Developments in Electronic Structure Theory.

Size: px
Start display at page:

Download "Developments in Electronic Structure Theory."

Transcription

1 Developments in Electronic Structure Theory. Bastien Mussard Laboratoire de Chimie Théorique Institut du Calcul et de la Simulation Sorbonne Universités, Université Pierre et Marie Curie

2 A short presentation

3 A short presentation (1) What I do : Quantum Mechanics Wavefunction theories (WFT) Density Functional theory (DFT) Range Separation methods (RS) Main research interest Weak interactions / London dispersion forces / VdW interactions Random Phase Approximation (RPA) - formalism (new approximations, spin-unrestricted generalization,...) - local orbitals (designed new localized orbitals, selection of excitation) - gradients of the energy (forces, dipoles, optimization of geometry,...) -... Numerous collaborations High Harmonics Generation spectra (Electron dynamics) Quantum Monte Carlo methods (QMC)

4 A short presentation (2) Notable Developments Developments in MOLPRO Commercial code Versatile (HF,DFT,CI,CC,MCSCF, MRCI,MRPT,MRCC, FCIQMC,DMRG, Gradients and Properties) lines of code In charge of the RPA code Developments in CHAMP Free code VMC, DMC Optimization of wavefunctions,... Fast calculation of determinants CHAMP@Cornell Developped personal codes, from scratch Calculations on grid, parallel codes Technical side of the work Management of codes (SVN/GIT/BugZilla) Cleaning-up Optimizing pre-existing codes (use of memory,...) HPC Interfaces between codes

5 Context of my main research interest Electronic structure calculations. post-dft calculations in the context of Range Separation. In the WFT part, for the treatment of London dispersion forces, we use the Random Phase Approximation.

6 Range Separation : Motivation [Savin, Rec.dev. (1996)] Get the accurate answer for the right reason at a reasonable cost. WFT (the wavefunction Ψ(x N ) is the key quantity ; determinants) rather costly (size of Hilbert space) improvement of the description is systematic (add more determinants) DFT (the density n(r) is the key quantity) cheap methods ; applicable to big systems ; impressive successes need to approximate E xc [n] ; not systematical Range Separation (a rigourous combination of both approaches) WFT suffers at short range from the e-e coalescence. DFAs are (semi)local approximation, best at short-range. The idea : split the e-e interaction into long- and short-range, treat the long-range with WFT, the short-range with DFT L = 1 L = 2 L = 3 L = 4 L = θ (degree)

7 Range Separation : Realisation [Savin, Rec.dev. (1996)] Split of the Coulomb interaction ; 1 r = v lr ee(r) + v sr ee(r) ˆV lr ee long-range e-e interaction E sr Hxc[n] short-range density functional In a variational way : E exact = min Ψ rigourous mix of WFT and DFT methods. { } Ψ ˆT + ˆV ne + ˆV ee Ψ lr + EHxc[n sr Ψ ] 1/r vee(r) lr vee(r) sr e.g. MCSCF+DFT, CI+DFT,...-> for the static (strong) correlation. [Fromager,Toulouse,Jensen JCP 2007] [Sharkas,Savin,Jensen,Toulouse JCP 2012] With a perturbative treatment, from a mono-determinental reference (RSH) : { } E exact = min Φ ˆT + ˆV ne + ˆV ee Φ lr + EHxc[n sr Φ ] + Ec lr Φ e.g. with RPA -> for long range dynamical correlation (vdw dispersion). [Ángyán,Gerber,Savin,Toulouse PRA 2005] [Toulouse,Gerber,Jansen,Savin,Ángyán PRL 2009]

8 Range Separation : Examples [Savin, Rec.dev. (1996)] Ar 2, aug-cc-pv5z basis, µ = 0.5 bohr Interaction energy (mhartree) Accurate PBE (sr)pbe Internuclear distance (bohr) RSH reference contains no dispersion.

9 Range Separation : Examples [Savin, Rec.dev. (1996)] Ar 2, aug-cc-pv5z basis, µ = 0.5 bohr Interaction energy (mhartree) Accurate drpa (lr)drpa RPAx (lr)rpax Internuclear distance (bohr) RSH reference contains no dispersion. In RPA, it is important to add exchange effects for dispersion interactions.

10 Random Phase Approximation : Origins [Bohm,Pines PR (1951)] The original intention is to decouple by a canonical transformation the particle and field variables in the description of the Uniform Electron Gaz (UEG). The physics : mix of long-range organized behavior (collective plasma oscillations) and of short-range screened explicit interactions. This emerges naturally by the canonical transformation, and involves a cut-off distance, over which long-range behavior correctly describes the system, and under which it no longer captures the main physics : the short-range interaction is then predominant. Hence, in RPA, the energy is the sum of oscillator energies and of a short-range correction. This seems ideal in a range separation context. What is random in RPA? Only the particles in phase with the oscillating field contribute to the oscillations the other particles, having a random phase, are neglected.

