Center, Cornell

More information

Fixed-Node quantum Monte Carlo for Chemistry

Fixed-Node quantum Monte Carlo for Chemistry Fixed-Node quantum Monte Carlo for Chemistry Michel Caffarel Lab. Physique et Chimie Quantiques, CNRS-IRSAMC, Université de Toulouse e-mail : caffarel@irsamc.ups-tlse.fr. p.1/29 The N-body problem of Chemistry

More information

Density-functional theory at noninteger electron numbers

Density-functional theory at noninteger electron numbers Density-functional theory at noninteger electron numbers Tim Gould 1, Julien Toulouse 2 1 Griffith University, Brisbane, Australia 2 Université Pierre & Marie Curie and CRS, Paris, France July 215 Introduction

More information

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory 1/11 Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory Julien Toulouse Université Pierre & Marie Curie and CNRS, 4 place Jussieu, Paris, France Web page: www.lct.jussieu.fr/pagesperso/toulouse/

More information

Time-dependent linear-response variational Monte Carlo

Time-dependent linear-response variational Monte Carlo Time-dependent linear-response variational Monte Carlo Bastien Mussard 1,2, Emanuele Coccia 1,3, Roland Assaraf 1, Matt Otten 4, C. J. Umrigar 4, and Julien Toulouse 1 1 Laboratoire de Chimie Théorique,

More information

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Notations

More information

Resonating Valence Bond wave function with molecular orbitals: application to diatomic molecules

Resonating Valence Bond wave function with molecular orbitals: application to diatomic molecules Resonating Valence Bond wave function with molecular orbitals: application to diatomic molecules M. Marchi 1,2, S. Azadi 2, M. Casula 3, S. Sorella 1,2 1 DEMOCRITOS, National Simulation Center, 34014,

More information

Ab-initio molecular dynamics for High pressure Hydrogen

Ab-initio molecular dynamics for High pressure Hydrogen Ab-initio molecular dynamics for High pressure Hydrogen Claudio Attaccalite Institut d'electronique, Microélectronique et Nanotechnologie (IEMN), Lille Outline A brief introduction to Quantum Monte Carlo

More information

Size-extensive wave functions for QMC A linear-scaling GVB approach

Size-extensive wave functions for QMC A linear-scaling GVB approach Size-extensive wave functions for QMC A linear-scaling GVB approach Claudia Filippi, University of Twente, The Netherlands Francesco Fracchia, University of Pisa, Italy Claudio Amovilli, University of

More information

Quantum Monte Carlo backflow calculations of benzene dimers

Quantum Monte Carlo backflow calculations of benzene dimers Quantum Monte Carlo backflow calculations of benzene dimers Kathleen Schwarz*, Cyrus Umrigar**, Richard Hennig*** *Cornell University Department of Chemistry, **Cornell University Department of Physics,

More information

arxiv: v2 [physics.chem-ph] 11 Mar 2011

arxiv: v2 [physics.chem-ph] 11 Mar 2011 Quantum Monte Carlo with Jastrow-Valence-Bond wave functions Benoît Braïda 1, Julien Toulouse 1, Michel Caffarel 2, and C. J. Umrigar 3 1 Laboratoire de Chimie Théorique, Université Pierre et Marie Curie

More information

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients 1/10 Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients Julien Toulouse 1,2, Elisa Rebolini 1, Tim Gould 3, John F. Dobson 3, Prasenjit Seal

More information

Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules

Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules Claudia Filippi Laboratory of Atomic and Solid State Physics and Theory Center, Cornell University,

More information

arxiv:physics/ v2 [physics.chem-ph] 9 Apr 2005

arxiv:physics/ v2 [physics.chem-ph] 9 Apr 2005 Electronic Quantum Monte Carlo Calculations of Atomic Forces, Vibrations, and Anharmonicities arxiv:physics/0411209v2 [physics.chem-ph] 9 Apr 2005 Myung Won Lee a), Massimo Mella b), and Andrew M. Rappe

More information

Variational Monte Carlo Optimization and Excited States

Variational Monte Carlo Optimization and Excited States Variational Monte Carlo Optimization and Excited States Eric Neuscamman August 9, 2018 motivation charge transfer core spectroscopy double excitations the menu aperitif: number counting Jastrows main course:

More information

Introduction to Path Integral Monte Carlo. Part I.

