Developments in Electronic Structure Theory.

Size: px
Start display at page:

Download "Developments in Electronic Structure Theory."

Transcription

1 Developments in Electronic Structure Theory. Bastien Mussard Laboratoire de Chimie Théorique Institut du Calcul et de la Simulation Sorbonne Universités, Université Pierre et Marie Curie

2 Developments in Electronic Structure Theory Get the accurate answer for the right reason at a reasonable cost. Accuracy & Cost DFT (the density n(r) is the key quantity) cheap methods ; applicable to big systems unable to systematically improve the results Range Separation WFT (the wavefunction Ψ(x N ) is the key quantity) rather costly improvement of the description is systematic QMC ( stochastic method) good method in terms of accuracy and scaling costly ; ideal for parallelisation WFT as input for QMC

3 DFT+WFT post-dft calculations in the context of Range Separation. In the WFT part, for the treatment of London dispersion forces, we use the Random Phase Approximation.

4 Range Separation [Savin, Rec.dev. (1996)] WFT suffers at short range from the description of the e-e coalescence. DFAs are essentially (semi)local approximation and are best at short-range. The idea is to split the e-e interaction into long- and short- range parts: 1 r = v lr ee(r) + v sr ee(r) 1/r vee(r) lr vee(r) sr versus... and as a result to rigourously mix WFT and DFT methods : in a variational way: { } E = min Ψ ˆT + ˆV ne + Ŵee lr Ψ + EHxc[n sr Ψ ] Ψ e.g. MCSCF+DFT, CI+DFT,... -> for the static correlation. with a perturbative treatment, from a mono-determinental reference (RSH): { } E = min Φ ˆT + ˆV ne + Ŵee Φ lr + EHxc[n sr Φ ] + Ec lr Φ e.g. with RPA -> for long range dynamical correlation.

5 Random Phase Approximation: Origins [Bohm,Pines PR 82 (1951)] The original intention is to decouple by a canonical transformation the particle and field variables in the description of the UEG. Go from Ĥ = Ĥ part. + Ĥ field + Ĥ part./field to Ĥ RPA = Ĥ part. + Ĥ oscillations + Ĥ sr part./part The physics: mix of long-range organized behavior (collective plasma oscillations) and of short-range screened interactions. Hence, in RPA, the energy is the sum of oscillator energies and of a short-range correction. This seems ideal in a range separation context. Only the particles in phase with the oscillating field contribute to the oscillations the other particles, having a random phase, are neglected.

6 Random Phase Approximation: formalisms and flavors ACFDT equation [Langreth,Perdew PRB 15 (1977)] Ec ACFDT = 1 1 dω dα 2 2π Tr ( [ W ee Π RPA α (iω) Π (iω) ]) (Π RPA α ) 1 = Π 1 f Hx,α Flavors (include/exclude exchange) [Ángyán,Liu,Toulouse,Jansen JCTC 7 (211)] direct or exchange RPA single-bar or double-bar This yields the flavors of RPA called: drpa-i, drpa-ii, RPAx-I, RPAx-II Formulations (analytical or numerical integrals) density-matrix formulation E = 1 2 dα tr (P α W) dielectric-matrix formulation E = 1 dω 2 tr (log(ɛ(iω)) + 1 ɛ(iω)) 2π plasmon formula E = 1 2 ωrpa ω TDA Ricatti equations and rccd E = 1 2 tr(bt) +Approximations (in each formulations, for each flavors...) SOSEX, RPAx-SO2

7 Random Phase Approximation: formalisms and flavors ACFDT equation [Langreth,Perdew PRB 15 (1977)] Ec ACFDT = 1 1 dω dα 2 2π Tr ( [ W ee Π RPA α (iω) Π (iω) ]) (Π RPA α ) 1 = Π 1 f Hx,α Flavors (include/exclude exchange) [Ángyán,Liu,Toulouse,Jansen JCTC 7 (211)] direct or exchange RPA single-bar or double-bar This yields the flavors of RPA called: drpa-i, drpa-ii, RPAx-I, RPAx-II Formulations (analytical or numerical integrals) density-matrix formulation E = 1 2 dα tr (P α W) dielectric-matrix formulation E = 1 dω 2 tr (log(ɛ(iω)) + 1 ɛ(iω)) 2π plasmon formula E = 1 2 ωrpa ω TDA Ricatti equations and rccd E = 1 2 tr(bt) +Approximations (in each formulations, for each flavors...) SOSEX, RPAx-SO2