11 Random Phase Approximation : formalisms and versions [Ángyán,Liu,Toulouse,Jansen JCTC (2011)] AC-FDT equation [BM,Rocca,Jansen,Ángyán JCTC (submitted)] Ec RPA = 1 1 dω ( [ ]) dα 2 0 2π Tr V ee Π RPA α (iω) Π 0 (iω) (Π RPA α ) 1 = Π 1 0 f Hx,α Versions (include/exclude exchange) This yields different, non-equivalent direct or exchange RPA versions of RPA single-bar or double-bar Formulations (analytical/numerical integrals) density-matrix formulation E RPA c = 1 2 dα tr (P c,α V) dielectric-matrix formulation E RPA dω c = 1 2 tr (log(ɛ(iω)) ɛ(iω) + 1) 2π plasmon formula E RPA c = 1 2 Ricatti equations and rccd E RPA c ω RPA ω TDA = 1 2 tr(bt) +Approximations (in each formulations, for each versions...) SOSEX, SO2

12 Random Phase Approximation : formalisms and versions [Ángyán,Liu,Toulouse,Jansen JCTC (2011)] AC-FDT equation [BM,Rocca,Jansen,Ángyán JCTC (submitted)] Ec RPA = 1 1 dω ( [ ]) dα 2 0 2π Tr V ee Π RPA α (iω) Π 0 (iω) (Π RPA α ) 1 = Π 1 0 f Hx,α Versions (include/exclude exchange) This yields different, non-equivalent direct or exchange RPA versions of RPA single-bar or double-bar Formulations (analytical/numerical integrals) density-matrix formulation E RPA c = 1 2 dα tr (P c,α V) dielectric-matrix formulation E RPA dω c = 1 2 tr (log(ɛ(iω)) ɛ(iω) + 1) 2π plasmon formula E RPA c = 1 2 Ricatti equations and rccd E RPA c ω RPA ω TDA = 1 2 tr(bt) +Approximations (in each formulations, for each versions...) SOSEX, SO2

13 Random Phase Approximation : formalisms and versions [Ángyán,Liu,Toulouse,Jansen JCTC (2011)] AC-FDT equation [BM,Rocca,Jansen,Ángyán JCTC (submitted)] Ec RPA = 1 1 dω ( [ ]) dα 2 0 2π Tr V ee Π RPA α (iω) Π 0 (iω) (Π RPA α ) 1 = Π 1 0 f Hx,α Versions (include/exclude exchange) This yields different, non-equivalent direct or exchange RPA versions of RPA single-bar or double-bar Formulations (analytical/numerical integrals) density-matrix formulation E RPA c = 1 2 dα tr (P c,α V) dielectric-matrix formulation E RPA dω c = 1 2 tr (log(ɛ(iω)) ɛ(iω) + 1) 2π plasmon formula E RPA c = 1 2 Ricatti equations and rccd E RPA c ω RPA ω TDA = 1 2 tr(bt) +Approximations (in each formulations, for each versions...) SOSEX, SO2

14 Random Phase Approximation : Feynman diagrams drpa-i RPAx-II E drpa-i c = 1 2 tr ab ij lr (T lr drccd) ia,jb E RPAx-II c = 1 4 tr ab ij lr (T lr rccdx) ia,jb [McLachlan,Ball RMP 1964] [a lot of diagrams] SOSEX E SOSEX c = 1 2 tr ab ij lr (T lr drccd) ia,jb [Grüneis,et. al. JCP 2009] RPAx-SO2 Ec RPAx-SO2 = 1 2 tr ab ij lr (TrCCDx) lr ia,jb [Szabo,Ostlund JCP 1977] [Toulouse et. al. JCP 2011] Not that good for weak interactions. It is our method of choice.

15 New developments Basis Set Convergence study and Three-point extrapolation scheme. [Franck,BM,Luppi,Toulouse JCP (2015)] Spin-Unrestricted generalization and Calculations on DBH24/08 and AE49. [BM,Reinhardt,Ángyán,Toulouse JCP (2015)] Development and Implementation of the Gradients of RSH+RPA methods. [BM,Szalay,Ángyán JCTC (2014)] Development of Localized Virtual Orbitals and Application for RPA calculations. [BM,Ángyán TCA (2015)]

16 Basis Set Convergence [Franck,BM,Luppi,Toulouse JCP (2015)] Partial wave expansion of the WF [Gori-Giorgi,Savin PRA (2006)] Ψ(r 12) Ψ(0) = 1 + r Ψ µ (r 12) Ψ µ (0) = 1 + µr π +... = c l P l (cosθ) with c l l 2 = c l P l (cosθ) with c l e αl L = 1 L = 2 L = 3 L = 4 L = θ (degree) r 2 θ He r L = 1 L = 2 L = 3 L = θ (degree) Principal number expansion (wrt one-particule basis) Ψ(r 1, r 2) = c i φ i (r 1) φ i (r 2) HF VDZ VTZ VQZ V5Z V6Z Hylleraas r 2 θ He r RSH VDZ VTZ VQZ V5Z V6Z θ (degree) θ (degree)

17 Spin-Unrestricted RPA [BM,Reinhardt,Ángyán,Toulouse JCP (2015)] Implemented most of the variants with a nospinflip/spinflip block structure Normal distributions of errors (kcal/mol) of calculations on AE49. Mean errors of post-rsh calculation are better. Post-RSH calculations dist. of errors have sharper distributions HF+MP RSH+MP Similar results were obtained on the DBH24/08 dataset HF+dRPA-I RSH+dRPA-I We argue that RPAx-SO2 is a good method for a wide range of applications HF+RPAx-SO2 RSH+RPAx-SO2 >cc-pvqz (post-rsh : srpbe, µ = 0.5)