Introduction to Path Integral Monte Carlo. Part I. Introduction to Path Integral Monte Carlo. Part I. Alexey Filinov, Jens Böning, Michael Bonitz Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry Chemicum 4th floor vesa.hanninen@helsinki.fi September 10, 2013 Lecture 3. Electron correlation methods September

More information

Jack Simons Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

Théorie de la fonctionnnelle de la densité avec séparation de portée pour les forces de van der Waals

Théorie de la fonctionnnelle de la densité avec séparation de portée pour les forces de van der Waals Théorie de la fonctionnnelle de la densité avec séparation de portée pour les forces de van der Waals Julien Toulouse 1 Iann Gerber 2, Georg Jansen 3, Andreas Savin 1, János Ángyán 4 1 Laboratoire de Chimie

More information

QMC dissociation energy of the water dimer: Time step errors and backflow calculations

QMC dissociation energy of the water dimer: Time step errors and backflow calculations QMC dissociation energy of the water dimer: Time step errors and backflow calculations Idoia G. de Gurtubay and Richard J. Needs TCM group. Cavendish Laboratory University of Cambridge Idoia G. de Gurtubay.

More information

Semistochastic Quantum Monte Carlo A Hybrid of Exact Diagonalization and QMC Methods and Optimization of FN-PMC energies and FN-PMC forces

Semistochastic Quantum Monte Carlo A Hybrid of Exact Diagonalization and QMC Methods and Optimization of FN-PMC energies and FN-PMC forces Semistochastic Quantum Monte Carlo A Hybrid of Exact Diagonalization and QMC Methods and Optimization of FN-PMC energies and FN-PMC forces Cyrus Umrigar Physics Department, Cornell University, Ithaca.

More information

Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation

Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation Julien Toulouse 1 I. Gerber 2, G. Jansen 3, A. Savin 1, W. Zhu 1, J. Ángyán 4 1 Laboratoire de Chimie Théorique,

More information

Range-separated density-functional theory with long-range random phase approximation

Range-separated density-functional theory with long-range random phase approximation Range-separated density-functional theory with long-range random phase approximation Julien Toulouse 1 Wuming Zhu 1, Andreas Savin 1, János Ángyán2 1 Laboratoire de Chimie Théorique, UPMC Univ Paris 6

More information

Overview of variational and projector Monte Carlo methods

Overview of variational and projector Monte Carlo methods Overview of variational and projector Monte Carlo methods Cyrus Umrigar Physics Department, Cornell University, Ithaca. Email: CyrusUmrigar@cornell.edu GDR Correlation, Marseille, 8-10 July, 2015 Outline

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid

Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid N. D. Drummond and R. J. Needs TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge

More information

Ab-initio simulation of liquid water by quantum Monte Carlo

Ab-initio simulation of liquid water by quantum Monte Carlo Ab-initio simulation of liquid water by quantum Monte Carlo Sandro Sorella G. Mazzola & Y. Luo SISSA, IOM DEMOCRITOS, Trieste A. Zen, L. Guidoni U. of L Aquila, L Aquila 28 July 2014, Mike Towler Institute,

More information

Linear response time-dependent density functional theory

Linear response time-dependent density functional theory Linear response time-dependent density functional theory Emmanuel Fromager Laboratoire de Chimie Quantique, Université de Strasbourg, France fromagere@unistra.fr Emmanuel Fromager (UdS) Cours RFCT, Strasbourg,

More information

Chapter 19 Quantum Monte Carlo Calculations of Electronic Excitation Energies: The Case of the Singlet n π (CO) Transition in Acrolein