8 Random Phase Approximation: formalisms and flavors ACFDT equation [Langreth,Perdew PRB 15 (1977)] Ec ACFDT = 1 1 dω dα 2 2π Tr ( [ W ee Π RPA α (iω) Π (iω) ]) (Π RPA α ) 1 = Π 1 f Hx,α Flavors (include/exclude exchange) [Ángyán,Liu,Toulouse,Jansen JCTC 7 (211)] direct or exchange RPA single-bar or double-bar This yields the flavors of RPA called: drpa-i, drpa-ii, RPAx-I, RPAx-II Formulations (analytical or numerical integrals) density-matrix formulation E = 1 2 dα tr (P α W) dielectric-matrix formulation E = 1 dω 2 tr (log(ɛ(iω)) + 1 ɛ(iω)) 2π plasmon formula E = 1 2 ωrpa ω TDA Ricatti equations and rccd E = 1 2 tr(bt) +Approximations (in each formulations, for each flavors...) SOSEX, RPAx-SO2

9 Full-range DFT + RPA DFT calculation followed by an RPA calculation with KS orbitals and energies. { } E DFT = min Φ ˆT + ˆV ne Φ + E Hxc [n Φ ] Φ E = Φ ˆT + ˆV ne Φ + EHx HF [Φ] + Ec RPA DFT (LDA/GGA/...) do not describe correctly the long-range dispersion forces, while RPA does. Still problems with: short-range correlation energies (far too negative) strong dependence on basis size simple van der Waals dimers Interaction energy (mhartree) Ne 2 Accurate drpa-i SOSEX RPAx-II RPAx-SO2 Interaction energy (mhartree) Ar 2 Accurate drpa-i SOSEX RPAx-II RPAx-SO Internuclear distance (bohr) Internuclear distance (bohr) >PBE, aug-cc-pv6z [Toulouse,Zhu,Savin,Jansen,Ángyán JCP 135 (211)]

10 Range-Separated Hybrid + RPA Hybrid DFT with exact HF exchange and RPA correlation, both at long-range. { } E = min Φ ˆT + ˆV ne + Ŵee Φ lr + EHxc[n sr Φ ] + Ec lr,rpa Φ Range separation greatly improves RPA (see srpbe+rpax-so2). Basis dependence is reduced. Interaction energy (mhartree) Ne 2 Accurate drpa-i SOSEX RPAx-II RPAx-SO2 Interaction energy (mhartree) Ar 2 Accurate drpa-i SOSEX RPAx-II RPAx-SO Internuclear distance (bohr) Internuclear distance (bohr) >srpbe, aug-cc-pv6z, µ =.5 [Toulouse,Zhu,Savin,Jansen,Ángyán JCP 135 (211)]

11 Range-Separated Hybrid + RPA >srpbe, aug-cc-pvdz, µ =.5 [Toulouse,Zhu,Savin,Jansen,Ángyán JCP 135 (211)] Hybrid DFT with exact HF exchange and RPA correlation, both at long-range. { } E = min Φ ˆT + ˆV ne + Ŵee Φ lr + EHxc[n sr Φ ] + Ec lr,rpa Φ Range separation greatly improves RPA (see srpbe+rpax-so2). Basis dependence is reduced. for ex.: performance on the S22 dataset is very good for srpbe+rpax-so2. % of error on interaction energy H bonded dispersion dispersion +multipoles MP2 drpa-i SOSEX RPAx-II RPAx-SO2 system in S22 set

12 New developments DFT+WFT Basis Set Convergence study and Three-point extrapolation scheme. Spin-Unrestricted generalization and Calculations on DBH24/8 and AE49. Development and Implementation of the gradients of RSH+RPA methods. In general Development of Localized Virtual Orbitals and Application for RPA calculations. WFT+QMC Implementation of the calculation of weights of VB structures in QMC.