18 Analytical Gradients : Lagrangian formalism énergie énergie énergie paramètre paramètre paramètre lagrangien Given an energy E[κ, V(κ), T(κ)] you have rules for V : E/ V = 0 you have rules for T : R[T] paramètre = 0 lagrangien de dκ = E κ + E V E T + V κ T κ For non-variational methods E[V] [BM,Szalay,Ángyán JCTC (2014)] VV R[T] = = 0 0 TT E[T] ( (a) (a) (b) (b) in E ) κ there is h(κ), (µν σρ) (κ) and S (κ) The solution is to work with an alternative object that is variational : L[κ, V, T, λ] = E[κ, V, T] + tr(λr[t]) énergie L V = E énergie V = 0 énergie paramètre L λ = paramètre paramètre R[T] = 0 lagrangien (a) E[V] R[T] = 0 L T = E ( T + tr λ R ) V T (b) = 0 T E[T] { Φ ˆT + ˆV ne + ˆV lr The RSH+RPA energy is : E = min Hxc[n Φ ] Φ The equations were derived (sr and lr terms) and implemented in MOLPRO. ee Φ + E sr (c) } E[T] L[T] T + E lr,rpa c

19 Analytical Gradients of RSH+RPA Bond Lengths of simple molecules > aug-cc-pvqz r (Å) H2/H H HF/F H H2O/O H HOF/O H RHF+dRPA-I LDA+dRPA-I RHF+SOSEX LDA+SOSEX HNO/N H C2H2/C H HCN/C H C2H4/C H CH4/C H N2/N N HNC/N H NH3/N H N2H2/N H CH2O/C H CH2/C H CO/C O HCN/C N CO2/C O HNC/C N C2H2/C C CH2O/C O HNO/O N N2H2/N N C2H4/C C F2/F F Mean Absolute Errors Bond Lengths of simple molecules RHF+dRPA-I RHF+SOSEX LDA+dRPA-I LDA+SOSEX Interaction Energies HOF/O F Intermonomer distances MP MP LDA+MP LDA+MP LDA+dRPA-I 0.35 LDA+dRPA-I [BM,Szalay,Ángyán JCTC (2014)] Interaction Energies > aug-cc-pvtz ( E) (kcal.mol 1 ) C2H4...F2 NH3...F2 MP2 LDA+MP2 LDA+dRPA-I C2H2...ClF HCN...ClF NH3...Cl2 Intermonomer distances > aug-cc-pvtz R (Å) C2H4...F2 NH3...F2 C2H2...ClF HCN...ClF NH3...Cl2 H2O...ClF H2O...ClF NH3...ClF MP2 LDA+MP2 LDA+dRPA-I NH3...ClF

20 Projected Oscillator Orbitals [BM,A ngya n TCA (2015)] The objective is to construct a set of localized virtual orbitals by multiplying the set of occupied Localized Molecular Orbitals (LMOs) with solid spherical harmonic functions. The orthogonality to the occupied space is ensured by projection. Dipolar oscillator orbital [Foster, Boys RMP (1960)] iα i = (1 P ) (r α Dαi ) ii {z } {z } {z} projector C-H bond in CH2 =O : harmonic LMO where Dαi = hi r α ii

21 Projected Oscillator Orbitals : Key features Dipolar oscillator orbital i α = (ˆ1 ˆP)(ˆr α D i α) i where D i α = i ˆr α i [BM,Ángyán TCA (2015)] This formulation is best employed with Boys LMOs, see : i α = ˆr α i m m ˆr α i The POOs are non-orthogonal, with overlap : S ij αβ = i ˆr αˆr β j i ˆr α m m ˆr β j The fock matrix element are found to be : f ii αβ = 1 2 δ αβ (fim m ˆr αˆr β i + i ˆr αˆr β m f mi ) i ˆr α m f mn n ˆr β i The two-elec integrals are written with a multipole expansion of the lr interaction : i α j kl β = i α ˆr γ k L ij γδ j ˆr δ l β +... A nice result greatly simplifies the equations : i α ˆr β j = i ˆr αˆr β j i ˆr α m m ˆr β j = S ij αβ

22 Projected Oscillator Orbitals : RPA and C 6 [BM,Ángyán TCA (2015)] The working equations are the local RPA Ricatti equations (i.e. local rccd) with the local excitation approximation and spherical average approximation. RPA correlation energy occ Ec RPA,lr 4 = 9 si s j tr ( L ij T ij) ij where s i = S ii αα C 6 coefficients occ E c (2),lr = = ij occ ij 4 s i s j 9 i + j tr ( L ij L ij) 8 s i s j F µ damp (Dij ) 3 i + j D ij 6 where i = f ii f i /s i Error in the molecular C6 coefficients (%) H2 HF H2O N2 CO LDA PBE RHF RSHLDA NH3 CH4 CO2 H2CO N2O C2H2 CH3OH C2H4 CH3NH2 C2H6 CH3CHO CH3OCH3 C3H6 HCl HBr H2S SO2 SiH4 Cl2 COS CS2 > aug-cc-pvtz (RSH : µ = 0.5) MA%E LDA 59.8 PBE 56.7 RHF 15.2 RSHLDA 11.8 CCl4

23 Other Works Efficient calculations of determinants in QMC using the Sherman-Morrison-Woodbury formula. Fractional occupation number calculations and Instabilities in the RPA problem. [BM,Toulouse (in prep)] Electron dynamics for High Harmonics Generation spectra [Coccia,BM,Labeye,Caillat,Taieb,Toulouse,Luppi (submitted)] In real space : relationship between the response functions, exchange holes and localized orbitals. [BM,Ángyán CTC (2015)] Collaborators : János Ángyán, Roland Assaraf, Odile Franck, Georg Jansen, Eleonora Luppi, Peter Reinhardt, Dario Rocca, Julien Toulouse, Cyrus Umrigar.