Chapter 19 Quantum Monte Carlo Calculations of Electronic Excitation Energies: The Case of the Singlet n π (CO) Transition in Acrolein Chapter 19 Quantum Monte Carlo Calculations of Electronic Excitation Energies: The Case of the Singlet n π (CO) Transition in Acrolein Julien Toulouse, Michel Caffarel, Peter Reinhardt, Philip E. Hoggan,

More information

Noncollinear spins in QMC: spiral Spin Density Waves in the HEG

Noncollinear spins in QMC: spiral Spin Density Waves in the HEG Noncollinear spins in QMC: spiral Spin Density Waves in the HEG Zoltán Radnai and Richard J. Needs Workshop at The Towler Institute July 2006 Overview What are noncollinear spin systems and why are they

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

The Overhauser Instability

The Overhauser Instability The Overhauser Instability Zoltán Radnai and Richard Needs TCM Group ESDG Talk 14th February 2007 Typeset by FoilTEX Introduction Hartree-Fock theory and Homogeneous Electron Gas Noncollinear spins and

More information

Combining density-functional theory and many-body methods

Combining density-functional theory and many-body methods Combining density-functional theory and many-body methods Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Vrije Universiteit Amsterdam, Netherlands November 2017 Outline 2/23 1

More information

Multiconfigurational Quantum Chemistry. Björn O. Roos as told by RL Department of Theoretical Chemistry Chemical Center Lund University Sweden

Multiconfigurational Quantum Chemistry. Björn O. Roos as told by RL Department of Theoretical Chemistry Chemical Center Lund University Sweden Multiconfigurational Quantum Chemistry Björn O. Roos as told by RL Department of Theoretical Chemistry Chemical Center Lund University Sweden April 20, 2009 1 The Slater determinant Using the spin-orbitals,

More information

Quantum Monte Carlo for excited state calculations

Quantum Monte Carlo for excited state calculations Quantum Monte Carlo for excited state calculations Claudia Filippi MESA+ Institute for Nanotechnology, Universiteit Twente, The Netherlands Winter School in Theoretical Chemistry, Helsinki, Finland, Dec

More information

Extending Kohn-Sham density-functional theory

Extending Kohn-Sham density-functional theory Extending Kohn-Sham density-functional theory Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Email: julien.toulouse@upmc.fr Web page: www.lct.jussieu.fr/pagesperso/toulouse/ January

More information

Quantum Monte Carlo methods

Quantum Monte Carlo methods Quantum Monte Carlo methods Lubos Mitas North Carolina State University Urbana, August 2006 Lubos_Mitas@ncsu.edu H= 1 2 i i 2 i, I Z I r ii i j 1 r ij E ion ion H r 1, r 2,... =E r 1, r 2,... - ground

More information

Combining density-functional theory and many-body methods

Combining density-functional theory and many-body methods Combining density-functional theory and many-body methods Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Albuquerque New Mexico, USA June 2016 Outline 2/23 1 A brief overview of

More information

Importing ab-initio theory into DFT: Some applications of the Lieb variation principle

Importing ab-initio theory into DFT: Some applications of the Lieb variation principle Importing ab-initio theory into DFT: Some applications of the Lieb variation principle Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department

More information

3: Many electrons. Orbital symmetries. l =2 1. m l

3: Many electrons. Orbital symmetries. l =2 1. m l 3: Many electrons Orbital symmetries Atomic orbitals are labelled according to the principal quantum number, n, and the orbital angular momentum quantum number, l. Electrons in a diatomic molecule experience

More information

Orbital-dependent backflow transformations in quantum Monte Carlo

Orbital-dependent backflow transformations in quantum Monte Carlo transformations in quantum Monte Carlo P. Seth, P. López Ríos, and R. J. Needs TCM group, Cavendish Laboratory, University of Cambridge 5 December 2012 VMC and DMC Optimization Wave functions Variational

