Density Functional Theory - II part

Size: px
Start display at page:

Download "Density Functional Theory - II part"

Transcription

1 Density Functional Theory - II part antonino.polimeno@unipd.it

2 Overview From theory to practice Implementation Functionals Local functionals Gradient Others

3 From theory to practice From now on, if not specified otherwise, we are always referring to ground state properties (neglecting 0 from functionals, wave functions etc.) The practical implementation of DFT theory is usually carried out through the Kohn-Sham approach, which makes DFT similar to a single-particle approach, but with many-body effects included (in the exchange-correlation functional, see below). The rationale is the following 1. rewrite the functional E[ρ] collecting specific terms, some of them unknown, but (relatively) small, and some of them (relatively) easy to evaluate 2. assume, based on other information, some specific form for the unknown part of the functional 3. derive self-consistent equations for the Kohn-Sham orbitals (see below) 4. solve numerically using a standard iterative approach (like in the Hartree-Fock case)

4 From theory to practice We start by writing again the functional E[ρ] = T [ρ] + V ee [ρ] + V Ne [ρ] (1) this will have to be minimized, under the condition of ρ being normalized δe δρ = 0 ρ( x)d x = N In practice, we do not know how to write down this equation explicitly, because we CANNOT know the forms of functionals T, V ee. We know only that V Ne [ρ] = u( r)ρ( x)d x where u( r) is the external potential acting on each electron.

5 From theory to practice Consider now a reference system made of non interacting electrons. The ground state wave function Φ KS for such a system will be written as a single Slater determinant, defined with respect to N orthonormal molecular orbitals φ i ( r); the density associated is ρ( x) = N Φ KS ( x, x 2,..., x N )d x 2... d x N = N χ i ( x) 2 i=1 For it we CAN write the kinetic energy term, not as a functional of the density associated to their ground-state wave function, but as a functional of the orbitals T s = 1 2 N χ i ( x) 2 χ i ( x) i=1

6 From theory to practice Another quantity that we know how to write is the classical interaction energy on N electrons associated to a density ρ J = 1 2 ρ( x)ρ( x ) d xd x r r Let us know rewrite Eq. (1) as follows E = T s + T T s + J J + V ee + V Ne = T s + J + V Ne + E xc (2) where the exchange energy is defined as E xc = T T s + V ee J the exchange energy is not known

7 From theory to practice The new form of the energy functional, Eq. (2) does not look much more useful than the original, Eq. (1). But let us look at the conditions for a minimum (actually extremal) (cfr. I part) δe δρ = δt s δρ + u( r) + u H ( r) + u xc ( r) where u( r) = u H ( r) = M a=1 u xc = δe xc δρ Z a r r a ρ( x ) r r d x

8 From theory to practice We can now proceed as follows: write the energy of a set of non interacting electrons E = T s + U s where the U S energy is unspecified the condition for a minimum is now therefore, if one identifies δe δρ = δt s δρ + u s( r) u s ( r) = u( r) + u H ( r) + u xc ( r) one can equate the density of the interacting set of electrons depending from the original external potential u( r) to the density of the non-interacting set of electrons, with external potential u s ( r). W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

9 From theory to practice We can now write, finally, the Kohn-Sham equations, taking advantage of standard methods of calculus of variations; notice that here is where the direct expression of T s as a direct functional of the orbitals comes into play notice also that the normalization condition is automatically satisfied by the one-determinant form chosen for the wave function Φ KS In short, one shows that ρ( x) = N i=1 χ i( x) 2 is obtained by finding the Kohn-Sham orbitals [ M a=1 Z a r r a + ] ρ( x ) r r d x + u xc χ i ( x) = ɛ i χ i ( x) The potential energy in the Kohn-Sham equations is a functional of ρ i.e. of the orbitals; therefore the solution approach is iterative until self-consistency is reached.

