Basis sets for electron correlation

Size: px
Start display at page:

Download "Basis sets for electron correlation"

Transcription

1 Basis sets for electron correlation Trygve Helgaker Centre for Theoretical and Computational Chemistry Department of Chemistry, University of Oslo, Norway The 12th Sostrup Summer School Quantum Chemistry and Molecular Properties July Trygve Helgaker (CTCC, University of Oslo) Basis setes for electron correlation 12th Sostrup Summer School (2012) 1 / 24

2 Introduction Requirements for correlated and uncorrelated wave-function models are different uncorrelated models require an accurate representation of the one-electron density correlated models require also an accurate representation of the two-electron density We have discussed basis functions and basis sets for uncorrelated methods we are now going to consider basis set for electron correlation Overview 1 the Coulomb hole and Coulomb cusp 2 basis-set convergence of the correlation energy conventional CI explicitly correlated R12-CI the Hylleraas function 3 partial-wave and principal expansions 4 atomic natural orbitals 5 correlation-consistent basis sets 6 basis-set extrapolation Trygve Helgaker (CTCC, University of Oslo) Overview 12th Sostrup Summer School (2012) 2 / 24

3 The local kinetic energy Consider the local energy of the helium atom E loc = (HΨ)/Ψ constant for the exact wave function The electronic Hamiltonian has singularities at points of coalescence H = r 1 2 r r 12 infinite potential terms canceled by infinite kinetic terms at coalescence 300 Local kinetic energy in the helium atom positive around the nucleus negative around the second electron 200 Negative kinetic energy counterintuitive classical forbidden region 0 internal tunneling w. f. decays towards the singularity 100 the Coulomb hole Trygve Helgaker (CTCC, University of Oslo) The Coulomb cusp and Coulomb hole 12th Sostrup Summer School (2012) 3 / 24

4 The Coulomb hole Each electron is surrounded by a classically forbidden region: the Coulomb hole without a good description of this region, our results will be inaccurate The helium wave function with one electron fixed at a separation of 0.5a 0 from the nucleus total wave function with the corresponding Hartree Fock wave function subtracted Trygve Helgaker (CTCC, University of Oslo) The Coulomb cusp and Coulomb hole 12th Sostrup Summer School (2012) 4 / 24

5 Cusp conditions Consider the helium Hamiltonian expressed in terms of r 1, r 2, and r 12 : ( ) H = r Z ( 2 i=1 i r i r i r i r ) + r 12 r 12 r 12 The nuclear cusp condition at r i = 0: ( 2 + 2Z ) Ψ r i r i r i ri =0 = 0 Ψ r i = ZΨ (r i = 0) ri =0 easy to satisfy by the use of STOs The Coulomb cusp condition at r 12 = 0: ( 2 1 ) Ψ r 12 r 12 r = 0 Ψ 12 r12 =0 r = 1 12 r12 =0 2 Ψ (r 12 = 0) we shall see that this cannot be satisfied by orbital-based wave functions Trygve Helgaker (CTCC, University of Oslo) The Coulomb cusp and Coulomb hole 12th Sostrup Summer School (2012) 5 / 24

6 Convergence of the helium ground-state energy The short-range interactions are difficult to describe we must model the hole accurately for chemical accuracy in our calculations We shall compare the convergence of the following expansions for the helium ground-state 1 conventional CI single-zeta STOs numerical orbitals 2 CI with a correlating function CI-R12 3 the Hylleraas function Trygve Helgaker (CTCC, University of Oslo) Convergence of the helium ground-state energy 12th Sostrup Summer School (2012) 6 / 24

7 Configuration-interaction wave function for helium Our one-electron basis functions are STOs: χ nlm (r, θ, ϕ) = r n 1 exp ( ζr) Y lm (θ, ϕ) 2l + 1 (l m)! Y lm (θ, ϕ) = 4π (l + m)! Pm l (cos θ) eimϕ the associated Legendre polynomials Pl m (x) are orthogonal on [ 1, 1] The helium ground-state FCI wave function constructed from such STOs becomes: Ψ FCI (r 1, r 2 ) = exp [ ζ (r 1 + r 2 )] Pl 0 (cos θ 12) ( ) r n r n r n r n l n 1 n 2 we have here used the addition theorem Pl 0 (cos θ 12) = 4π l ( 1) m Y l,m (θ 1, ϕ 1 )Y l, m (θ 2, ϕ 2 ) 2l + 1 l Note: the CI expansion uses only three coordinates: r 1, r 2, cos θ 12 the interelectronic distance r 12 does not enter directly Trygve Helgaker (CTCC, University of Oslo) Convergence of the helium ground-state energy 12th Sostrup Summer School (2012) 7 / 24

8 The principal expansion Include in the FCI wave function all STOs up to a given principal quantum number: N = 1 : Ψ 1 = 1s 2 N = 2 : Ψ 2 = c 1 1s 2 + c 2 1s2s + c 3 2s 2 + c 4 2p 2 The principal expansion converges very slowly it is difficult to obtain an error smaller than 0.1 me h singleζ CI numerical CI The use of fully numerical orbitals reduces the error by a few factors it does not improve on the intrinsically slow FCI convergence Trygve Helgaker (CTCC, University of Oslo) Convergence of the helium ground-state energy 12th Sostrup Summer School (2012) 8 / 24

9 Correlating functions By introducing cos θ 12 = r 12 2 r 1 2 r 2 2 2r 1 r 2 obtained from r 12 r 12, we may write the FCI wave function in the form Ψ FCI (r 1, r 2, r 12 ) = exp [ ζ (r 1 + r 2 )] ( ) c ijk r i ijk 1 r j 2 + r 2 i r j 1 r12 2k Since only even powers of r 12 are included, the cusp condition can never be satisfied Ψ CI r = 0 12 r12 =0 However, if we include a term linear in r 12 Ψ CI r 12 = ( r 12 ) Ψ CI then the cusp condition is satisfied exactly Ψ CI r 12 = 1 r 12 2 ΨCI (r 12 = 0) = 1 2 ΨCI r 12 (r 12 = 0) r12 =0 We may always satisfy the cusp condition by multiplication with a correlating function: γ = r ij i>j Trygve Helgaker (CTCC, University of Oslo) Convergence of the helium ground-state energy 12th Sostrup Summer School (2012) 9 / 24