Developments in Electronic Structure Theory.

Developments in Electronic Structure Theory. Developments in Electronic Structure Theory. Bastien Mussard Laboratoire de Chimie Théorique Institut du Calcul et de la Simulation Sorbonne Universités, Université Pierre et Marie Curie bastien.mussard@upmc.fr

More information

Combining density-functional theory and many-body methods

Combining density-functional theory and many-body methods Combining density-functional theory and many-body methods Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Vrije Universiteit Amsterdam, Netherlands November 2017 Outline 2/23 1

More information

Fractional-charge and Fractional-spin errors in Range-Separated Density-Functional Theory with Random Phase Approximation.

Fractional-charge and Fractional-spin errors in Range-Separated Density-Functional Theory with Random Phase Approximation. Fractional-charge and Fractional-spin errors in Range-Separated Density-Functional Theory with Random Phase Approximation. Bastien Mussard, Julien Toulouse Laboratoire de Chimie Théorique Institut du Calcul

More information

Combining density-functional theory and many-body methods

Combining density-functional theory and many-body methods Combining density-functional theory and many-body methods Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Albuquerque New Mexico, USA June 2016 Outline 2/23 1 A brief overview of

More information

Dispersion energies from the random-phase approximation with range separation

Dispersion energies from the random-phase approximation with range separation 1/34 Dispersion energies from the random-phase approximation with range separation Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Web page: www.lct.jussieu.fr/pagesperso/toulouse/

More information

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients 1/10 Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients Julien Toulouse 1,2, Elisa Rebolini 1, Tim Gould 3, John F. Dobson 3, Prasenjit Seal

More information

Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation

Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation Julien Toulouse 1 I. Gerber 2, G. Jansen 3, A. Savin 1, W. Zhu 1, J. Ángyán 4 1 Laboratoire de Chimie Théorique,

More information

Extending Kohn-Sham density-functional theory

Extending Kohn-Sham density-functional theory Extending Kohn-Sham density-functional theory Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Email: julien.toulouse@upmc.fr Web page: www.lct.jussieu.fr/pagesperso/toulouse/ January

More information

Range-separated density-functional theory with long-range random phase approximation

Range-separated density-functional theory with long-range random phase approximation Range-separated density-functional theory with long-range random phase approximation Julien Toulouse 1 Wuming Zhu 1, Andreas Savin 1, János Ángyán2 1 Laboratoire de Chimie Théorique, UPMC Univ Paris 6

More information

DFT basée sur le théorème de fluctuation-dissipation avec séparation de portée pour les interactions de van der Waals

DFT basée sur le théorème de fluctuation-dissipation avec séparation de portée pour les interactions de van der Waals DFT basée sur le théorème de fluctuation-dissipation avec séparation de portée pour les interactions de van der Waals Julien Toulouse 1 Iann Gerber 2, Georg Jansen 3, Andreas Savin 1, János Ángyán 4 1

More information

Théorie de la fonctionnnelle de la densité avec séparation de portée pour les forces de van der Waals

Théorie de la fonctionnnelle de la densité avec séparation de portée pour les forces de van der Waals Théorie de la fonctionnnelle de la densité avec séparation de portée pour les forces de van der Waals Julien Toulouse 1 Iann Gerber 2, Georg Jansen 3, Andreas Savin 1, János Ángyán 4 1 Laboratoire de Chimie

More information

Optimization of quantum Monte Carlo wave functions by energy minimization

Optimization of quantum Monte Carlo wave functions by energy minimization Optimization of quantum Monte Carlo wave functions by energy minimization Julien Toulouse, Roland Assaraf, Cyrus J. Umrigar Laboratoire de Chimie Théorique, Université Pierre et Marie Curie and CNRS, Paris,

More information

RPA step by step. Bastien Mussard, János G. Ángyán, Sébastien Lebègue CRM 2, FacultÃl des Sciences UniversitÃl Henry PoincarÃl, Nancy

RPA step by step. Bastien Mussard, János G. Ángyán, Sébastien Lebègue CRM 2, FacultÃl des Sciences UniversitÃl Henry PoincarÃl, Nancy RPA step by step Bastien Mussard, János G. Ángyán, Sébastien Lebègue CRM, FacultÃl des Sciences UniversitÃl Henry PoincarÃl, Nancy Eötvös University Faculty of Science Budapest, Hungaria 0 mars 01 bastien.mussard@uhp-nancy.fr

More information

Time-dependent linear-response variational Monte Carlo.