10 Implementation Kohn-Sham SCF method 1. Build an initial trial wave function choosing an initial set of orbitals Φ KS = 1 χ (0) 1 χ(0) 2... χ (0) N N 2. build the corresponding density ρ (0) ( x) = N i=1 χ (0) i ( x) 2 3. evaluate u s u (0) s = M a=1 Z a ρ (0) r r + ( x ) a r r d x + u xc[ρ (0) ] 4. solve the KS equations [ 1 ] u (0) s χ (1) i ( x) = ɛ (1) i χ (1) i 5. go to (2) to build a new density ρ (1) given the new orbitals χ (1) i 6. repeat till self-consistency, according to some criterion, is reached ( x)

11 Implementation Given a set of Kohn-Sham orbitals χ i, the total energy of the ground state is not simply the sum of the ɛ i E 0 = Φ KS Ĥ Φ KS = N ɛ i 1 ρ( x 1 )ρ( x 2 ) d x 1 d x 2 2 i=1 r 12 ρ( x)u xc d x + E xc Instead, the sum of the ɛ i is N ɛ i = i=1 N i=1 = T s + [ χ i ( x) 1 ] u s ( x) χ i ( x)d x ρ( x 1 )ρ( x 2 ) ρ( x)u( r)d x + d x 1 d x 2 + r 12 ρ( x)u xc d x

12 Implementation The standard approach for solving the differential KS equations is based on the expression of the set of molecular spin-orbitals as linear combinations of basis set spin-orbitals : φ i ( x) = ϕ( r i )s(s i ), exactly as in the Hartree-Fock case. For the connoisseur: χ = φc h KS C = SCɛ R = CC h KS = h + J + v xc ( h ij = 1 ) u φ i d x φ i J ij = S ij = m R rs(ij, rs) r,s=1 φ i φ i d x where the electron-repulsion integral is defined as (ij, rs) = φ 1 i ( x 1 )φ j ( x 1 ) r 1 r 2 φ r ( x 2 )φ s( x 2 )d x 1 d x 2

13 Implementation Hartree-Fock versus Density Functional Theory Similarities Common variational principle Kinetic energy and nuclear attraction component of matrix elements are identical Iterative (SCF) solution Similar codes (relatively easy to modify existing HF codes to perform DFT calculations). Differences DFT is an exact theory, but based on a functional, E xc, which is unknown; HF is an approximate theory exactly HF requires N 4 Coulomb integrals; DFT only N 3. DFT is versatile: better results with better functionals (but see below) DFT with the proper functional is comparable in accuracy to HF+ post HF, but numerically much more convenient.

14 Functionals Local functionals xc functionals E xc is the difference between the classical and quantum mechanical ee repulsion,v ee J plus the difference in kinetic energy between the interacting and the non interacting system, T T s Most functionals do not attempt to compute the kinetic energy correction: either the term is ignored or a hole function, empirically accounting for the self-avoidance of electrons, is included E xc is usually expressed as a functional of ρ, depending on the energy density ɛ xc E xc = ρ( x)ɛ xc [ρ( x)]d x The energy density is usually treated as a sum (separable or not) of individual exchange and correlation contributions, which can be modeled and tailored

15 Functionals Local functionals Local density approximation A Local Density Approximation (LDA) is indicates any DFT where the value of ɛ xc at some position x can be computed exclusively from the value of ρ( x), i.e. the local value of ρ. in practice the only (formerly) widespread functional of this kind has been based on the uniform electron gas model ɛ xc[ρ] = ɛ x [ρ] + ɛ c[ρ] ɛ x [ρ] = 9α ( ) 3 1/3 ρ 1/3 8 π The exchange energy density ɛ x [ρ] is written analitically; the correlation energy density ɛ c[ρ], cannot be obtained analitically, but can be obtained numerically and then expressed via fitting.

16 Density Functional Theory - 2 Functionals Local functionals R.Q. Hood, M.Y. Chou, A.J. Williamson, G. Rajagopal, and R.J. Needs Phys. Rev. B 57, 8972 (1998)

17 Functionals Gradient Density gradient LDA has serious limitations for energies, although it gives good geometries. We can improve functionals by making them depend on the extent to which the density is locally changing, i.e. the gradient of the density. functionals that depend on both the density and the gradient of the density: gradient corrected or generalized gradient approximation (GGA) functionals. GGA functionals are constructed with the correction being a term added to the LDA functional ɛ GGA x(c) [ρ] = ɛlda x(c) (ρ [ρ] F 4/3 ρ e.g. P86; with s = ρ 4/3 ρ /(24π 2 ) 1/3 : F (s) = ( s s s 6) 1/15 ) N.B. [ρ] = [L] 3 [ρ 4/3 ] = [L] 4, [ ρ ] = [L] 1 [L] 3 = [L] 4 ; quindi [ρ 4/3 ρ ] è adimensionale.