10 Explicitly correlated methods Methods that employ correlating functions or otherwise make explicit use of the interelectronic distances r ij are known as explicitly correlated methods the R12 method includes r ij linearly the F12 method includes a more general (exponential) dependence on r ij The R12 principal expansion Ψ R12 N = ΨCI N + c 12r 12 Ψ CI 1 converges easily to within 0.1 me h (chemical accuracy) singleζ CI numerical CI 10 6 singleζ CIR12 Still, it appears difficult to converge to within 1 µe h (spectroscopic accuracy) Trygve Helgaker (CTCC, University of Oslo) Convergence of the helium ground-state energy 12th Sostrup Summer School (2012) 10 / 24

11 The Hylleraas function Finally, we include in the wave function all powers of r 12 Ψ H (r 1, r 2, r 12 ) = exp [ ζ (r 1 + r 2 )] c ijk (r 1 i r j 2 + r 2 i r j 1 r12 k ijk This wave function is usually expressed in terms of the Hylleraas coordinates s = r 1 + r 2, t = r 1 r 2, u = r 12 Only even powers in t are needed for the singlet ground state: ) Ψ H (r 1, r 2, r 12 ) = exp ( ζs) ijk c ijk s i t 2j u k The Hylleraas function converges easily to within 0.1 µe h singleζ CI numerical CI singleζ CIR12 Hylleraas The Hylleraas method cannot easily be generalized to many-electron systems Trygve Helgaker (CTCC, University of Oslo) Convergence of the helium ground-state energy 12th Sostrup Summer School (2012) 11 / 24

12 Convergence rates We have seen the reason for the slow convergence of FCI wave functions DZ TZ QZ 5Z Let us now examine the rate of convergence for the helium atom using the 1 partial-wave expansion 2 principal expansion 4f 3d 4d 2p 3p 4p 1s 2s 3s 4s 4f 5f 6f 3d 4d 5d 6d 2p 3p 4p 5p 6p 1s 2s 3s 4s 5s 6s Trygve Helgaker (CTCC, University of Oslo) The partial-wave and principal expansions 12th Sostrup Summer School (2012) 12 / 24

13 The partial-wave expansion of helium Consider the expansion of the helium FCI wave function in partial waves: L Ψ CI L = ψ l l=0 this expansion has been studied in great detail theoretically Each partial wave is an infinite expansion in determinants it contains all possible combinations of orbitals of angular momentum l, for example 1s 2, 1s2s, 2s 2, 1s3s, 2s3s, 3s 2,... The contribution from each partial wave converges asymptotically as E L = E L E L 1 = ( L + 1 ) 4 ( ) L Convergence is slow but systematic Trygve Helgaker (CTCC, University of Oslo) The partial-wave and principal expansions 12th Sostrup Summer School (2012) 13 / 24

14 The principal expansion of helium The partial-wave expansion is difficult to realize in practice The alternative principal expansion contains a finite number of terms at each level Ψ 1 : 1s 2 Ψ 2 : 1s 2, 1s2s, 2s 2, 2p 2 The principal expansion is higher in energy at each truncation level (E h ): L E L N E N However, the asymptotic convergence rate of the energy corrections is the same E N = E N E N 1 = c 4 ( N 1 2 ) 4 + Trygve Helgaker (CTCC, University of Oslo) The partial-wave and principal expansions 12th Sostrup Summer School (2012) 14 / 24

15 Energy contributions and errors The contribution to the correlation energy from each AO in large helium CI calculations is E nlm = an 6 E nlm = π4 90 a = 1.08a nlm The contribution from each partial wave is therefore: E l = a (2l + 1) n 6 a (2l + 1) n 6 dn n=l+1 l+1/2 = 1 5 a(2l + 1) ( l + 1 ) 5 2 = 2 5 a ( l + 1 ) 4 2 The asymptotic truncation error of the partial-wave expansion with l L is therefore E L = E L E = 2 5 a ( ) l a ( ) l dl = 2 a (L + 1) 3 15 l=l+1 L+1/2 The contribution from each shell in the principal expansion is: E n = an 2 n 6 = an 4 The asymptotic truncation error of the principal expansion with n N is therefore E N = E N E = a n 4 a n 4 dn = 1 3 a(n ) 3 n=n+1 N+1/2 The two series converge slowly but smoothly and may therefore be extrapolated Trygve Helgaker (CTCC, University of Oslo) The partial-wave and principal expansions 12th Sostrup Summer School (2012) 15 / 24

16 Some observations The number of AOs at truncation level N in the principal expansion is given by N N ao = n 2 = 1 N(N + 1)(N + 2) N3 6 i=1 It follows that the error is inversely proportional to the number of AOs: E N N 3 N 1 ao The dependence of the error in the correlation energy on the CPU time is thus: E N T 1/4 Each new digit in the energy therefore costs times more CPU time! The convergence is exceedingly slow! 1 minute 1 week 200 years A brute-force basis-set extension until convergence may not always be possible. Fortunately, the convergence is very smooth, allowing for extrapolation. Trygve Helgaker (CTCC, University of Oslo) The partial-wave and principal expansions 12th Sostrup Summer School (2012) 16 / 24

17 Basis sets for correlated calculations We must provide correlating orbitals for the virtual space The requirements are more severe than for uncorrelated calculations Expect slow but systematic convergence for the description of short-range interactions Overview 1 valence and core-valence correlation 2 atomic natural orbitals (ANOs) 3 correlation-consistent basis sets 4 basis-set extrapolation Trygve Helgaker (CTCC, University of Oslo) Basis sets for correlated calculations 12th Sostrup Summer School (2012) 17 / 24