13 Basis Set Convergence [Franck,BM,Luppi,Toulouse JCP 142 (215)] Wavefunction basis convergence [Gori-Giorgi,Savin PRA 73 (26)] Both partial wave and principal number expansions lead to exponential convergence of the wavefunction r 2 θ He r 1 Ψ (a.u.) HF VDZ VTZ VQZ V5Z V6Z Hylleraas θ (degree) Extrapolation formula for total energies We proposed a three-point extrapolation scheme for total RSH+correlation energies (fitting E X = E + B exp( βx )). E = E XYZ = E 2 Y E X E Z 2E Y E X E Z Ψ lr,µ (a.u.) RSH VDZ VTZ VQZ V5Z V6Z θ (degree) >errors (mhartree) wrt. cc-pv6z He Ne N 2 H 2O E D E T E Q E E DTQ E TQ

14 Spin-Unrestricted RPA [BM,Reinhardt,Ángyán,Toulouse JCP 142 (215)] Implemented most of the variants with a nospinflip/spinflip block structure Normal distributions of errors (kcal/mol) of calculations on AE HF+MP2 RSH+MP2 Mean errors of post-rsh calculation are better Post-RSH calculations dist. of errors have sharper distributions HF+dRPA-I RSH+dRPA-I Similar results were obtained on the DBH24/8 dataset We argue that RPAx-SO2 is a good method for a wide range of applications HF+RPAx-SO2 RSH+RPAx-SO2 >cc-pvqz (post-rsh: srpbe, µ =.5)

15 Analytical Gradients: Lagrangian formalism [BM,Szalay,Ángyán JCTC 1 (214)] énergie énergie énergie paramètre paramètre paramètre lagrangien Given an energy E[κ, V(κ), T(κ)] you have rules for V: E/ V = you have rules for T: R[T] paramètre = lagrangien de dκ = E κ + E V E T + V κ T κ For non-variational methods E[V] VV R[T] = = TT E[T] ( (a) (a) (b) (b) in E ) κ there is h(κ), (µν σρ) (κ) and S (κ) The solution is to work with an alternative object that is variational : L[κ, V, T, λ] = E[κ, V, T] + tr(λr[t]) énergie L V = E énergie V = énergie paramètre L λ = paramètre paramètre R[T] = lagrangien E[V] R[T] = L T = E ( T + tr λ R ) V T (a) (b) { } For RSH+RPA the energy is: E = min Φ ˆT + ˆV ne + Ŵee Φ lr + EHxc[n sr Φ ] + Ec lr,rpa Φ The equations were derived (sr and lr terms) and implemented in MOLPRO. (based on RSH+MP2 of [Chabbal, Stoll, Werner, Leininger, MP 18 (21)]) = T E[T] (c) E[T] L[T] T

16 Analytical Gradients of RSH+RPA Bond Lengths of simple molecules > aug-cc-pvqz r (Å) H2/H H HF/F H H2O/O H HOF/O H -.8 RHF+dRPA-I LDA+dRPA-I RHF+SOSEX LDA+SOSEX HCN/C H C2H4/C H CH4/C H N2/N N CH2O/C H CH2/C H HNC/N H NH3/N H N2H2/N H HNO/N H C2H2/C H CO/C O HCN/C N CO2/C O HNC/C N C2H2/C C CH2O/C O HNO/O N N2H2/N N C2H4/C C F2/F F Mean Absolute Errors Bond Lengths of simple molecules RHF+dRPA-I.16 LDA+dRPA-I.13 RHF+SOSEX.21 LDA+SOSEX.14 Interaction Energies HOF/O F Intermonomer distances MP2.76 MP2.75 LDA+MP2.63 LDA+MP2.53 LDA+dRPA-I.35 LDA+dRPA-I.23 [BM,Szalay,Ángyán JCTC 1 (214)] Interaction Energies > aug-cc-pvtz ( E) (kcal.mol 1 ) C2H4... F2 NH3... F2 MP2 LDA+MP2 LDA+dRPA-I C2H2... ClF HCN... ClF NH3... Cl2 Intermonomer distances > aug-cc-pvtz R (Å) C2H4... F2 NH3... F2 C2H2... ClF HCN... ClF NH3... Cl2 H2O... ClF H2O... ClF NH3... ClF MP2 LDA+MP2 LDA+dRPA-I NH3... ClF