18 Functionals Others Meta GGA We can further improve things by introducing the laplacian density (GEA) ɛ GEA xc the kinetic energy density (mgga) = ɛ GEA xc [ρ, ρ, 2 ρ] ɛ mgga xc = ɛ mgga xc [ ρ, ρ, 1 2 ] N χ i 2 χ i i=1

19 Functionals Others Hybrid functionals A real breakthrough has been the introduction of hybrid functionals, where the functional is corrected with exact exchange terms (i.e. Hartree-Fock terms the laplacian density (GEA) Ex HF = χ 1 r ( x 1 )χ s ( x 1 ) r rs 1 r 2 χ s( x 2 )χ r ( x 2 )d x 1 d x 2 general expressions for this kind functionals are, for instance E HYB xc = (1 a)e DFT x + ae HF x + E DFT c The most famous functional is called B3LYP (Becke three parameters) E B3LYP xc = (1 a)e LDA x + ae HF x + be B88 x + ce LYP c + (1 c)e LDA C

20 Functionals Others LDA (older and less accurate) good for simple metals, but prone to self-interaction error (interaction of the electron with itself) overbinding too small cell parameters (solids) wrong vibrations (molecules) and elastic properties (solids) too small energy gap (HOMO-LUMO) GGA good for structure and elastic properties, but still prone to self-interaction energy gap still too small (especially bad for d bands) GEA and mgga good for structure and elastic properties better energy gap, but only moderately accurate energy gaps slightly increased computational effort HYBRID still good for structure and elastic properties best energy gap (too large sometimes), but more computationally demanding (two el. integrals ab ba ) problems with plane wave basis set

21 Functionals Others M.G. Medvedev et al., Science 355, (2017)

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory Introduction to Density Functional Theory S. Sharma Institut für Physik Karl-Franzens-Universität Graz, Austria 19th October 2005 Synopsis Motivation 1 Motivation : where can one use DFT 2 : 1 Elementary

More information

One-Electron Hamiltonians

One-Electron Hamiltonians One-Electron Hamiltonians Hartree-Fock and Density Func7onal Theory Christopher J. Cramer @ChemProfCramer 2017 MSSC, July 10, 2017 REVIEW A One-Slide Summary of Quantum Mechanics Fundamental Postulate:

More information

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University Advanced Quantum Chemistry III: Part 3 Haruyuki Nakano Kyushu University 2013 Winter Term 1. Hartree-Fock theory Density Functional Theory 2. Hohenberg-Kohn theorem 3. Kohn-Sham method 4. Exchange-correlation

More information

Introduction to DFTB. Marcus Elstner. July 28, 2006

Introduction to DFTB. Marcus Elstner. July 28, 2006 Introduction to DFTB Marcus Elstner July 28, 2006 I. Non-selfconsistent solution of the KS equations DFT can treat up to 100 atoms in routine applications, sometimes even more and about several ps in MD

More information

Density Functional Theory

Density Functional Theory Density Functional Theory March 26, 2009 ? DENSITY FUNCTIONAL THEORY is a method to successfully describe the behavior of atomic and molecular systems and is used for instance for: structural prediction

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoría del Funcional de la Densidad (Density Functional Theory) Motivation: limitations of the standard approach based on the wave function. The electronic density n(r) as the key variable: Functionals

More information

Electron Correlation

Electron Correlation Electron Correlation Levels of QM Theory HΨ=EΨ Born-Oppenheimer approximation Nuclear equation: H n Ψ n =E n Ψ n Electronic equation: H e Ψ e =E e Ψ e Single determinant SCF Semi-empirical methods Correlation

More information

OVERVIEW OF QUANTUM CHEMISTRY METHODS

OVERVIEW OF QUANTUM CHEMISTRY METHODS OVERVIEW OF QUANTUM CHEMISTRY METHODS Outline I Generalities Correlation, basis sets Spin II Wavefunction methods Hartree-Fock Configuration interaction Coupled cluster Perturbative methods III Density

More information

1 Density functional theory (DFT)

1 Density functional theory (DFT) 1 Density functional theory (DFT) 1.1 Introduction Density functional theory is an alternative to ab initio methods for solving the nonrelativistic, time-independent Schrödinger equation H Φ = E Φ. The

More information

Module 6 1. Density functional theory

Module 6 1. Density functional theory Module 6 1. Density functional theory Updated May 12, 2016 B A DDFT C K A bird s-eye view of density-functional theory Authors: Klaus Capelle G http://arxiv.org/abs/cond-mat/0211443 R https://trac.cc.jyu.fi/projects/toolbox/wiki/dft

More information

Introduction to density-functional theory. Emmanuel Fromager

Introduction to density-functional theory. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Institut