18 Valence and core correlation The core electrons are least affected by chemical processes For many purposes, it is sufficient to correlate the valence electrons Example: the dissociation of BH to the left, total electronic energies to the right, core and valence correlation energies Ecore corr = E all corr Eval corr 25.0 HF core FCI fc valence 25.2 FCI all The valence correlation energy can be recovered with smaller basis sets Trygve Helgaker (CTCC, University of Oslo) Basis sets for correlated calculations 12th Sostrup Summer School (2012) 18 / 24

19 Atomic natural orbitals (ANOs) ANOs are obtained by diagonalizing the one-electron CISD atomic density matrix We obtain a large primitive basis that is generally contracted The ANOs constitute a hierarchical basis of the same structure as the principal expansion 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g The occupation numbers provide a natural criterion for selecting basis functions: s p d f g η 1l η 2l η 3l η 4l η 5l Trygve Helgaker (CTCC, University of Oslo) Basis sets for correlated calculations 12th Sostrup Summer School (2012) 19 / 24

20 Correlation-consistent basis sets The correlation-consistent basis sets constitute a realization of the principal expansion: 1 begin with a generally contracted set of atomic Hartree Fock orbitals 2 add primitive energy-optimized correlating orbitals, one shell at a time The resulting correlation-consistent basis sets forms a hierarchical system: cc-pvx Z, X is the cardinal number SZ cc-pvdz cc-pvtz cc-pvqz number of AOs +3s3p3d +4s4p4d4f +5s5p5d5f5g X 2 2s1p 3s2p1d 4s3p2d1f 5s4p3d2f1g X 3 The number of basis functions is given by N X = 1 (X + 1)(X + 3/2)(X + 2) 3 The proportion of the correlation energy recovered increases slowly: Extensions: X % aug-cc-pvx Z, cc-pcvx Z, aug-cc-pcvx Z Trygve Helgaker (CTCC, University of Oslo) Basis sets for correlated calculations 12th Sostrup Summer School (2012) 20 / 24

21 cc-pvx Z basis sets cc-pvdz: 3s2p1d 2 s 2 p 2 d cc-pvtz: 4s3p2d1f s p d 2 1 f cc-pvqz: 5s4p3d2f1g s p d 2 f 2 g 1 1 Trygve Helgaker (CTCC, University of Oslo) Basis sets for correlated calculations 12th Sostrup Summer School (2012) 21 / 24

22 Correlation-consistent basis sets Percentage of correlation energy recovered with standard and numerical orbitals: X cc-pvdz numerical The Coulomb hole calculated with standard cc-pvx Z and numerical orbitals: Π 0.19 Π 0.19 Trygve Helgaker (CTCC, University of Oslo) Basis sets for correlated calculations 12th Sostrup Summer School (2012) 22 / 24

23 Basis-set convergence of correlation energy electrons basis set Ne MP2 Ne CCSD N 2 MP2 N 2 CCSD H 2O MP2 H 2O CCSD valence 6-31G G G cc-pvdz cc-pvtz cc-pvqz cc-pv5z cc-pv6z extrapolated R12 320(1) 316(1) 421(2) 408(2) 300(1) 298(1) all cc-pcvdz cc-pcvtz cc-pcvqz cc-pcv5z cc-pcv6z extrapolated R12 388(1) 384(1) 537(2) 526(2) 361(1) 361(2) Some observations: the 6-31G and G-31G** are much too small the correlation-consistent basis sets provide a smooth convergence as expected, convergence is slow, chemical accuracy is not reached even for cc-pv6z extrapolation is possible Trygve Helgaker (CTCC, University of Oslo) Basis sets for correlated calculations 12th Sostrup Summer School (2012) 23 / 24

24 Extrapolations Correlation-consistent basis sets are realizations of the principal expansion The error in the energy is equal to the contributions from all omitted shells: E X n=x +1 n 4 X 3 From two separate calculations with basis sets E X and E Y E =E X + AX 3 E =E Y + AY 3 we eliminate A to obtain the following two-point extrapolation formula: E = X 3 E X Y 3 E Y X 3 Y 3 Mean absolute error in the electronic energy of CH 2, H 2 O, HF, N 2, CO, Ne, and F 2 : me h DZ TZ QZ 5Z 6Z R12 plain extr For the error in the AE of CO relative to R12, we now obtain: kj/mol DZ TZ QZ 5Z 6Z plain extr Chemical accuracy is now achieved with just 168 AOs (QZ), at a fraction of the cost Trygve Helgaker (CTCC, University of Oslo) Basis-set extrapolation 12th Sostrup Summer School (2012) 24 / 24

Highly accurate quantum-chemical calculations

Highly accurate quantum-chemical calculations 1 Highly accurate quantum-chemical calculations T. Helgaker Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, Norway A. C. Hennum and T. Ruden, University

More information

The Accurate Calculation of Molecular Energies and Properties: A Tour of High-Accuracy Quantum-Chemical Methods

The Accurate Calculation of Molecular Energies and Properties: A Tour of High-Accuracy Quantum-Chemical Methods 1 The Accurate Calculation of Molecular Energies and Properties: A Tour of High-Accuracy Quantum-Chemical Methods T. Helgaker Centre for Theoretical and Computational Chemistry Department of Chemistry,

More information

T. Helgaker, Department of Chemistry, University of Oslo, Norway. T. Ruden, University of Oslo, Norway. W. Klopper, University of Karlsruhe, Germany

T. Helgaker, Department of Chemistry, University of Oslo, Norway. T. Ruden, University of Oslo, Norway. W. Klopper, University of Karlsruhe, Germany 1 The a priori calculation of molecular properties to chemical accuarcy T. Helgaker, Department of Chemistry, University of Oslo, Norway T. Ruden, University of Oslo, Norway W. Klopper, University of Karlsruhe,