Time-dependent linear-response variational Monte Carlo. Time-dependent linear-response variational Monte Carlo. Bastien Mussard bastien.mussard@colorado.edu https://mussard.github.io/ Julien Toulouse julien.toulouse@upmc.fr Sorbonne University, Paris (web)

More information

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Julien Toulouse 1, Cyrus J. Umrigar 2, Roland Assaraf 1 1 Laboratoire de Chimie

More information

Analytical Gradients for the Range-Separated Random Phase Approximation Correlation Energies Using a Lagrangian Framework

Analytical Gradients for the Range-Separated Random Phase Approximation Correlation Energies Using a Lagrangian Framework Analytical Gradients for the Range-Separated Random Phase Approximation Correlation Energies Using a Lagrangian Framework Bastien Mussard a, János G. Ángyán a, Péter G. Szalay b a CRM 2, Université de

More information

Multideterminant density-functional theory for static correlation. Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France

Multideterminant density-functional theory for static correlation. Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Multideterminant density-functional theory for static correlation Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Basel, Switzerland September 2015 Kohn-Sham DFT and static correlation

More information

Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization

Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization Julien Toulouse, Cyrus Umrigar, Roland Assaraf Cornell Theory Center, Cornell University, Ithaca, New York, USA. Laboratoire

More information

Quantum Monte Carlo wave functions and their optimization for quantum chemistry

Quantum Monte Carlo wave functions and their optimization for quantum chemistry Quantum Monte Carlo wave functions and their optimization for quantum chemistry Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France CEA Saclay, SPhN Orme des Merisiers April 2015 Outline

More information

Density-functional theory at noninteger electron numbers

Density-functional theory at noninteger electron numbers Density-functional theory at noninteger electron numbers Tim Gould 1, Julien Toulouse 2 1 Griffith University, Brisbane, Australia 2 Université Pierre & Marie Curie and CRS, Paris, France July 215 Introduction

More information

Long-range/short-range energy decomposition in density functional theory

Long-range/short-range energy decomposition in density functional theory p. 1/2 Long-range/short-range energy decomposition in density functional theory Julien Toulouse François Colonna, Andreas Savin Laboratoire de Chimie Théorique, Université Pierre et Marie Curie, Paris

More information

Combining many-body methods and density-functional theory. Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France

Combining many-body methods and density-functional theory. Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Combining many-body methods and density-funtional theory Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, Frane September 2014 2/1 Hybrids ombining many-body methods and DFT Goal: improve

More information

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley

More information

Dispersion Interactions from the Exchange-Hole Dipole Moment

Dispersion Interactions from the Exchange-Hole Dipole Moment Dispersion Interactions from the Exchange-Hole Dipole Moment Erin R. Johnson and Alberto Otero-de-la-Roza Chemistry and Chemical Biology, University of California, Merced E. R. Johnson (UC Merced) Dispersion

More information

OVERVIEW OF QUANTUM CHEMISTRY METHODS

OVERVIEW OF QUANTUM CHEMISTRY METHODS OVERVIEW OF QUANTUM CHEMISTRY METHODS Outline I Generalities Correlation, basis sets Spin II Wavefunction methods Hartree-Fock Configuration interaction Coupled cluster Perturbative methods III Density

More information

Size-extensive wave functions for QMC A linear-scaling GVB approach

Size-extensive wave functions for QMC A linear-scaling GVB approach Size-extensive wave functions for QMC A linear-scaling GVB approach Claudia Filippi, University of Twente, The Netherlands Francesco Fracchia, University of Pisa, Italy Claudio Amovilli, University of

More information

Analytical Gradient for Random Phase Approximation Using a Lagrangian Framework

Analytical Gradient for Random Phase Approximation Using a Lagrangian Framework Analytical Gradient for Random Phase Approximation Using a Lagrangian Framework Bastien Mussard a, János G. Ángyán a, Péter G. Szalay b a CRM 2, Université de Lorraine, Nancy, France b Laboratory of Theoretical

More information

Post Hartree-Fock: MP2 and RPA in CP2K

Post Hartree-Fock: MP2 and RPA in CP2K Post Hartree-Fock: MP2 and RPA in CP2K A tutorial Jan Wilhelm jan.wilhelm@chem.uzh.ch 4 September 2015 Further reading MP2 and RPA by Mauro Del Ben, Jürg Hutter, Joost VandeVondele Del Ben, M; Hutter,

More information

Accurate van der Waals interactions from ground state electron density

Accurate van der Waals interactions from ground state electron density Accurate van der Waals interactions from ground state electron density Alexandre Tkatchenko Theory Department, Fritz Haber Institut der MPG Berlin, Germany tkatchen@fhi berlin.mpg.de Haber Institute EXCITCM09,

More information

Introduction to density-functional theory. Emmanuel Fromager

Introduction to density-functional theory. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Institut

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry Chemicum 4th floor vesa.hanninen@helsinki.fi September 10, 2013 Lecture 3. Electron correlation methods September

More information

FONCTIONNELLES DE DENSITÉ AVEC SÉPARATION DE PORTÉE: AU CIEL DFT SANS ÉCHELLE DE JACOB

FONCTIONNELLES DE DENSITÉ AVEC SÉPARATION DE PORTÉE: AU CIEL DFT SANS ÉCHELLE DE JACOB FONCTIONNELLES DE DENSITÉ AVEC SÉPARATION DE PORTÉE: AU CIEL DFT SANS ÉCHELLE DE JACOB, Iann Gerber, Paola Gori-Giorgi, Julien Toulouse, Andreas Savin Équipe de Modélisation Quantique et Cristallographique

More information

Orbital Density Dependent Functionals

Orbital Density Dependent Functionals Orbital Density Dependent Functionals S. Kluepfel1, P. Kluepfel1, Hildur Guðmundsdóttir1 and Hannes Jónsson1,2 1. Univ. of Iceland; 2. Aalto University Outline: Problems with GGA approximation (PBE, RPBE,...)