More information

Density matrix functional theory vis-á-vis density functional theory

Density matrix functional theory vis-á-vis density functional theory Density matrix functional theory vis-á-vis density functional theory 16.4.007 Ryan Requist Oleg Pankratov 1 Introduction Recently, there has been renewed interest in density matrix functional theory (DMFT)

More information

DFT basée sur le théorème de fluctuation-dissipation avec séparation de portée pour les interactions de van der Waals

DFT basée sur le théorème de fluctuation-dissipation avec séparation de portée pour les interactions de van der Waals DFT basée sur le théorème de fluctuation-dissipation avec séparation de portée pour les interactions de van der Waals Julien Toulouse 1 Iann Gerber 2, Georg Jansen 3, Andreas Savin 1, János Ángyán 4 1

More information

METALLIZATION AND DISSOCIATION IN HIGH PRESSURE LIQUID HYDROGEN BY AN EFFICIENT MOLECULAR DYNAMICS WITH QUANTUM MONTE CARLO

METALLIZATION AND DISSOCIATION IN HIGH PRESSURE LIQUID HYDROGEN BY AN EFFICIENT MOLECULAR DYNAMICS WITH QUANTUM MONTE CARLO METALLIZATION AND DISSOCIATION IN HIGH PRESSURE LIQUID HYDROGEN BY AN EFFICIENT MOLECULAR DYNAMICS WITH QUANTUM MONTE CARLO Author: Guglielmo Mazzola Supervisor: Prof. Sandro Sorella A thesis submitted

More information

Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node

Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node approximations Cody Melton, M. Chandler Bennett, L. Mitas, with A. Ambrosetti, F. Pederiva North Carolina State

More information

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Question 1: Basis sets Consider the split valence SV3-21G one electron basis set for formaldehyde

More information

OVERVIEW OF QUANTUM CHEMISTRY METHODS

OVERVIEW OF QUANTUM CHEMISTRY METHODS OVERVIEW OF QUANTUM CHEMISTRY METHODS Outline I Generalities Correlation, basis sets Spin II Wavefunction methods Hartree-Fock Configuration interaction Coupled cluster Perturbative methods III Density

More information

QUANTUM CHEMISTRY FOR TRANSITION METALS

QUANTUM CHEMISTRY FOR TRANSITION METALS QUANTUM CHEMISTRY FOR TRANSITION METALS Outline I Introduction II Correlation Static correlation effects MC methods DFT III Relativity Generalities From 4 to 1 components Effective core potential Outline

More information

Ground-state properties, excitations, and response of the 2D Fermi gas

Ground-state properties, excitations, and response of the 2D Fermi gas Ground-state properties, excitations, and response of the 2D Fermi gas Introduction: 2D FG and a condensed matter perspective Auxiliary-field quantum Monte Carlo calculations - exact* here Results on spin-balanced

More information

Coupled-Cluster Perturbative Triples for Bond Breaking

Coupled-Cluster Perturbative Triples for Bond Breaking Coupled-Cluster Perturbative Triples for Bond Breaking Andrew G. Taube and Rodney J. Bartlett Quantum Theory Project University of Florida INT CC Meeting Seattle July 8, 2008 Why does chemistry need triples?

More information

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2 Purdue University CHM 67300 Computational Quantum Chemistry REVIEW Yingwei Wang October 10, 2013 Review: Prof Slipchenko s class, Fall 2013 Contents 1 Hartree energy 2 2 Many-body system 2 3 Born-Oppenheimer

More information

σ u * 1s g - gerade u - ungerade * - antibonding σ g 1s

σ u * 1s g - gerade u - ungerade * - antibonding σ g 1s One of these two states is a repulsive (dissociative) state. Other excited states can be constructed using linear combinations of other orbitals. Some will be binding and others will be repulsive. Thus