17 Projected Oscillator Orbitals [BM,A ngya n, TCA (submitted)] The objective is to construct a set of localized virtual orbitals by multiplying the set of occupied Localized Molecular Orbitals (LMOs) with solid spherical harmonic functions. The orthogonality to the occupied space is ensured by projection. Dipolar oscillator orbital [Foster, Boys RMP 32 (196)] iα i = (1 P ) (r α Dαi ) ii {z } {z } {z} projector C-H bond in CH2 O: harmonic where Dαi = hi r α ii LMO Lone pair in CH2 O:

18 Projected Oscillator Orbitals: Key features Dipolar oscillator orbital i α = (ˆ1 ˆP)(ˆr α D i α) i where D i α = i ˆr α i This formulation is best employed with Boys LMOs, see: i α = ˆr α i m m ˆr α i The POOs are non-orthogonal, with overlap: S ij αβ = i ˆr αˆr β j i ˆr α m m ˆr β j [BM,Ángyán, TCA (submitted)] The fock matrix element are found to be: f ii αβ = 1 2 δ αβ (fim m ˆr αˆr β i + i ˆr αˆr β m f mi ) i ˆr α m f mn n ˆr β i The two-elec integrals are written with a multipole expansion of the lr interaction: i α j kl β = i α ˆr γ k L ij γδ j ˆr δ l β +... A nice result simplifies the equations: i α ˆr β j = i ˆr αˆr β j i ˆr α m m ˆr β j = S ij αβ

19 Projected Oscillator Orbitals: RPA and C 6 [BM,Ángyán, TCA (submitted)] The working equations are the local RPA Ricatti equations (i.e. local rccd) with the local excitation approximation (M ij k αl β M ij. i αj β = M ij αβ ) and spherical average approximation (M ii 1 αβ δ αβ 3 M ii. αα = 1 δαβ 3 mi ). RPA correlation energy occ Ec RPA,lr 4 = 9 si s j tr ( L ij T ij) ij where R ij = = C 6 coefficients occ E c (2),lr = = ij occ ij 4 s i s j 9 i + j tr ( L ij L ij) 8 s i s j F µ damp (Dij ) 3 i + j D ij 6 where i = f ii f i /s i Error in the molecular C6 coefficients (%) H2 HF H2O N2 CO LDA PBE RHF RSHLDA NH3 CH4 CO2 H2CO N2O C2H2 CH3OH C2H4 CH3NH2 C2H6 CH3CHO CH3OCH3 C3H6 HCl HBr H2S SO2 SiH4 Cl2 COS CS2 > aug-cc-pvtz (RSH: µ =.5) MA%E LDA 59.8 PBE 56.7 RHF 15.2 RSHLDA 11.8 CCl4

20 VB-QMC: Motivation VB-SCF (VB structures = Lewis structures) Good dissociation energies Interpretative tools (weight of structures,... ) Non-orthogonal orbitals -> costly Introduce dynamical correlation by breathing (L-BO-, S-BO-, SD-BOVB) -> costly VB-QMC in the hope of treating big systems Ψ = e J ( ) Static correlation taken care of by VB. Non-orthogonality of orbitals is not an issue for QMC. Dynamical correlation hopefully taken care of by Jastrow. But: we wish to conserve the interpretative tools, i.e. the weights (and the calculation of separated structure). WFT as input for QMC

21 VB-QMC: weights of VB structures We wish to transfert the weights of structures to VB-QMC. j Chirgwin-Coulson weights w i = c i c j S ij and Löwdin weights w c i c j S i = ( c j (S 1 2 ) ji ) 2 j ij ( ij c j (S 1 2 ) ji ) 2 i j In both cases, S ij needs to be computed, via S ij = dr Ψ i(r) Ψ j (R) Ψ (R) Ψ (R) Ψ2 (R) Li2 VB-SCF VB-QMC S-BOVB (jc) (jco) LiH VB-SCF VB-QMC S-BOVB (jc) (jco) VB-QMC = VB-SCF Li 2 : mainly covalent character ionic too important in BOVB (structures are mixing) F VB-SCF VB-QMC S-BOVB (jc) (jco) FH VB-SCF VB-QMC S-BOVB (jc) (jco) F 2 : Jastrow very similar to BO no mixing of structures It is unclear if the VB weights are the referent ones (when there is a too preponderant structure, mixing occurs).