More information

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory 1/11 Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory Julien Toulouse Université Pierre & Marie Curie and CNRS, 4 place Jussieu, Paris, France Web page: www.lct.jussieu.fr/pagesperso/toulouse/

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

The calculation of the universal density functional by Lieb maximization

The calculation of the universal density functional by Lieb maximization The calculation of the universal density functional by Lieb maximization Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry,

More information

Coupled-cluster and perturbation methods for macromolecules

Coupled-cluster and perturbation methods for macromolecules Coupled-cluster and perturbation methods for macromolecules So Hirata Quantum Theory Project and MacroCenter Departments of Chemistry & Physics, University of Florida Contents Accurate electronic structure

More information

Importing ab-initio theory into DFT: Some applications of the Lieb variation principle

Importing ab-initio theory into DFT: Some applications of the Lieb variation principle Importing ab-initio theory into DFT: Some applications of the Lieb variation principle Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department

More information

Variational Monte Carlo Optimization and Excited States

Variational Monte Carlo Optimization and Excited States Variational Monte Carlo Optimization and Excited States Eric Neuscamman August 9, 2018 motivation charge transfer core spectroscopy double excitations the menu aperitif: number counting Jastrows main course:

More information

Noncollinear spins in QMC: spiral Spin Density Waves in the HEG

Noncollinear spins in QMC: spiral Spin Density Waves in the HEG Noncollinear spins in QMC: spiral Spin Density Waves in the HEG Zoltán Radnai and Richard J. Needs Workshop at The Towler Institute July 2006 Overview What are noncollinear spin systems and why are they

More information

Molecular Magnetism. Magnetic Resonance Parameters. Trygve Helgaker

Molecular Magnetism. Magnetic Resonance Parameters. Trygve Helgaker Molecular Magnetism Magnetic Resonance Parameters Trygve Helgaker Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Norway Laboratoire de Chimie Théorique,

More information

Fixed-Node quantum Monte Carlo for Chemistry

Fixed-Node quantum Monte Carlo for Chemistry Fixed-Node quantum Monte Carlo for Chemistry Michel Caffarel Lab. Physique et Chimie Quantiques, CNRS-IRSAMC, Université de Toulouse e-mail : caffarel@irsamc.ups-tlse.fr. p.1/29 The N-body problem of Chemistry

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

QMC dissociation energy of the water dimer: Time step errors and backflow calculations

QMC dissociation energy of the water dimer: Time step errors and backflow calculations QMC dissociation energy of the water dimer: Time step errors and backflow calculations Idoia G. de Gurtubay and Richard J. Needs TCM group. Cavendish Laboratory University of Cambridge Idoia G. de Gurtubay.

More information

Linear response time-dependent density functional theory

Linear response time-dependent density functional theory Linear response time-dependent density functional theory Emmanuel Fromager Laboratoire de Chimie Quantique, Université de Strasbourg, France fromagere@unistra.fr Emmanuel Fromager (UdS) Cours RFCT, Strasbourg,

More information

The Overhauser Instability

The Overhauser Instability The Overhauser Instability Zoltán Radnai and Richard Needs TCM Group ESDG Talk 14th February 2007 Typeset by FoilTEX Introduction Hartree-Fock theory and Homogeneous Electron Gas Noncollinear spins and

More information

TDDFT in Chemistry and Biochemistry III

TDDFT in Chemistry and Biochemistry III TDDFT in Chemistry and Biochemistry III Dmitrij Rappoport Department of Chemistry and Chemical Biology Harvard University TDDFT Winter School Benasque, January 2010 Dmitrij Rappoport (Harvard U.) TDDFT

More information

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University Advanced Quantum Chemistry III: Part 3 Haruyuki Nakano Kyushu University 2013 Winter Term 1. Hartree-Fock theory Density Functional Theory 2. Hohenberg-Kohn theorem 3. Kohn-Sham method 4. Exchange-correlation

More information

Electric properties of molecules

Electric properties of molecules Electric properties of molecules For a molecule in a uniform electric fielde the Hamiltonian has the form: Ĥ(E) = Ĥ + E ˆµ x where we assume that the field is directed along the x axis and ˆµ x is the

More information

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Notations

More information

Exercise 1: Structure and dipole moment of a small molecule

Exercise 1: Structure and dipole moment of a small molecule Introduction to computational chemistry Exercise 1: Structure and dipole moment of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the dipole moment of a small

More information

Chapter 9 Long range perturbation theory

Chapter 9 Long range perturbation theory Chapter 9 Long range perturbation theory 9.1 Induction energy Substitution of the expanded interaction operator leads at the first order to the multipole expression of the electrostatic interaction energy.

More information

Calculations of band structures

Calculations of band structures Chemistry and Physics at Albany Planning for the Future Calculations of band structures using wave-function based correlation methods Elke Pahl Centre of Theoretical Chemistry and Physics Institute of

More information

Introduction to Computational Chemistry: Theory

Introduction to Computational Chemistry: Theory Introduction to Computational Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC andrew.gilbert@anu.edu.au 3023 Course Lectures Introduction Hartree Fock Theory Basis Sets Lecture 1 1 Introduction

More information

A new generation of density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem

A new generation of density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem A new generation of density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem Andreas Görling, Patrick Bleiziffer, Daniel Schmidtel, and Andreas Heßelmann Lehrstuhl für

More information

When (2 + 2) 4? Alexandre Tkatchenko Fritz Haber Institut der Max Planck Gesellschaft, Berlin, Germany