More information

JULIEN TOULOUSE, PAOLA GORI-GIORGI, ANDREAS SAVIN

JULIEN TOULOUSE, PAOLA GORI-GIORGI, ANDREAS SAVIN Scaling Relations, Virial Theorem, and Energy Densities for Long-Range and Short-Range Density Functionals JULIEN TOULOUSE, PAOLA GORI-GIORGI, ANDREAS SAVIN Laboratoire de Chimie Théorique, CNRS et Université

More information

Second quantization. Emmanuel Fromager

Second quantization. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Institut

More information

Quantum Mechanics Solutions

Quantum Mechanics Solutions Quantum Mechanics Solutions (a (i f A and B are Hermitian, since (AB = B A = BA, operator AB is Hermitian if and only if A and B commute So, we know that [A,B] = 0, which means that the Hilbert space H

More information

Department of Physics and NCSA University of Illinois, Urbana-Champaign, IL, 61801, USA

Department of Physics and NCSA University of Illinois, Urbana-Champaign, IL, 61801, USA UNDERSTANDING ELECTRONIC WAVE FUNCTIONS D. M. Ceperley Department of Physics and NCSA University of Illinois, Urbana-Champaign, IL, 61801, USA INTRODUCTION In this article I discuss some aspects of what

More information

arxiv: v1 [cond-mat.str-el] 17 Aug 2016

arxiv: v1 [cond-mat.str-el] 17 Aug 2016 arxiv:1608.04901v1 [cond-mat.str-el] 17 Aug 2016 Evolutionary algorithm based configuration interaction approach Rahul Chakraborty 1 1, a) and Debashree Ghosh Physical and Materials Chemistry Division,

More information

The calculation of the universal density functional by Lieb maximization

The calculation of the universal density functional by Lieb maximization The calculation of the universal density functional by Lieb maximization Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry,

More information

Lecture 9. Hartree Fock Method and Koopman s Theorem

Lecture 9. Hartree Fock Method and Koopman s Theorem Lecture 9 Hartree Fock Method and Koopman s Theorem Ψ(N) is approximated as a single slater determinant Φ of N orthogonal One electron spin-orbitals. One electron orbital φ i = φ i (r) χ i (σ) χ i (σ)

More information

Electric properties of molecules

Electric properties of molecules Electric properties of molecules For a molecule in a uniform electric fielde the Hamiltonian has the form: Ĥ(E) = Ĥ + E ˆµ x where we assume that the field is directed along the x axis and ˆµ x is the

More information

arxiv: v3 [cond-mat.other] 14 Aug 2010

arxiv: v3 [cond-mat.other] 14 Aug 2010 Ground state of two electrons on concentric spheres Pierre-François Loos and Peter M. W. Gill Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, 000,

More information

Orbital Density Dependent Functionals

Orbital Density Dependent Functionals Orbital Density Dependent Functionals S. Kluepfel1, P. Kluepfel1, Hildur Guðmundsdóttir1 and Hannes Jónsson1,2 1. Univ. of Iceland; 2. Aalto University Outline: Problems with GGA approximation (PBE, RPBE,...)

More information

v(r i r j ) = h(r i )+ 1 N

v(r i r j ) = h(r i )+ 1 N Chapter 1 Hartree-Fock Theory 1.1 Formalism For N electrons in an external potential V ext (r), the many-electron Hamiltonian can be written as follows: N H = [ p i i=1 m +V ext(r i )]+ 1 N N v(r i r j

More information

(1/2) M α 2 α, ˆTe = i. 1 r i r j, ˆV NN = α>β

(1/2) M α 2 α, ˆTe = i. 1 r i r j, ˆV NN = α>β Chemistry 26 Spectroscopy Week # The Born-Oppenheimer Approximation, H + 2. Born-Oppenheimer approximation As for atoms, all information about a molecule is contained in the wave function Ψ, which is the

More information

Observations on variational and projector Monte Carlo Methods

Observations on variational and projector Monte Carlo Methods Observations on variational and projector Monte Carlo Methods C. J. Umrigar Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA (Dated: September 29, 2015) Variational

More information

Methods for calculating forces within quantum Monte Carlo

Methods for calculating forces within quantum Monte Carlo Methods for calculating forces within quantum Monte Carlo A Badinski 1,2, P D Haynes 1,3, J R Trail 1,4, and R J Needs 1 1 Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge CB3 0HE, UK

More information

Introduction to numerical projects

Introduction to numerical projects Introduction to numerical projects Here follows a brief recipe and recommendation on how to write a report for each project. Give a short description of the nature of the problem and the eventual numerical

More information

Developments in Electronic Structure Theory.