More information

Convergence properties of the coupled-cluster method: the accurate calculation of molecular properties for light systems

Convergence properties of the coupled-cluster method: the accurate calculation of molecular properties for light systems 1 Convergence properties of the coupled-cluster method: the accurate calculation of molecular properties for light systems T. Helgaker Centre for Theoretical and Computational Chemistry, Department of

More information

The Rigorous Calculation of Molecular Properties to Chemical Accuracy. T. Helgaker, Department of Chemistry, University of Oslo, Norway

The Rigorous Calculation of Molecular Properties to Chemical Accuracy. T. Helgaker, Department of Chemistry, University of Oslo, Norway 1 The Rigorous Calculation of Molecular Properties to Chemical Accuracy T. Helgaker, Department of Chemistry, University of Oslo, Norway A. C. Hennum and T. Ruden, University of Oslo, Norway S. Coriani,

More information

Quantum Chemistry Methods

Quantum Chemistry Methods 1 Quantum Chemistry Methods T. Helgaker, Department of Chemistry, University of Oslo, Norway The electronic Schrödinger equation Hartree Fock theory self-consistent field theory basis functions and basis

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

Time-independent molecular properties

Time-independent molecular properties Time-independent molecular properties Trygve Helgaker Hylleraas Centre, Department of Chemistry, University of Oslo, Norway and Centre for Advanced Study at the Norwegian Academy of Science and Letters,

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry Chemicum 4th floor vesa.hanninen@helsinki.fi September 10, 2013 Lecture 3. Electron correlation methods September

More information

Lec20 Wed 1mar17 update 3mar 10am

Lec20 Wed 1mar17 update 3mar 10am 564-17 Lec20 Wed 1mar17 update 3mar 10am Figure 15.2 Shows that increasing the diversity of the basis set lowers The HF-SCF energy considerably, but comes nowhere near the exact experimental energy, regardless

More information

Molecular Magnetic Properties

Molecular Magnetic Properties Molecular Magnetic Properties Trygve Helgaker Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Norway Raman Centre for Atomic, Molecular and Optical

More information

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms K. JANKOWSKI a, R. SŁUPSKI a, and J. R. FLORES b a Nicholas Copernicus University 87-100 Toruń,

More information

Molecular Magnetic Properties

Molecular Magnetic Properties Molecular Magnetic Properties Trygve Helgaker Centre for Theoretical and Computational Chemistry Department of Chemistry, University of Oslo, Norway The 12th Sostrup Summer School Quantum Chemistry and

More information

Molecules in strong magnetic fields

Molecules in strong magnetic fields Molecules in strong magnetic fields Trygve Helgaker, Kai Lange, Alessandro Soncini, and Erik Tellgren Centre for Theoretical and Computational Chemistry Department of Chemistry, University of Oslo, Norway

More information

Accurate multireference configuration interaction calculations on the lowest 1 and 3 electronic states of C 2,CN, BN, and BO

Accurate multireference configuration interaction calculations on the lowest 1 and 3 electronic states of C 2,CN, BN, and BO Accurate multireference configuration interaction calculations on the lowest 1 and 3 electronic states of C 2,CN, BN, and BO Kirk A. Peterson a) Department of Chemistry, Washington State University and

More information

Molecules in Magnetic Fields

Molecules in Magnetic Fields Molecules in Magnetic Fields Trygve Helgaker Hylleraas Centre, Department of Chemistry, University of Oslo, Norway and Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo, Norway

More information

Highly Accurate Ab Initio Computation of Thermochemical Data

Highly Accurate Ab Initio Computation of Thermochemical Data Chapter 1 Highly Accurate Ab Initio Computation of Thermochemical Data Trygve Helgaker Department of Chemistry, University of Oslo, P. O. Box 1033 Blindern, N-0315 Oslo, Norway Wim Klopper and Asger Halkier

More information

The adiabatic connection

The adiabatic connection The adiabatic connection Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Norway Dipartimento di Scienze

More information

Electron Correlation

Electron Correlation Electron Correlation Levels of QM Theory HΨ=EΨ Born-Oppenheimer approximation Nuclear equation: H n Ψ n =E n Ψ n Electronic equation: H e Ψ e =E e Ψ e Single determinant SCF Semi-empirical methods Correlation

More information

Molecular electronic structure in strong magnetic fields

Molecular electronic structure in strong magnetic fields Trygve Helgaker 1, Mark Hoffmann 1,2 Kai Molecules Lange in strong 1, Alessandro magnetic fields Soncini 1,3, andcctcc Erik Jackson Tellgren 211 1 (CTCC, 1 / 23 Uni Molecular electronic structure in strong

More information

Molecular Magnetism. Magnetic Resonance Parameters. Trygve Helgaker

Molecular Magnetism. Magnetic Resonance Parameters. Trygve Helgaker Molecular Magnetism Magnetic Resonance Parameters Trygve Helgaker Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Norway Laboratoire de Chimie Théorique,

More information

Molecular Magnetic Properties

Molecular Magnetic Properties Molecular Magnetic Properties Trygve Helgaker Hylleraas Centre, Department of Chemistry, University of Oslo, Norway and Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo,

More information

Basis Set for Molecular Orbital Theory

Basis Set for Molecular Orbital Theory Basis Set for Molecular Orbital Theory! Different Types of Basis Functions! Different Types of Atom Center Basis Functions! Classifications of Gaussian Basis Sets! Pseudopotentials! Molecular Properties

More information

Lec20 Fri 3mar17

Lec20 Fri 3mar17 564-17 Lec20 Fri 3mar17 [PDF]GAUSSIAN 09W TUTORIAL www.molcalx.com.cn/wp-content/uploads/2015/01/gaussian09w_tutorial.pdf by A Tomberg - Cited by 8 - Related articles GAUSSIAN 09W TUTORIAL. AN INTRODUCTION