22 Other Works All (and more) is implemented in the Quantum Chemistry Package MOLPRO Fractional occupation number calculations and Instabilities in the RPA problem. Efficient calculations of determinants in QMC using the Sherman-Morrison-Woodbury formula. Collaborators at the UPMC... Odile Franck Eleanora Luppi Peter Reinhardt Julien Toulouse... and at the Université de Lorraine: János Ángyán Dario Rocca

Developments in Electronic Structure Theory.

Developments in Electronic Structure Theory. Developments in Electronic Structure Theory. Bastien Mussard Laboratoire de Chimie Théorique Institut du Calcul et de la Simulation Sorbonne Universités, Université Pierre et Marie Curie bastien.mussard@upmc.fr

More information

Combining density-functional theory and many-body methods

Combining density-functional theory and many-body methods Combining density-functional theory and many-body methods Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Albuquerque New Mexico, USA June 2016 Outline 2/23 1 A brief overview of

More information

Combining density-functional theory and many-body methods

Combining density-functional theory and many-body methods Combining density-functional theory and many-body methods Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Vrije Universiteit Amsterdam, Netherlands November 2017 Outline 2/23 1

More information

Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation

Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation Julien Toulouse 1 I. Gerber 2, G. Jansen 3, A. Savin 1, W. Zhu 1, J. Ángyán 4 1 Laboratoire de Chimie Théorique,

More information

Fractional-charge and Fractional-spin errors in Range-Separated Density-Functional Theory with Random Phase Approximation.

Fractional-charge and Fractional-spin errors in Range-Separated Density-Functional Theory with Random Phase Approximation. Fractional-charge and Fractional-spin errors in Range-Separated Density-Functional Theory with Random Phase Approximation. Bastien Mussard, Julien Toulouse Laboratoire de Chimie Théorique Institut du Calcul

More information

Range-separated density-functional theory with long-range random phase approximation

Range-separated density-functional theory with long-range random phase approximation Range-separated density-functional theory with long-range random phase approximation Julien Toulouse 1 Wuming Zhu 1, Andreas Savin 1, János Ángyán2 1 Laboratoire de Chimie Théorique, UPMC Univ Paris 6

More information

Extending Kohn-Sham density-functional theory

Extending Kohn-Sham density-functional theory Extending Kohn-Sham density-functional theory Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Email: julien.toulouse@upmc.fr Web page: www.lct.jussieu.fr/pagesperso/toulouse/ January

More information

DFT basée sur le théorème de fluctuation-dissipation avec séparation de portée pour les interactions de van der Waals

DFT basée sur le théorème de fluctuation-dissipation avec séparation de portée pour les interactions de van der Waals DFT basée sur le théorème de fluctuation-dissipation avec séparation de portée pour les interactions de van der Waals Julien Toulouse 1 Iann Gerber 2, Georg Jansen 3, Andreas Savin 1, János Ángyán 4 1

More information

Dispersion energies from the random-phase approximation with range separation

Dispersion energies from the random-phase approximation with range separation 1/34 Dispersion energies from the random-phase approximation with range separation Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Web page: www.lct.jussieu.fr/pagesperso/toulouse/

More information

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients 1/10 Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients Julien Toulouse 1,2, Elisa Rebolini 1, Tim Gould 3, John F. Dobson 3, Prasenjit Seal

More information

Théorie de la fonctionnnelle de la densité avec séparation de portée pour les forces de van der Waals

Théorie de la fonctionnnelle de la densité avec séparation de portée pour les forces de van der Waals Théorie de la fonctionnnelle de la densité avec séparation de portée pour les forces de van der Waals Julien Toulouse 1 Iann Gerber 2, Georg Jansen 3, Andreas Savin 1, János Ángyán 4 1 Laboratoire de Chimie