Developments in Electronic Structure Theory. Developments in Electronic Structure Theory. Bastien Mussard Laboratoire de Chimie Théorique Institut du Calcul et de la Simulation Sorbonne Universités, Université Pierre et Marie Curie bastien.mussard@upmc.fr

More information

Quantum Monte Carlo Benchmarks Density Functionals: Si Defects

Quantum Monte Carlo Benchmarks Density Functionals: Si Defects Quantum Monte Carlo Benchmarks Density Functionals: Si Defects K P Driver, W D Parker, R G Hennig, J W Wilkins (OSU) C J Umrigar (Cornell), R Martin, E Batista, B Uberuaga (LANL), J Heyd, G Scuseria (Rice)

More information

Continuum variational and diffusion quantum Monte Carlo calculations

Continuum variational and diffusion quantum Monte Carlo calculations Continuum variational and diffusion quantum Monte Carlo calculations R J Needs, M D Towler, N D Drummond and P López Ríos Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge CB3 0HE, UK Abstract.

More information

Hartree-Fock Theory. ˆf(r)χ i (x) = ɛ i χ i (x) (1) Z A K=1 I. DERIVATION OF THE HARTREE-FOCK EQUATIONS. A. The energy of a Slater determinant

Hartree-Fock Theory. ˆf(r)χ i (x) = ɛ i χ i (x) (1) Z A K=1 I. DERIVATION OF THE HARTREE-FOCK EQUATIONS. A. The energy of a Slater determinant Hartree-Fock Theory The HF approximation plays a crucial role in chemistry and constitutes the starting point for more elaborate treatments of electron correlation. Furthermore, many semi-empirical methods

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms K. JANKOWSKI a, R. SŁUPSKI a, and J. R. FLORES b a Nicholas Copernicus University 87-100 Toruń,

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

On the Uniqueness of Molecular Orbitals and limitations of the MO-model.

On the Uniqueness of Molecular Orbitals and limitations of the MO-model. On the Uniqueness of Molecular Orbitals and limitations of the MO-model. The purpose of these notes is to make clear that molecular orbitals are a particular way to represent many-electron wave functions.

More information

MODELING MATTER AT NANOSCALES

MODELING MATTER AT NANOSCALES MODELING MATTER AT NANOSCALES 6. The theory of molecular orbitals for the description of nanosystems (part II) 6.0. Ab initio methods. Basis functions. Luis A. Monte ro Firmado digitalmente por Luis A.

More information

Excited states of beryllium atom from explicitly correlated wave functions.

Excited states of beryllium atom from explicitly correlated wave functions. Excited states of beryllium atom from explicitly correlated wave functions. F.J. Gálvez and E. Buendía Departamento de Física Moderna, Facultad de Ciencias, Universidad de Granada, E-87 Granada, Spain

More information

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems Formally simple -- a framework for going beyond DFT? Random walks in non-orthogonal Slater determinant

More information

arxiv: v1 [cond-mat.other] 4 Apr 2008

arxiv: v1 [cond-mat.other] 4 Apr 2008 Self-interaction correction in a simple model P. M. Dinh a, J. Messud a, P.-G. Reinhard b, and E. Suraud a arxiv:0804.0684v1 [cond-mat.other] 4 Apr 2008 Abstract a Laboratoire de Physique Théorique, Université