More information

DFT calculations of NMR indirect spin spin coupling constants

DFT calculations of NMR indirect spin spin coupling constants DFT calculations of NMR indirect spin spin coupling constants Dalton program system Program capabilities Density functional theory Kohn Sham theory LDA, GGA and hybrid theories Indirect NMR spin spin coupling

More information

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY A TUTORIAL FOR PHYSICAL SCIENTISTS WHO MAY OR MAY NOT HATE EQUATIONS AND PROOFS REFERENCES

More information

Exchange-Correlation Functional

Exchange-Correlation Functional Exchange-Correlation Functional Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Depts. of Computer Science, Physics & Astronomy, Chemical Engineering & Materials Science, and Biological

More information

CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 19122

CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 19122 CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 191 THANKS TO MANY COLLABORATORS, INCLUDING SY VOSKO DAVID LANGRETH ALEX

More information

Solid State Theory: Band Structure Methods

Solid State Theory: Band Structure Methods Solid State Theory: Band Structure Methods Lilia Boeri Wed., 11:15-12:45 HS P3 (PH02112) http://itp.tugraz.at/lv/boeri/ele/ Plan of the Lecture: DFT1+2: Hohenberg-Kohn Theorem and Kohn and Sham equations.

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory 1 Introduction to Density Functional Theory 21 February 2011; V172 P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 21 February 2011 Introduction to DFT 2 3 4 Ab initio Computational

More information

Density Func,onal Theory (Chapter 6, Jensen)

Density Func,onal Theory (Chapter 6, Jensen) Chem 580: DFT Density Func,onal Theory (Chapter 6, Jensen) Hohenberg- Kohn Theorem (Phys. Rev., 136,B864 (1964)): For molecules with a non degenerate ground state, the ground state molecular energy and

More information

ABC of ground-state DFT

ABC of ground-state DFT ABC of ground-state DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA January 5-9th, 2014 Kieron (UC Irvine) ABC of ground-state

More information

Modified Becke-Johnson (mbj) exchange potential

Modified Becke-Johnson (mbj) exchange potential Modified Becke-Johnson (mbj) exchange potential Hideyuki Jippo Fujitsu Laboratories LTD. 2015.12.21-22 OpenMX developer s meeting @ Kobe Overview: mbj potential The semilocal exchange potential adding

More information

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Multi-reference Density Functional Theory COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Capt Eric V. Beck Air Force Institute of Technology Department of Engineering Physics 2950 Hobson

More information

Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory.

Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory. Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory. Walter Kohn receiving his Nobel Prize from His Majesty the King at the Stockholm

More information

Spring College on Computational Nanoscience May Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor

Spring College on Computational Nanoscience May Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor 2145-25 Spring College on Computational Nanoscience 17-28 May 2010 Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor Stefano BARONI SISSA & CNR-IOM DEMOCRITOS Simulation Center

More information

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley

More information

Density functional theory in the solid state

Density functional theory in the solid state Density functional theory in the solid state Ari P Seitsonen IMPMC, CNRS & Universités 6 et 7 Paris, IPGP Department of Applied Physics, Helsinki University of Technology Physikalisch-Chemisches Institut

More information

Basics of DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA

Basics of DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA Basics of DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA October 10-19th, 2012 Kieron (UC Irvine) Basics of DFT Lausanne12 1

More information

Generalized generalized gradient approximation: An improved density-functional theory for accurate orbital eigenvalues

Generalized generalized gradient approximation: An improved density-functional theory for accurate orbital eigenvalues PHYSICAL REVIEW B VOLUME 55, NUMBER 24 15 JUNE 1997-II Generalized generalized gradient approximation: An improved density-functional theory for accurate orbital eigenvalues Xinlei Hua, Xiaojie Chen, and

More information

Institut Néel Institut Laue Langevin. Introduction to electronic structure calculations

Institut Néel Institut Laue Langevin. Introduction to electronic structure calculations Institut Néel Institut Laue Langevin Introduction to electronic structure calculations 1 Institut Néel - 25 rue des Martyrs - Grenoble - France 2 Institut Laue Langevin - 71 avenue des Martyrs - Grenoble

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

The Schrödinger equation for many-electron systems

The Schrödinger equation for many-electron systems The Schrödinger equation for many-electron systems Ĥ!( x,, x ) = E!( x,, x ) 1 N 1 1 Z 1 Ĥ = " $ # " $ + $ 2 r 2 A j j A, j RAj i, j < i a linear differential equation in 4N variables (atomic units) (3