More information

Multideterminant density-functional theory for static correlation. Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France

Multideterminant density-functional theory for static correlation. Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Multideterminant density-functional theory for static correlation Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Basel, Switzerland September 2015 Kohn-Sham DFT and static correlation

More information

Analytical Gradients for the Range-Separated Random Phase Approximation Correlation Energies Using a Lagrangian Framework

Analytical Gradients for the Range-Separated Random Phase Approximation Correlation Energies Using a Lagrangian Framework Analytical Gradients for the Range-Separated Random Phase Approximation Correlation Energies Using a Lagrangian Framework Bastien Mussard a, János G. Ángyán a, Péter G. Szalay b a CRM 2, Université de

More information

RPA step by step. Bastien Mussard, János G. Ángyán, Sébastien Lebègue CRM 2, FacultÃl des Sciences UniversitÃl Henry PoincarÃl, Nancy

RPA step by step. Bastien Mussard, János G. Ángyán, Sébastien Lebègue CRM 2, FacultÃl des Sciences UniversitÃl Henry PoincarÃl, Nancy RPA step by step Bastien Mussard, János G. Ángyán, Sébastien Lebègue CRM, FacultÃl des Sciences UniversitÃl Henry PoincarÃl, Nancy Eötvös University Faculty of Science Budapest, Hungaria 0 mars 01 bastien.mussard@uhp-nancy.fr

More information

Time-dependent linear-response variational Monte Carlo.

Time-dependent linear-response variational Monte Carlo. Time-dependent linear-response variational Monte Carlo. Bastien Mussard bastien.mussard@colorado.edu https://mussard.github.io/ Julien Toulouse julien.toulouse@upmc.fr Sorbonne University, Paris (web)

More information

Long-range/short-range energy decomposition in density functional theory

Long-range/short-range energy decomposition in density functional theory p. 1/2 Long-range/short-range energy decomposition in density functional theory Julien Toulouse François Colonna, Andreas Savin Laboratoire de Chimie Théorique, Université Pierre et Marie Curie, Paris

More information

Optimization of quantum Monte Carlo wave functions by energy minimization

Optimization of quantum Monte Carlo wave functions by energy minimization Optimization of quantum Monte Carlo wave functions by energy minimization Julien Toulouse, Roland Assaraf, Cyrus J. Umrigar Laboratoire de Chimie Théorique, Université Pierre et Marie Curie and CNRS, Paris,

More information

Quantum Monte Carlo wave functions and their optimization for quantum chemistry

Quantum Monte Carlo wave functions and their optimization for quantum chemistry Quantum Monte Carlo wave functions and their optimization for quantum chemistry Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France CEA Saclay, SPhN Orme des Merisiers April 2015 Outline

More information

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley

More information

3: Many electrons. Orbital symmetries. l =2 1. m l

3: Many electrons. Orbital symmetries. l =2 1. m l 3: Many electrons Orbital symmetries Atomic orbitals are labelled according to the principal quantum number, n, and the orbital angular momentum quantum number, l. Electrons in a diatomic molecule experience

More information

OVERVIEW OF QUANTUM CHEMISTRY METHODS

OVERVIEW OF QUANTUM CHEMISTRY METHODS OVERVIEW OF QUANTUM CHEMISTRY METHODS Outline I Generalities Correlation, basis sets Spin II Wavefunction methods Hartree-Fock Configuration interaction Coupled cluster Perturbative methods III Density

More information

Dispersion Interactions from the Exchange-Hole Dipole Moment

Dispersion Interactions from the Exchange-Hole Dipole Moment Dispersion Interactions from the Exchange-Hole Dipole Moment Erin R. Johnson and Alberto Otero-de-la-Roza Chemistry and Chemical Biology, University of California, Merced E. R. Johnson (UC Merced) Dispersion

More information

Molecular Magnetism. Magnetic Resonance Parameters. Trygve Helgaker

Molecular Magnetism. Magnetic Resonance Parameters. Trygve Helgaker Molecular Magnetism Magnetic Resonance Parameters Trygve Helgaker Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Norway Laboratoire de Chimie Théorique,