More information

Molecular Magnetic Properties. The 11th Sostrup Summer School. Quantum Chemistry and Molecular Properties July 4 16, 2010

Molecular Magnetic Properties. The 11th Sostrup Summer School. Quantum Chemistry and Molecular Properties July 4 16, 2010 1 Molecular Magnetic Properties The 11th Sostrup Summer School Quantum Chemistry and Molecular Properties July 4 16, 2010 Trygve Helgaker Centre for Theoretical and Computational Chemistry, Department

More information

The calculation of the universal density functional by Lieb maximization

The calculation of the universal density functional by Lieb maximization The calculation of the universal density functional by Lieb maximization Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry,

More information

Exercise 1: Structure and dipole moment of a small molecule

Exercise 1: Structure and dipole moment of a small molecule Introduction to computational chemistry Exercise 1: Structure and dipole moment of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the dipole moment of a small

More information

Diamagnetism and Paramagnetism in Atoms and Molecules

Diamagnetism and Paramagnetism in Atoms and Molecules Diamagnetism and Paramagnetism in Atoms and Molecules Trygve Helgaker Alex Borgoo, Maria Dimitrova, Jürgen Gauss, Florian Hampe, Christof Holzer, Wim Klopper, Trond Saue, Peter Schwerdtfeger, Stella Stopkowicz,

More information

Derivatives and Properties

Derivatives and Properties Derivatives and Properties Trygve Helgaker Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Norway Summer School: Modern Wavefunction Methods in Electronic

More information

Accurate quantum-chemical calculations using Gaussian-type geminal and Gaussian-type orbital basis sets: applications to atoms and diatomics

Accurate quantum-chemical calculations using Gaussian-type geminal and Gaussian-type orbital basis sets: applications to atoms and diatomics PAPER www.rsc.org/pccp Physical Chemistry Chemical Physics Accurate quantum-chemical calculations using Gaussian-type geminal and Gaussian-type orbital basis sets: applications to atoms and diatomics Pål

More information

Importing ab-initio theory into DFT: Some applications of the Lieb variation principle

Importing ab-initio theory into DFT: Some applications of the Lieb variation principle Importing ab-initio theory into DFT: Some applications of the Lieb variation principle Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department

More information

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the electronic energy

More information

Molecular Magnetism. Molecules in an External Magnetic Field. Trygve Helgaker

Molecular Magnetism. Molecules in an External Magnetic Field. Trygve Helgaker Molecular Magnetism Molecules in an External Magnetic Field Trygve Helgaker Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Norway Laboratoire de

More information

Solution of the Electronic Schrödinger Equation. Using Basis Sets to Solve the Electronic Schrödinger Equation with Electron Correlation

Solution of the Electronic Schrödinger Equation. Using Basis Sets to Solve the Electronic Schrödinger Equation with Electron Correlation Solution of the Electronic Schrödinger Equation Using Basis Sets to Solve the Electronic Schrödinger Equation with Electron Correlation Errors in HF Predictions: Binding Energies D e (kcal/mol) HF Expt

More information

Divergence in Møller Plesset theory: A simple explanation based on a two-state model

Divergence in Møller Plesset theory: A simple explanation based on a two-state model JOURNAL OF CHEMICAL PHYSICS VOLUME 112, NUMBER 22 8 JUNE 2000 Divergence in Møller Plesset theory: A simple explanation based on a two-state model Jeppe Olsen and Poul Jørgensen a) Department of Chemistry,

More information

Molecules in strong magnetic fields

Molecules in strong magnetic fields Molecules in strong magnetic fields Trygve Helgaker, Kai Lange, Alessandro Soncini, and Erik Tellgren Centre for Theoretical and Computational Chemistry Department of Chemistry, University of Oslo, Norway

More information

Accurate description of potential energy surfaces by ab initio methods : a review and application to ozone

Accurate description of potential energy surfaces by ab initio methods : a review and application to ozone Accurate description of potential energy surfaces by ab initio methods : a review and application to ozone Péter G. Szalay Laboratory of Theoretical Chemistry Institute of Chemistry Eötvös Loránd University,

More information

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r)

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) Born Oppenheimer Approximation: Ĥ el ( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) For a molecule with N electrons and M nuclei: Ĥ el What is E el (R)? s* potential surface Reaction Barrier Unstable intermediate

More information

Electron Correlation - Methods beyond Hartree-Fock

Electron Correlation - Methods beyond Hartree-Fock Electron Correlation - Methods beyond Hartree-Fock how to approach chemical accuracy Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mülheim September 4, 2014 MMER Summerschool 2014

More information

2 Electronic structure theory

2 Electronic structure theory Electronic structure theory. Generalities.. Born-Oppenheimer approximation revisited In Sec..3 (lecture 3) the Born-Oppenheimer approximation was introduced (see also, for instance, [Tannor.]). We are

More information

QUANTUM CHEMISTRY PROJECT 3: PARTS B AND C

QUANTUM CHEMISTRY PROJECT 3: PARTS B AND C Chemistry 460 Fall 2017 Dr. Jean M. Standard November 6, 2017 QUANTUM CHEMISTRY PROJECT 3: PARTS B AND C PART B: POTENTIAL CURVE, SPECTROSCOPIC CONSTANTS, AND DISSOCIATION ENERGY OF DIATOMIC HYDROGEN (20

More information

Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc Zn

Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc Zn THE JOURNAL OF CHEMICAL PHYSICS 123, 064107 2005 Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc Zn Nikolai B. Balabanov

More information

OVERVIEW OF QUANTUM CHEMISTRY METHODS

OVERVIEW OF QUANTUM CHEMISTRY METHODS OVERVIEW OF QUANTUM CHEMISTRY METHODS Outline I Generalities Correlation, basis sets Spin II Wavefunction methods Hartree-Fock Configuration interaction Coupled cluster Perturbative methods III Density

More information

Molecular Integral Evaluation

Molecular Integral Evaluation Molecular Integral Evaluation Trygve Helgaker Centre for Theoretical and Computational Chemistry Department of Chemistry, University of Oslo, Norway The 13th Sostrup Summer School Quantum Chemistry and

More information

Lecture 9. Hartree Fock Method and Koopman s Theorem

Lecture 9. Hartree Fock Method and Koopman s Theorem Lecture 9 Hartree Fock Method and Koopman s Theorem Ψ(N) is approximated as a single slater determinant Φ of N orthogonal One electron spin-orbitals. One electron orbital φ i = φ i (r) χ i (σ) χ i (σ)

More information

Lecture 5: More about one- Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory.