When (2 + 2) 4? Alexandre Tkatchenko Fritz Haber Institut der Max Planck Gesellschaft, Berlin, Germany When (2 + 2) 4? Alexandre Tkatchenko Fritz Haber Institut der Max Planck Gesellschaft, Berlin, Germany QMC@TTI, Apuan Alps, Jul 29, 2013 When (2 + 2) 4 or Van der Waals Interactions in Complex (and Simple)

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoría del Funcional de la Densidad (Density Functional Theory) Motivation: limitations of the standard approach based on the wave function. The electronic density n(r) as the key variable: Functionals

More information

Basis sets for electron correlation

Basis sets for electron correlation Basis sets for electron correlation Trygve Helgaker Centre for Theoretical and Computational Chemistry Department of Chemistry, University of Oslo, Norway The 12th Sostrup Summer School Quantum Chemistry

More information

2 Electronic structure theory

2 Electronic structure theory Electronic structure theory. Generalities.. Born-Oppenheimer approximation revisited In Sec..3 (lecture 3) the Born-Oppenheimer approximation was introduced (see also, for instance, [Tannor.]). We are

More information

Electron States of Diatomic Molecules

Electron States of Diatomic Molecules IISER Pune March 2018 Hamiltonian for a Diatomic Molecule The hamiltonian for a diatomic molecule can be considered to be made up of three terms Ĥ = ˆT N + ˆT el + ˆV where ˆT N is the kinetic energy operator

More information

Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state

Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state TCM Electronic Structure Discussion Group James Shepherd (CUC3, Alavi Group)

More information

Coupled-Cluster Perturbative Triples for Bond Breaking

Coupled-Cluster Perturbative Triples for Bond Breaking Coupled-Cluster Perturbative Triples for Bond Breaking Andrew G. Taube and Rodney J. Bartlett Quantum Theory Project University of Florida INT CC Meeting Seattle July 8, 2008 Why does chemistry need triples?

More information

Adiabatic connections in DFT

Adiabatic connections in DFT Adiabatic connections in DFT Andreas Savin Torino, LCC2004, September 9, 2004 Multi reference DFT Kohn Sham: single reference Variable reference space capability to approach the exact result Overview The

More information

Faddeev Random Phase Approximation (FRPA) Application to Molecules

Faddeev Random Phase Approximation (FRPA) Application to Molecules Faddeev Random Phase Approximation (FRPA) Application to Molecules Matthias Degroote Center for Molecular Modeling (CMM) Ghent University INT 2011 Spring Program Fermions from Cold Atoms to Neutron Stars:

More information

Born-Oppenheimer Approximation

Born-Oppenheimer Approximation Born-Oppenheimer Approximation Adiabatic Assumption: Nuclei move so much more slowly than electron that the electrons that the electrons are assumed to be obtained if the nuclear kinetic energy is ignored,

More information

Lec20 Fri 3mar17

Lec20 Fri 3mar17 564-17 Lec20 Fri 3mar17 [PDF]GAUSSIAN 09W TUTORIAL www.molcalx.com.cn/wp-content/uploads/2015/01/gaussian09w_tutorial.pdf by A Tomberg - Cited by 8 - Related articles GAUSSIAN 09W TUTORIAL. AN INTRODUCTION

More information

Chapter 2 Quantum chemistry using auxiliary field Monte Carlo

Chapter 2 Quantum chemistry using auxiliary field Monte Carlo Chapter 2 Quantum chemistry using auxiliary field Monte Carlo 1. The Hubbard-Stratonovich Transformation 2. Neuhauser s shifted contour 3. Calculation of forces and PESs 4. Multireference AFMC 5. Examples

More information

Building a wavefunction within the Complete-Active. Cluster with Singles and Doubles formalism: straightforward description of quasidegeneracy

Building a wavefunction within the Complete-Active. Cluster with Singles and Doubles formalism: straightforward description of quasidegeneracy Building a wavefunction within the Complete-Active Active-Space Coupled-Cluster Cluster with Singles and Doubles formalism: straightforward description of quasidegeneracy Dmitry I. Lyakh (Karazin Kharkiv

More information

arxiv: v2 [physics.chem-ph] 11 Mar 2011

arxiv: v2 [physics.chem-ph] 11 Mar 2011 Quantum Monte Carlo with Jastrow-Valence-Bond wave functions Benoît Braïda 1, Julien Toulouse 1, Michel Caffarel 2, and C. J. Umrigar 3 1 Laboratoire de Chimie Théorique, Université Pierre et Marie Curie

More information

Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation

Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation Patrick Bleiziffer, Andreas Heßelmann, and Andreas Görling Citation: J. Chem. Phys.

More information

Computational Chemistry I

Computational Chemistry I Computational Chemistry I Text book Cramer: Essentials of Quantum Chemistry, Wiley (2 ed.) Chapter 3. Post Hartree-Fock methods (Cramer: chapter 7) There are many ways to improve the HF method. Most of

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz November 29, 2010 The self interaction error and its correction Perdew-Zunger SIC Average-density approximation Weighted density approximation

More information

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Multi-reference Density Functional Theory COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Capt Eric V. Beck Air Force Institute of Technology Department of Engineering Physics 2950 Hobson

More information

Density matrix functional theory vis-á-vis density functional theory

Density matrix functional theory vis-á-vis density functional theory Density matrix functional theory vis-á-vis density functional theory 16.4.007 Ryan Requist Oleg Pankratov 1 Introduction Recently, there has been renewed interest in density matrix functional theory (DMFT)