More information

Introduction to density-functional theory. Emmanuel Fromager

Introduction to density-functional theory. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Institut

More information

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Julien Toulouse 1, Cyrus J. Umrigar 2, Roland Assaraf 1 1 Laboratoire de Chimie

More information

Adiabatic connections in DFT

Adiabatic connections in DFT Adiabatic connections in DFT Andreas Savin Torino, LCC2004, September 9, 2004 Multi reference DFT Kohn Sham: single reference Variable reference space capability to approach the exact result Overview The

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

Density-functional theory at noninteger electron numbers

Density-functional theory at noninteger electron numbers Density-functional theory at noninteger electron numbers Tim Gould 1, Julien Toulouse 2 1 Griffith University, Brisbane, Australia 2 Université Pierre & Marie Curie and CRS, Paris, France July 215 Introduction

More information

Lec20 Fri 3mar17

Lec20 Fri 3mar17 564-17 Lec20 Fri 3mar17 [PDF]GAUSSIAN 09W TUTORIAL www.molcalx.com.cn/wp-content/uploads/2015/01/gaussian09w_tutorial.pdf by A Tomberg - Cited by 8 - Related articles GAUSSIAN 09W TUTORIAL. AN INTRODUCTION

More information

Size-extensive wave functions for QMC A linear-scaling GVB approach

Size-extensive wave functions for QMC A linear-scaling GVB approach Size-extensive wave functions for QMC A linear-scaling GVB approach Claudia Filippi, University of Twente, The Netherlands Francesco Fracchia, University of Pisa, Italy Claudio Amovilli, University of

More information

Linear response time-dependent density functional theory

Linear response time-dependent density functional theory Linear response time-dependent density functional theory Emmanuel Fromager Laboratoire de Chimie Quantique, Université de Strasbourg, France fromagere@unistra.fr Emmanuel Fromager (UdS) Cours RFCT, Strasbourg,

More information

arxiv: v2 [physics.chem-ph] 11 Mar 2011

arxiv: v2 [physics.chem-ph] 11 Mar 2011 Quantum Monte Carlo with Jastrow-Valence-Bond wave functions Benoît Braïda 1, Julien Toulouse 1, Michel Caffarel 2, and C. J. Umrigar 3 1 Laboratoire de Chimie Théorique, Université Pierre et Marie Curie

More information

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Notations

More information

FONCTIONNELLES DE DENSITÉ AVEC SÉPARATION DE PORTÉE: AU CIEL DFT SANS ÉCHELLE DE JACOB

FONCTIONNELLES DE DENSITÉ AVEC SÉPARATION DE PORTÉE: AU CIEL DFT SANS ÉCHELLE DE JACOB FONCTIONNELLES DE DENSITÉ AVEC SÉPARATION DE PORTÉE: AU CIEL DFT SANS ÉCHELLE DE JACOB, Iann Gerber, Paola Gori-Giorgi, Julien Toulouse, Andreas Savin Équipe de Modélisation Quantique et Cristallographique

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry Chemicum 4th floor vesa.hanninen@helsinki.fi September 10, 2013 Lecture 3. Electron correlation methods September

More information

Accurate van der Waals interactions from ground state electron density

Accurate van der Waals interactions from ground state electron density Accurate van der Waals interactions from ground state electron density Alexandre Tkatchenko Theory Department, Fritz Haber Institut der MPG Berlin, Germany tkatchen@fhi berlin.mpg.de Haber Institute EXCITCM09,

More information

Introduction to Computational Chemistry: Theory

Introduction to Computational Chemistry: Theory Introduction to Computational Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC andrew.gilbert@anu.edu.au 3023 Course Lectures Introduction Hartree Fock Theory Basis Sets Lecture 1 1 Introduction

More information

Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization

Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization Julien Toulouse, Cyrus Umrigar, Roland Assaraf Cornell Theory Center, Cornell University, Ithaca, New York, USA. Laboratoire