Lecture 5: More about one- Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory. Lecture 5: More about one- determinant wave functions Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory. Items from Lecture 4 Could the Koopmans theorem

More information

Is Band better than ADF? The core of the issue

Is Band better than ADF? The core of the issue Is Band better than ADF? The core of the issue Introduction Introduction What is Band? Introduction What is Band? Slightly different basis set for ADF/Band Introduction What is Band? Slightly different

More information

Density-functional theory in quantum chemistry. Trygve Helgaker. From Quarks to the Nuclear Many-Body Problem

Density-functional theory in quantum chemistry. Trygve Helgaker. From Quarks to the Nuclear Many-Body Problem 1 Density-functional theory in quantum chemistry Trygve Helgaker Centre for Theoretical and Computational Chemistry, University of Oslo, Norway From Quarks to the Nuclear Many-Body Problem A conference

More information

Local Approaches to the Simulation of Electron Correlation in complex systems

Local Approaches to the Simulation of Electron Correlation in complex systems Local Approaches to the Simulation of Electron Correlation in complex systems Martin Schütz Institut für Physikalische und Theoretische Chemie, Universität Regensburg Universitätsstraße 31, D-93040 Regensburg

More information

Chemical bonding in strong magnetic fields

Chemical bonding in strong magnetic fields Trygve Helgaker 1, Mark Hoffmann 1,2 Chemical Kai Lange bonding in 1, strong Alessandro magnetic fields Soncini 1,3, CMS212, and Erik JuneTellgren 24 27 212 1 (CTCC, 1 / 32 Uni Chemical bonding in strong

More information

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components. Chem 44 Review for Exam Hydrogenic atoms: The Coulomb energy between two point charges Ze and e: V r Ze r Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative

More information

Chemistry 334 Part 2: Computational Quantum Chemistry

Chemistry 334 Part 2: Computational Quantum Chemistry Chemistry 334 Part 2: Computational Quantum Chemistry 1. Definition Louis Scudiero, Ben Shepler and Kirk Peterson Washington State University January 2006 Computational chemistry is an area of theoretical

More information

Computational Chemistry I

Computational Chemistry I Computational Chemistry I Text book Cramer: Essentials of Quantum Chemistry, Wiley (2 ed.) Chapter 3. Post Hartree-Fock methods (Cramer: chapter 7) There are many ways to improve the HF method. Most of

More information

QUANTUM CHEMISTRY PROJECT 3: ATOMIC AND MOLECULAR STRUCTURE

QUANTUM CHEMISTRY PROJECT 3: ATOMIC AND MOLECULAR STRUCTURE Chemistry 460 Fall 2017 Dr. Jean M. Standard November 1, 2017 QUANTUM CHEMISTRY PROJECT 3: ATOMIC AND MOLECULAR STRUCTURE OUTLINE In this project, you will carry out quantum mechanical calculations of

More information

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University AN INTRODUCTION TO QUANTUM CHEMISTRY Mark S. Gordon Iowa State University 1 OUTLINE Theoretical Background in Quantum Chemistry Overview of GAMESS Program Applications 2 QUANTUM CHEMISTRY In principle,

More information

Molecular Magnetic Properties

Molecular Magnetic Properties Molecular Magnetic Properties Trygve Helgaker Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Norway European Summer School in Quantum Chemistry

More information

Second-order Møller Plesset calculations on the water molecule using Gaussian-type orbital and Gaussian-type geminal theory

Second-order Møller Plesset calculations on the water molecule using Gaussian-type orbital and Gaussian-type geminal theory PAPER www.rsc.org/pccp Physical Chemistry Chemical Physics Second-order Møller Plesset calculations on the water molecule using Gaussian-type orbital and Gaussian-type geminal theory Pål Dahle, ab Trygve

More information

This is a very succinct primer intended as supplementary material for an undergraduate course in physical chemistry.

This is a very succinct primer intended as supplementary material for an undergraduate course in physical chemistry. 1 Computational Chemistry (Quantum Chemistry) Primer This is a very succinct primer intended as supplementary material for an undergraduate course in physical chemistry. TABLE OF CONTENTS Methods...1 Basis

More information

Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the lanthanides La Lu

Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the lanthanides La Lu Theor Chem Acc (2010) 127:369 381 DOI 10.1007/s00214-009-0725-7 REGULAR ARTICLE Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the lanthanides La Lu André S. P. Gomes Kenneth

More information

A One-Slide Summary of Quantum Mechanics

A One-Slide Summary of Quantum Mechanics A One-Slide Summary of Quantum Mechanics Fundamental Postulate: O! = a! What is!?! is an oracle! operator wave function (scalar) observable Where does! come from?! is refined Variational Process H! = E!