More information

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms K. JANKOWSKI a, R. SŁUPSKI a, and J. R. FLORES b a Nicholas Copernicus University 87-100 Toruń,

More information

Time-Dependent Density-Functional Theory

Time-Dependent Density-Functional Theory Summer School on First Principles Calculations for Condensed Matter and Nanoscience August 21 September 3, 2005 Santa Barbara, California Time-Dependent Density-Functional Theory X. Gonze, Université Catholique

More information

Module 6 1. Density functional theory

Module 6 1. Density functional theory Module 6 1. Density functional theory Updated May 12, 2016 B A DDFT C K A bird s-eye view of density-functional theory Authors: Klaus Capelle G http://arxiv.org/abs/cond-mat/0211443 R https://trac.cc.jyu.fi/projects/toolbox/wiki/dft

More information

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems Formally simple -- a framework for going beyond DFT? Random walks in non-orthogonal Slater determinant

More information

Orbital dependent correlation potentials in ab initio density functional theory

Orbital dependent correlation potentials in ab initio density functional theory Orbital dependent correlation potentials in ab initio density functional theory noniterative - one step - calculations Ireneusz Grabowski Institute of Physics Nicolaus Copernicus University Toruń, Poland

More information

Intermediate DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA

Intermediate DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA Intermediate DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA October 10-19th, 2012 Kieron (UC Irvine) Intermediate DFT Lausanne12

More information

Electron Correlation - Methods beyond Hartree-Fock

Electron Correlation - Methods beyond Hartree-Fock Electron Correlation - Methods beyond Hartree-Fock how to approach chemical accuracy Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mülheim September 4, 2014 MMER Summerschool 2014

More information

XYZ of ground-state DFT

XYZ of ground-state DFT XYZ of ground-state DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA January 5-9th, 2014 Kieron (UC Irvine) XYZ of ground-state

More information

Electronic Structure Calculations and Density Functional Theory

Electronic Structure Calculations and Density Functional Theory Electronic Structure Calculations and Density Functional Theory Rodolphe Vuilleumier Pôle de chimie théorique Département de chimie de l ENS CNRS Ecole normale supérieure UPMC Formation ModPhyChem Lyon,

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

Many electrons: Density functional theory Part II. Bedřich Velický VI.

Many electrons: Density functional theory Part II. Bedřich Velický VI. Many electrons: Density functional theory Part II. Bedřich Velický velicky@karlov.mff.cuni.cz VI. NEVF 514 Surface Physics Winter Term 013-014 Troja 1 st November 013 This class is the second devoted to

More information

Introduction to DFTB. Marcus Elstner. July 28, 2006

Introduction to DFTB. Marcus Elstner. July 28, 2006 Introduction to DFTB Marcus Elstner July 28, 2006 I. Non-selfconsistent solution of the KS equations DFT can treat up to 100 atoms in routine applications, sometimes even more and about several ps in MD

More information

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the electronic energy

More information

Exchange Mechanisms. Erik Koch Institute for Advanced Simulation, Forschungszentrum Jülich. lecture notes:

Exchange Mechanisms. Erik Koch Institute for Advanced Simulation, Forschungszentrum Jülich. lecture notes: Exchange Mechanisms Erik Koch Institute for Advanced Simulation, Forschungszentrum Jülich lecture notes: www.cond-mat.de/events/correl Magnetism is Quantum Mechanical QUANTUM MECHANICS THE KEY TO UNDERSTANDING

More information

Lecture 4: methods and terminology, part II

Lecture 4: methods and terminology, part II So theory guys have got it made in rooms free of pollution. Instead of problems with the reflux, they have only solutions... In other words, experimentalists will likely die of cancer From working hard,

More information

H 2 in the minimal basis

H 2 in the minimal basis H 2 in the minimal basis Alston J. Misquitta Centre for Condensed Matter and Materials Physics Queen Mary, University of London January 27, 2016 Overview H 2 : The 1-electron basis. The two-electron basis

More information

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University AN INTRODUCTION TO QUANTUM CHEMISTRY Mark S. Gordon Iowa State University 1 OUTLINE Theoretical Background in Quantum Chemistry Overview of GAMESS Program Applications 2 QUANTUM CHEMISTRY In principle,

More information

High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules

High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules Markus Schneider Fritz Haber Institute of the MPS, Berlin, Germany École Polytechnique Fédérale de Lausanne, Switzerland دانشگاه

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

3: Many electrons. Orbital symmetries. l =2 1. m l

3: Many electrons. Orbital symmetries. l =2 1. m l 3: Many electrons Orbital symmetries Atomic orbitals are labelled according to the principal quantum number, n, and the orbital angular momentum quantum number, l. Electrons in a diatomic molecule experience

More information

DFT calculations of NMR indirect spin spin coupling constants

DFT calculations of NMR indirect spin spin coupling constants DFT calculations of NMR indirect spin spin coupling constants Dalton program system Program capabilities Density functional theory Kohn Sham theory LDA, GGA and hybrid theories Indirect NMR spin spin coupling

More information

The Accurate Calculation of Molecular Energies and Properties: A Tour of High-Accuracy Quantum-Chemical Methods

The Accurate Calculation of Molecular Energies and Properties: A Tour of High-Accuracy Quantum-Chemical Methods 1 The Accurate Calculation of Molecular Energies and Properties: A Tour of High-Accuracy Quantum-Chemical Methods T. Helgaker Centre for Theoretical and Computational Chemistry Department of Chemistry,

More information