More information

Studies of Self-interaction Corrections in Density Functional Theory. Guangde Tu

Studies of Self-interaction Corrections in Density Functional Theory. Guangde Tu Studies of Self-interaction Corrections in Density Functional Theory Guangde Tu Theoretical Chemistry School of Biotechnology Royal Institute of Technology Stockholm 2008 c Guangde Tu, 2008 ISBN 978-91-7178-964-8

More information

All electron optimized effective potential method for solids

All electron optimized effective potential method for solids All electron optimized effective potential method for solids Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. 22

More information

Electronic Structure Calculations and Density Functional Theory

Electronic Structure Calculations and Density Functional Theory Electronic Structure Calculations and Density Functional Theory Rodolphe Vuilleumier Pôle de chimie théorique Département de chimie de l ENS CNRS Ecole normale supérieure UPMC Formation ModPhyChem Lyon,

More information

Study of Ozone in Tribhuvan University, Kathmandu, Nepal. Prof. S. Gurung Central Department of Physics, Tribhuvan University, Kathmandu, Nepal

Study of Ozone in Tribhuvan University, Kathmandu, Nepal. Prof. S. Gurung Central Department of Physics, Tribhuvan University, Kathmandu, Nepal Study of Ozone in Tribhuvan University, Kathmandu, Nepal Prof. S. Gurung Central Department of Physics, Tribhuvan University, Kathmandu, Nepal 1 Country of the Mt Everest 2 View of the Mt Everest 3 4 5

More information

CHEM6085: Density Functional Theory

CHEM6085: Density Functional Theory Lecture 5 CHEM6085: Density Functional Theory Orbital-free (or pure ) DFT C.-K. Skylaris 1 Consists of three terms The electronic Hamiltonian operator Electronic kinetic energy operator Electron-Electron

More information

3/23/2010 More basics of DFT Kieron Burke and friends UC Irvine Physics and Chemistry References for ground-state DFT ABC of DFT, by KB and Rudy Magyar, http://dft.uci.edu A Primer in Density Functional

More information

Key concepts in Density Functional Theory

Key concepts in Density Functional Theory From the many body problem to the Kohn-Sham scheme ILM (LPMCN) CNRS, Université Lyon 1 - France European Theoretical Spectroscopy Facility (ETSF) December 12, 2012 Lyon Outline 1 The many-body problem

More information

Self-consistent Field

Self-consistent Field Chapter 6 Self-consistent Field A way to solve a system of many electrons is to consider each electron under the electrostatic field generated by all other electrons. The many-body problem is thus reduced

More information

Principles of Quantum Mechanics

Principles of Quantum Mechanics Principles of Quantum Mechanics - indistinguishability of particles: bosons & fermions bosons: total wavefunction is symmetric upon interchange of particle coordinates (space,spin) fermions: total wavefuncftion

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

CHEM6085: Density Functional Theory Lecture 10

CHEM6085: Density Functional Theory Lecture 10 CHEM6085: Density Functional Theory Lecture 10 1) Spin-polarised calculations 2) Geometry optimisation C.-K. Skylaris 1 Unpaired electrons So far we have developed Kohn-Sham DFT for the case of paired

More information

Computational Chemistry I

Computational Chemistry I Computational Chemistry I Text book Cramer: Essentials of Quantum Chemistry, Wiley (2 ed.) Chapter 3. Post Hartree-Fock methods (Cramer: chapter 7) There are many ways to improve the HF method. Most of

More information

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Question 1: Basis sets Consider the split valence SV3-21G one electron basis set for formaldehyde

More information

ABC of ground-state DFT

ABC of ground-state DFT ABC of ground-state DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA July 31, 2014 Kieron (UC Irvine) ABC of ground-state DFT HoW

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » Recap of HK theorems and KS equations» The physical meaning of the XC energy» Solution of a one-particle Schroedinger equation» Pseudo Potentials»

More information

Lecture 9. Hartree Fock Method and Koopman s Theorem

Lecture 9. Hartree Fock Method and Koopman s Theorem Lecture 9 Hartree Fock Method and Koopman s Theorem Ψ(N) is approximated as a single slater determinant Φ of N orthogonal One electron spin-orbitals. One electron orbital φ i = φ i (r) χ i (σ) χ i (σ)

More information

Density Functional Theory for Electrons in Materials

Density Functional Theory for Electrons in Materials Density Functional Theory for Electrons in Materials Richard M. Martin Department of Physics and Materials Research Laboratory University of Illinois at Urbana-Champaign 1 Density Functional Theory for