More information

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National

More information

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2 Purdue University CHM 67300 Computational Quantum Chemistry REVIEW Yingwei Wang October 10, 2013 Review: Prof Slipchenko s class, Fall 2013 Contents 1 Hartree energy 2 2 Many-body system 2 3 Born-Oppenheimer

More information

A complete basis set model chemistry for excited states

A complete basis set model chemistry for excited states A complete basis set model chemistry for excited states George A. Petersson Hall-Atwater Laboratories of Chemistry, Wesleyan University, Middletown, Connecticut 06459-0180 1 Report Documentation Page Form

More information

Molecular bonding in strong magnetic fields

Molecular bonding in strong magnetic fields Trygve Helgaker 1, Mark Hoffmann 1,2 Kai Molecules Lange in strong 1, Alessandro magnetic fields Soncini 1,3 AMAP,, andzurich, ErikJune Tellgren 1 4 212 1 (CTCC, 1 / 35 Uni Molecular bonding in strong

More information

Performance of Hartree-Fock and Correlated Methods

Performance of Hartree-Fock and Correlated Methods Chemistry 460 Fall 2017 Dr. Jean M. Standard December 4, 2017 Performance of Hartree-Fock and Correlated Methods Hartree-Fock Methods Hartree-Fock methods generally yield optimized geomtries and molecular

More information

2m r2 (~r )+V (~r ) (~r )=E (~r )

2m r2 (~r )+V (~r ) (~r )=E (~r ) Review of the Hydrogen Atom The Schrodinger equation (for 1D, 2D, or 3D) can be expressed as: ~ 2 2m r2 (~r, t )+V (~r ) (~r, t )=i~ @ @t The Laplacian is the divergence of the gradient: r 2 =r r The time-independent

More information

Chapter 5. Atomic spectra

Chapter 5. Atomic spectra Atomic spectra Sommerfelds relativistic model Sommerfeld succeeded partially in explaining fine structure by extending Bohr Theory i) He allowed the possibility of elliptical orbits for the electrons in

More information

Lecture 9: Molecular integral. Integrals of the Hamiltonian matrix over Gaussian-type orbitals

Lecture 9: Molecular integral. Integrals of the Hamiltonian matrix over Gaussian-type orbitals Lecture 9: Molecular integral evaluation Integrals of the Hamiltonian matrix over Gaussian-type orbitals Gaussian-type orbitals The de-facto standard for electronic-structure calculations is to use Gaussian-type

More information

Molecules in strong magnetic fields

Molecules in strong magnetic fields Trygve Helgaker 1, Mark Hoffmann 1,2 Kai Molecules Lange in strong 1, Alessandro magnetic fields Soncini 1,3 Nottingham,, and Erik 3th October Tellgren 213 1 (CTCC, 1 / 27 Uni Molecules in strong magnetic

More information

Solved radial equation: Last time For two simple cases: infinite and finite spherical wells Spherical analogs of 1D wells We introduced auxiliary func

Solved radial equation: Last time For two simple cases: infinite and finite spherical wells Spherical analogs of 1D wells We introduced auxiliary func Quantum Mechanics and Atomic Physics Lecture 16: The Coulomb Potential http://www.physics.rutgers.edu/ugrad/361 h / d/361 Prof. Sean Oh Solved radial equation: Last time For two simple cases: infinite

More information

Quantum Chemical and Dynamical Tools for Solving Photochemical Problems

Quantum Chemical and Dynamical Tools for Solving Photochemical Problems 2.165430 3.413060 3.889592 9 H 3.413060 2.165430 1.099610 2.165430 3.413060 10 H 3.889592 3.413060 2.165430 1.099610 2.165430 11 H 3.413060 3.889592 3.413060 2.165430 1.099610 12 H 2.165430 3.413060 3.889592

More information

Molecular Magnetic Properties

Molecular Magnetic Properties Molecular Magnetic Properties Trygve Helgaker Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Norway European Summer School in Quantum Chemistry

More information

Computational Material Science Part II. Ito Chao ( ) Institute of Chemistry Academia Sinica

Computational Material Science Part II. Ito Chao ( ) Institute of Chemistry Academia Sinica Computational Material Science Part II Ito Chao ( ) Institute of Chemistry Academia Sinica Ab Initio Implementations of Hartree-Fock Molecular Orbital Theory Fundamental assumption of HF theory: each electron

More information

Gaussian: Basic Tutorial

Gaussian: Basic Tutorial Input file: # hf sto-g pop=full Water - Single Point Energy 0 H.0 H.0 H 04.5 Route Section Start with # Contains the keywords Gaussian: Basic Tutorial Route Section Title Section Charge-Multiplicity Molecule

More information

I. CSFs Are Used to Express the Full N-Electron Wavefunction

I. CSFs Are Used to Express the Full N-Electron Wavefunction Chapter 11 One Must be Able to Evaluate the Matrix Elements Among Properly Symmetry Adapted N- Electron Configuration Functions for Any Operator, the Electronic Hamiltonian in Particular. The Slater-Condon

More information

1.6. Quantum mechanical description of the hydrogen atom

1.6. Quantum mechanical description of the hydrogen atom 29.6. Quantum mechanical description of the hydrogen atom.6.. Hamiltonian for the hydrogen atom Atomic units To avoid dealing with very small numbers, let us introduce the so called atomic units : Quantity

More information

Introduction to Computational Chemistry: Theory

Introduction to Computational Chemistry: Theory Introduction to Computational Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC andrew.gilbert@anu.edu.au 3023 Course Lectures Introduction Hartree Fock Theory Basis Sets Lecture 1 1 Introduction

More information

H 2 in the minimal basis

H 2 in the minimal basis H 2 in the minimal basis Alston J. Misquitta Centre for Condensed Matter and Materials Physics Queen Mary, University of London January 27, 2016 Overview H 2 : The 1-electron basis. The two-electron basis

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

Origin of the first Hund rule in He-like atoms and 2-electron quantum dots

Origin of the first Hund rule in He-like atoms and 2-electron quantum dots in He-like atoms and 2-electron quantum dots T Sako 1, A Ichimura 2, J Paldus 3 and GHF Diercksen 4 1 Nihon University, College of Science and Technology, Funabashi, JAPAN 2 Institute of Space and Astronautical

More information

Computational Chemistry. Ab initio methods seek to solve the Schrödinger equation.