More information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij ) MO Calculation for a Diatomic Molecule Introduction The properties of any molecular system can in principle be found by looking at the solutions to the corresponding time independent Schrodinger equation

More information

Random Estimates in QMC

Random Estimates in QMC Page 1 Random Estimates in QMC J.R. Trail and R.J. Needs Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, UK February 2007 Page 2 Numerical Integration Unkown function,

More information

Spin-crossover molecules: puzzling systems for electronic structure methods. Andrea Droghetti School of Physics and CRANN, Trinity College Dublin

Spin-crossover molecules: puzzling systems for electronic structure methods. Andrea Droghetti School of Physics and CRANN, Trinity College Dublin Spin-crossover molecules: puzzling systems for electronic structure methods Andrea Droghetti School of Physics and CRANN, Trinity College Dublin Introduction Introduction Can we read a molecule spin? Can

More information

Chemistry 881 Lecture Topics Fall 2001

Chemistry 881 Lecture Topics Fall 2001 Chemistry 881 Lecture Topics Fall 2001 Texts PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S,

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz November 29, 2010 The self interaction error and its correction Perdew-Zunger SIC Average-density approximation Weighted density approximation

More information

VALENCE Hilary Term 2018

VALENCE Hilary Term 2018 VALENCE Hilary Term 2018 8 Lectures Prof M. Brouard Valence is the theory of the chemical bond Outline plan 1. The Born-Oppenheimer approximation 2. Bonding in H + 2 the LCAO approximation 3. Many electron

More information

Is the homogeneous electron gas homogeneous?

Is the homogeneous electron gas homogeneous? Is the homogeneous electron gas homogeneous? Electron gas (jellium): simplest way to view a metal homogeneous and normal Hartree-Fock: simplest method for many-electron systems a single Slater determinant

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis

Quantum Monte Carlo Simulations in the Valence Bond Basis NUMERICAL APPROACHES TO QUANTUM MANY-BODY SYSTEMS, IPAM, January 29, 2009 Quantum Monte Carlo Simulations in the Valence Bond Basis Anders W. Sandvik, Boston University Collaborators Kevin Beach (U. of

More information

Density Functional Theory - II part

Density Functional Theory - II part Density Functional Theory - II part antonino.polimeno@unipd.it Overview From theory to practice Implementation Functionals Local functionals Gradient Others From theory to practice From now on, if not

More information

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley

More information

Hartree-Fock. It can also be viewed as the lowest order term in perturbative expansion (linear in U) with respect to interaction between electrons.

Hartree-Fock. It can also be viewed as the lowest order term in perturbative expansion (linear in U) with respect to interaction between electrons. Hartree-Fock It is probably the simplest method to treat the many-particle system. The dynamic many particle problem is replaced by an effective one-electron problem: electron is moving in an effective

More information

arxiv: v1 [physics.chem-ph] 2 Sep 2013

arxiv: v1 [physics.chem-ph] 2 Sep 2013 Molecular properties by Quantum Monte Carlo: an investigation on the role of the wave function ansatz and the basis set in the water molecule Andrea Zen Dipartimento di Fisica, La Sapienza - Università

More information

Fractional-charge and Fractional-spin errors in Range-Separated Density-Functional Theory with Random Phase Approximation.

Fractional-charge and Fractional-spin errors in Range-Separated Density-Functional Theory with Random Phase Approximation. Fractional-charge and Fractional-spin errors in Range-Separated Density-Functional Theory with Random Phase Approximation. Bastien Mussard, Julien Toulouse Laboratoire de Chimie Théorique Institut du Calcul

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Chemistry 3502/4502 Final Exam Part I May 14, 2005 1. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle (e) The

More information

Model Hamiltonians in Density Functional Theory

Model Hamiltonians in Density Functional Theory Centre de Recherches Mathématiques CRM Proceedings and Lecture Notes Volume 41, 2006 Model Hamiltonians in Density Functional Theory Paola Gori-Giorgi, Julien Toulouse, and Andreas Savin Abstract. The

More information