More information

Lecture 8: Introduction to Density Functional Theory

Lecture 8: Introduction to Density Functional Theory Lecture 8: Introduction to Density Functional Theory Marie Curie Tutorial Series: Modeling Biomolecules December 6-11, 2004 Mark Tuckerman Dept. of Chemistry and Courant Institute of Mathematical Science

More information

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National

More information

Multi-Scale Modeling from First Principles

Multi-Scale Modeling from First Principles m mm Multi-Scale Modeling from First Principles μm nm m mm μm nm space space Predictive modeling and simulations must address all time and Continuum Equations, densityfunctional space scales Rate Equations

More information

Density matrix functional theory vis-á-vis density functional theory

Density matrix functional theory vis-á-vis density functional theory Density matrix functional theory vis-á-vis density functional theory 16.4.007 Ryan Requist Oleg Pankratov 1 Introduction Recently, there has been renewed interest in density matrix functional theory (DMFT)

More information

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that Keith Refson STFC Rutherford Appleton Laboratory LDA/GGA DFT is good but... Naive LDA/GGA calculation severely underestimates band-gaps.

More information

HECToR CSE technical meeting, Oxford Parallel Algorithms for the Materials Modelling code CRYSTAL

HECToR CSE technical meeting, Oxford Parallel Algorithms for the Materials Modelling code CRYSTAL HECToR CSE technical meeting, Oxford 2009 Parallel Algorithms for the Materials Modelling code CRYSTAL Dr Stanko Tomi Computational Science & Engineering Department, STFC Daresbury Laboratory, UK Acknowledgements

More information

Orbital currents in the Colle-Salvetti correlation energy functional and the degeneracy problem. Abstract

Orbital currents in the Colle-Salvetti correlation energy functional and the degeneracy problem. Abstract Orbital currents in the Colle-Salvetti correlation energy functional and the degeneracy problem S. Pittalis 1, S. Kurth 1, S. Sharma 1,2 and E.K.U. Gross 1 1 Institut für Theoretische Physik, Freie Universität

More information

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby Advanced Electronic Structure Theory Density functional theory Dr Fred Manby fred.manby@bris.ac.uk http://www.chm.bris.ac.uk/pt/manby/ 6 Strengths of DFT DFT is one of many theories used by (computational)

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Fakultät für Mathematik und Naturwissenschaften - Lehrstuhl für Physikalische Chemie I / Theoretische Chemie An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Jan-Ole Joswig

More information

Orbital dependent correlation potentials in ab initio density functional theory

Orbital dependent correlation potentials in ab initio density functional theory Orbital dependent correlation potentials in ab initio density functional theory noniterative - one step - calculations Ireneusz Grabowski Institute of Physics Nicolaus Copernicus University Toruń, Poland

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

Short Course on Density Functional Theory and Applications III. Implementations

Short Course on Density Functional Theory and Applications III. Implementations Short Course on Density Functional Theory and Applications III. Implementations Samuel B. Trickey Sept. 2008 Quantum Theory Project Dept. of Physics and Dept. of Chemistry trickey@qtp.ufl.edu KS E xc and

More information

The potential of Potential Functional Theory

The potential of Potential Functional Theory The potential of Potential Functional Theory IPAM DFT School 2016 Attila Cangi August, 22 2016 Max Planck Institute of Microstructure Physics, Germany P. Elliott, AC, S. Pittalis, E.K.U. Gross, K. Burke,

More information

Algorithms and Computational Aspects of DFT Calculations

Algorithms and Computational Aspects of DFT Calculations Algorithms and Computational Aspects of DFT Calculations Part I Juan Meza and Chao Yang High Performance Computing Research Lawrence Berkeley National Laboratory IMA Tutorial Mathematical and Computational

More information

Oslo node. Highly accurate calculations benchmarking and extrapolations

Oslo node. Highly accurate calculations benchmarking and extrapolations Oslo node Highly accurate calculations benchmarking and extrapolations Torgeir Ruden, with A. Halkier, P. Jørgensen, J. Olsen, W. Klopper, J. Gauss, P. Taylor Explicitly correlated methods Pål Dahle, collaboration

More information

Electronic structure calculations: fundamentals George C. Schatz Northwestern University

Electronic structure calculations: fundamentals George C. Schatz Northwestern University Electronic structure calculations: fundamentals George C. Schatz Northwestern University Electronic Structure (often called Quantum Chemistry) calculations use quantum mechanics to determine the wavefunctions