Computational Chemistry. Ab initio methods seek to solve the Schrödinger equation. Theory Computational Chemistry Ab initio methods seek to solve the Schrödinger equation. Molecular orbital theory expresses the solution as a linear combination of atomic orbitals. Density functional theory

More information

Accurate ab initio potential energy surface, thermochemistry, and dynamics of the Cl(2P, 2P3/2) + CH4 HCl + CH3 and H + CH3Cl reactions

Accurate ab initio potential energy surface, thermochemistry, and dynamics of the Cl(2P, 2P3/2) + CH4 HCl + CH3 and H + CH3Cl reactions Accurate ab initio potential energy surface, thermochemistry, and dynamics of the Cl(2P, 2P3/2) + CH4 HCl + CH3 and H + CH3Cl reactions Gábor Czakó and Joel M. Bowman Citation: J. Chem. Phys. 136, 044307

More information

Beyond the Hartree-Fock Approximation: Configuration Interaction

Beyond the Hartree-Fock Approximation: Configuration Interaction Beyond the Hartree-Fock Approximation: Configuration Interaction The Hartree-Fock (HF) method uses a single determinant (single electronic configuration) description of the electronic wavefunction. For

More information

Coupled-Cluster Perturbative Triples for Bond Breaking

Coupled-Cluster Perturbative Triples for Bond Breaking Coupled-Cluster Perturbative Triples for Bond Breaking Andrew G. Taube and Rodney J. Bartlett Quantum Theory Project University of Florida INT CC Meeting Seattle July 8, 2008 Why does chemistry need triples?

More information

Theoretical Prediction of Nuclear Magnetic Shielding Constants of Acetonitrile

Theoretical Prediction of Nuclear Magnetic Shielding Constants of Acetonitrile Theoretical Prediction of Nuclear Magnetic Shielding Constants of Acetonitrile Ahmad Y. Adam Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment

More information

Introduction to Electronic Structure Theory

Introduction to Electronic Structure Theory CSC/PRACE Spring School in Computational Chemistry 2017 Introduction to Electronic Structure Theory Mikael Johansson http://www.iki.fi/~mpjohans Objective: To get familiarised with the, subjectively chosen,

More information

Physics 2203, 2011: Equation sheet for second midterm. General properties of Schrödinger s Equation: Quantum Mechanics. Ψ + UΨ = i t.

Physics 2203, 2011: Equation sheet for second midterm. General properties of Schrödinger s Equation: Quantum Mechanics. Ψ + UΨ = i t. General properties of Schrödinger s Equation: Quantum Mechanics Schrödinger Equation (time dependent) m Standing wave Ψ(x,t) = Ψ(x)e iωt Schrödinger Equation (time independent) Ψ x m Ψ x Ψ + UΨ = i t +UΨ

More information

Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules

Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules Claudia Filippi Laboratory of Atomic and Solid State Physics and Theory Center, Cornell University,

More information

(1/2) M α 2 α, ˆTe = i. 1 r i r j, ˆV NN = α>β

(1/2) M α 2 α, ˆTe = i. 1 r i r j, ˆV NN = α>β Chemistry 26 Spectroscopy Week # The Born-Oppenheimer Approximation, H + 2. Born-Oppenheimer approximation As for atoms, all information about a molecule is contained in the wave function Ψ, which is the

More information

Ab-initio studies of the adiabatic connection in density-functional theory

Ab-initio studies of the adiabatic connection in density-functional theory Ab-initio studies of the adiabatic connection in density-functional theory Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry,

More information

Electron Correlation Methods

Electron Correlation Methods Electron Correlation Methods HF method: electron-electron interaction is replaced by an average interaction E HF c = E 0 E HF E 0 exact ground state energy E HF HF energy for a given basis set HF E c

More information

Molecular Magnetic Properties ESQC 07. Overview

Molecular Magnetic Properties ESQC 07. Overview 1 Molecular Magnetic Properties ESQC 07 Trygve Helgaker Department of Chemistry, University of Oslo, Norway Overview the electronic Hamiltonian in an electromagnetic field external and nuclear magnetic

More information

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum Chapter 2 The Hydrogen atom In the previous chapter we gave a quick overview of the Bohr model, which is only really valid in the semiclassical limit. cf. section 1.7.) We now begin our task in earnest

More information

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Notations

More information

MODERN ELECTRONIC STRUCTURE THEORY: Basis Sets

MODERN ELECTRONIC STRUCTURE THEORY: Basis Sets 5.61 Physical Chemistry Lecture #29 1 MODERN ELECTRONIC STRUCTURE THEORY: Basis Sets At this point, we have more or less exhausted the list of electronic structure problems we can solve by hand. If we

More information

MODERN ELECTRONIC STRUCTURE THEORY

MODERN ELECTRONIC STRUCTURE THEORY 1 MODERN ELECTRONIC STRUCTURE THEORY At this point, we have more or less exhausted the list of electronic structure problems we can solve by hand. If we were limited to solving problems manually, there

More information

Electric properties of molecules

Electric properties of molecules Electric properties of molecules For a molecule in a uniform electric fielde the Hamiltonian has the form: Ĥ(E) = Ĥ + E ˆµ x where we assume that the field is directed along the x axis and ˆµ x is the

More information

Basis Sets and Basis Set Notation

Basis Sets and Basis Set Notation Chemistry 46 Fall 215 Dr. Jean M. Standard November 29, 217 Basis Sets and Basis Set Notation Using the LCAO-MO approximation, molecular orbitals can be represented as linear combinations of atomic orbitals,

More information

Quantum Monte Carlo wave functions and their optimization for quantum chemistry

Quantum Monte Carlo wave functions and their optimization for quantum chemistry Quantum Monte Carlo wave functions and their optimization for quantum chemistry Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France CEA Saclay, SPhN Orme des Merisiers April 2015 Outline

More information