More information

Advanced Solid State Theory SS Roser Valentí and Harald Jeschke Institut für Theoretische Physik, Goethe-Universität Frankfurt

Advanced Solid State Theory SS Roser Valentí and Harald Jeschke Institut für Theoretische Physik, Goethe-Universität Frankfurt Advanced Solid State Theory SS 2010 Roser Valentí and Harald Jeschke Institut für Theoretische Physik, Goethe-Universität Frankfurt i 0. Literatur R. M. Martin, Electronic Structure: Basic Theory and

More information

Additional background material on the Nobel Prize in Chemistry 1998

Additional background material on the Nobel Prize in Chemistry 1998 Additional background material on the Nobel Prize in Chemistry 1998 The Royal Swedish Academy of Sciences has decided to award the 1998 Nobel Prize in Chemistry with one half to Professor WALTER KOHN,

More information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij ) MO Calculation for a Diatomic Molecule Introduction The properties of any molecular system can in principle be found by looking at the solutions to the corresponding time independent Schrodinger equation

More information

DFT: Exchange-Correlation

DFT: Exchange-Correlation DFT: Exchange-Correlation Local functionals, exact exchange and other post-dft methods Paul Tulip Centre for Materials Physics Department of Physics University of Durham Outline Introduction What is exchange

More information

Orbital Density Dependent Functionals

Orbital Density Dependent Functionals Orbital Density Dependent Functionals S. Kluepfel1, P. Kluepfel1, Hildur Guðmundsdóttir1 and Hannes Jónsson1,2 1. Univ. of Iceland; 2. Aalto University Outline: Problems with GGA approximation (PBE, RPBE,...)

More information

ASSESSMENT OF DFT METHODS FOR SOLIDS

ASSESSMENT OF DFT METHODS FOR SOLIDS MSSC2009 - Ab Initio Modeling in Solid State Chemistry ASSESSMENT OF DFT METHODS FOR SOLIDS Raffaella Demichelis Università di Torino Dipartimento di Chimica IFM 1 MSSC2009 - September, 10 th 2009 Table

More information

The calculation of the universal density functional by Lieb maximization

The calculation of the universal density functional by Lieb maximization The calculation of the universal density functional by Lieb maximization Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry,

More information

Density Functional Theory

Density Functional Theory Chemistry 380.37 Fall 2015 Dr. Jean M. Standard October 28, 2015 Density Functional Theory What is a Functional? A functional is a general mathematical quantity that represents a rule to convert a function

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz November 29, 2010 The self interaction error and its correction Perdew-Zunger SIC Average-density approximation Weighted density approximation

More information

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation Electrochemistry project, Chemistry Department, November 2006 Ab-initio Molecular Dynamics Simulation Outline Introduction Ab-initio concepts Total energy concepts Adsorption energy calculation Project

More information

Introduction to Computational Quantum Chemistry: Theory

Introduction to Computational Quantum Chemistry: Theory Introduction to Computational Quantum Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC 3108 Course Lectures 2007 Introduction Hartree Fock Theory Configuration Interaction Lectures 1 Introduction

More information

DFT: Exchange-Correlation

DFT: Exchange-Correlation DFT: Local functionals, exact exchange and other post-dft methods Stewart Clark University of Outline Introduction What is exchange and correlation? Quick tour of XC functionals (Semi-)local: LDA, PBE,

More information

Lecture 6. Fermion Pairing. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 6. Fermion Pairing. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 6 Fermion Pairing WS2010/11: Introduction to Nuclear and Particle Physics Experimental indications for Cooper-Pairing Solid state physics: Pairing of electrons near the Fermi surface with antiparallel

More information

Introduction to Computational Chemistry: Theory

Introduction to Computational Chemistry: Theory Introduction to Computational Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC andrew.gilbert@anu.edu.au 3023 Course Lectures Introduction Hartree Fock Theory Basis Sets Lecture 1 1 Introduction

More information

Kohn Sham density functional theory [1 3] is. Role of the Exchange Correlation Energy: Nature s Glue STEFAN KURTH, JOHN P. PERDEW.

Kohn Sham density functional theory [1 3] is. Role of the Exchange Correlation Energy: Nature s Glue STEFAN KURTH, JOHN P. PERDEW. Role of the Exchange Correlation Energy: Nature s Glue STEFAN KURTH, JOHN P. PERDEW Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118 Received 11 March 1999;

More information

Notes on Density Functional Theory

Notes on Density Functional Theory Notes on Density Functional Theory Rocco Martinazzo E-mail: rocco.martinazzo@unimi.it Contents 1 Introduction 1 Density Functional Theory 7 3 The Kohn-Sham approach 11 1 Introduction We consider here a

More information

Intermediate DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA

Intermediate DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA Intermediate DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA October 10-19th, 2012 Kieron (UC Irvine) Intermediate DFT Lausanne12

More information

A FRESH LOOK AT THE BAND-GAP PROBLEM IN DENSITY FUNCTIONAL THEORY

A FRESH LOOK AT THE BAND-GAP PROBLEM IN DENSITY FUNCTIONAL THEORY A FRESH LOOK AT THE BAND-GAP PROBLEM IN DENSITY FUNCTIONAL THEORY JOHN P. PERDEW PHYSICS & CHEMISTRY, TEMPLE UNIVERSITY PHILADELPHIA, PENNSYLVANIA, USA SUPPORTED BY THE U.S. DEPARTMENT OF ENERGY, EFRC

More information

XYZ of ground-state DFT

XYZ of ground-state DFT XYZ of ground-state DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA January 5-9th, 2014 Kieron (UC Irvine) XYZ of ground-state

More information

Hartree-Fock Theory Variational Principle (Rayleigh-Ritz method)

Hartree-Fock Theory Variational Principle (Rayleigh-Ritz method) Hartree-Fock Theory Variational Principle (Rayleigh-Ritz method) (note) (note) Schrodinger equation: Example: find an approximate solution for AHV Trial wave function: (note) b opt Mean-Field Approximation

More information

QMC dissociation energy of the water dimer: Time step errors and backflow calculations

QMC dissociation energy of the water dimer: Time step errors and backflow calculations QMC dissociation energy of the water dimer: Time step errors and backflow calculations Idoia G. de Gurtubay and Richard J. Needs TCM group. Cavendish Laboratory University of Cambridge Idoia G. de Gurtubay.

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 4 Molecular orbitals C.-K. Skylaris Learning outcomes Be able to manipulate expressions involving spin orbitals and molecular orbitals Be able to write down

More information

Extending Kohn-Sham density-functional theory

Extending Kohn-Sham density-functional theory Extending Kohn-Sham density-functional theory Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Email: julien.toulouse@upmc.fr Web page: www.lct.jussieu.fr/pagesperso/toulouse/ January

More information

Electronic Structure: Density Functional Theory

Electronic Structure: Density Functional Theory Electronic Structure: Density Functional Theory S. Kurth, M. A. L. Marques, and E. K. U. Gross Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany (Dated:

More information

Post Hartree-Fock: MP2 and RPA in CP2K

Post Hartree-Fock: MP2 and RPA in CP2K Post Hartree-Fock: MP2 and RPA in CP2K A tutorial Jan Wilhelm jan.wilhelm@chem.uzh.ch 4 September 2015 Further reading MP2 and RPA by Mauro Del Ben, Jürg Hutter, Joost VandeVondele Del Ben, M; Hutter,

More information

Density Functional Theory

Density Functional Theory Density Functional Theory Iain Bethune EPCC ibethune@epcc.ed.ac.uk Overview Background Classical Atomistic Simulation Essential Quantum Mechanics DFT: Approximations and Theory DFT: Implementation using

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 5 The Hartree-Fock method C.-K. Skylaris Learning outcomes Be able to use the variational principle in quantum calculations Be able to construct Fock operators

More information

one ν im: transition state saddle point

one ν im: transition state saddle point Hypothetical Potential Energy Surface Ethane conformations Hartree-Fock theory, basis set stationary points all ν s >0: minimum eclipsed one ν im: transition state saddle point multiple ν im: hilltop 1

More information

NWChem: Hartree-Fock, Density Functional Theory, Time-Dependent Density Functional Theory

NWChem: Hartree-Fock, Density Functional Theory, Time-Dependent Density Functional Theory NWChem: Hartree-Fock, Density Functional Theory, Time-Depent Density Functional Theory Hartree-Fock! Functionality! Input! Wavefunctions! Initial MO vectors! Direct and semidirect algorithms! Convergence,

More information

Instructor background for the discussion points of Section 2

Instructor background for the discussion points of Section 2 Supplementary Information for: Orbitals Some fiction and some facts Jochen Autschbach Department of Chemistry State University of New York at Buffalo Buffalo, NY 14260 3000, USA Instructor background for

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry room B430, Chemicum 4th floor vesa.hanninen@helsinki.fi September 3, 2013 Introduction and theoretical backround September

More information