More information

Fixed-Node quantum Monte Carlo for Chemistry

Fixed-Node quantum Monte Carlo for Chemistry Fixed-Node quantum Monte Carlo for Chemistry Michel Caffarel Lab. Physique et Chimie Quantiques, CNRS-IRSAMC, Université de Toulouse e-mail : caffarel@irsamc.ups-tlse.fr. p.1/29 The N-body problem of Chemistry

More information

Combining many-body methods and density-functional theory. Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France

Combining many-body methods and density-functional theory. Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Combining many-body methods and density-funtional theory Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, Frane September 2014 2/1 Hybrids ombining many-body methods and DFT Goal: improve

More information

Analytical Gradient for Random Phase Approximation Using a Lagrangian Framework

Analytical Gradient for Random Phase Approximation Using a Lagrangian Framework Analytical Gradient for Random Phase Approximation Using a Lagrangian Framework Bastien Mussard a, János G. Ángyán a, Péter G. Szalay b a CRM 2, Université de Lorraine, Nancy, France b Laboratory of Theoretical

More information

Coupled-cluster and perturbation methods for macromolecules

Coupled-cluster and perturbation methods for macromolecules Coupled-cluster and perturbation methods for macromolecules So Hirata Quantum Theory Project and MacroCenter Departments of Chemistry & Physics, University of Florida Contents Accurate electronic structure

More information

Introduction to DFTB. Marcus Elstner. July 28, 2006

Introduction to DFTB. Marcus Elstner. July 28, 2006 Introduction to DFTB Marcus Elstner July 28, 2006 I. Non-selfconsistent solution of the KS equations DFT can treat up to 100 atoms in routine applications, sometimes even more and about several ps in MD

More information

A new generation of density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem

A new generation of density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem A new generation of density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem Andreas Görling, Patrick Bleiziffer, Daniel Schmidtel, and Andreas Heßelmann Lehrstuhl für

More information

Electron States of Diatomic Molecules

Electron States of Diatomic Molecules IISER Pune March 2018 Hamiltonian for a Diatomic Molecule The hamiltonian for a diatomic molecule can be considered to be made up of three terms Ĥ = ˆT N + ˆT el + ˆV where ˆT N is the kinetic energy operator

More information

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory 1/11 Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory Julien Toulouse Université Pierre & Marie Curie and CNRS, 4 place Jussieu, Paris, France Web page: www.lct.jussieu.fr/pagesperso/toulouse/

More information

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components. Chem 44 Review for Exam Hydrogenic atoms: The Coulomb energy between two point charges Ze and e: V r Ze r Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative

More information

QMC dissociation energy of the water dimer: Time step errors and backflow calculations

QMC dissociation energy of the water dimer: Time step errors and backflow calculations QMC dissociation energy of the water dimer: Time step errors and backflow calculations Idoia G. de Gurtubay and Richard J. Needs TCM group. Cavendish Laboratory University of Cambridge Idoia G. de Gurtubay.

More information

Orbital Density Dependent Functionals

Orbital Density Dependent Functionals Orbital Density Dependent Functionals S. Kluepfel1, P. Kluepfel1, Hildur Guðmundsdóttir1 and Hannes Jónsson1,2 1. Univ. of Iceland; 2. Aalto University Outline: Problems with GGA approximation (PBE, RPBE,...)

More information

Post Hartree-Fock: MP2 and RPA in CP2K

Post Hartree-Fock: MP2 and RPA in CP2K Post Hartree-Fock: MP2 and RPA in CP2K A tutorial Jan Wilhelm jan.wilhelm@chem.uzh.ch 4 September 2015 Further reading MP2 and RPA by Mauro Del Ben, Jürg Hutter, Joost VandeVondele Del Ben, M; Hutter,

More information

The calculation of the universal density functional by Lieb maximization

The calculation of the universal density functional by Lieb maximization The calculation of the universal density functional by Lieb maximization Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry,

More information

Electric properties of molecules

Electric properties of molecules Electric properties of molecules For a molecule in a uniform electric fielde the Hamiltonian has the form: Ĥ(E) = Ĥ + E ˆµ x where we assume that the field is directed along the x axis and ˆµ x is the

More information

Periodic Trends in Properties of Homonuclear

Periodic Trends in Properties of Homonuclear Chapter 8 Periodic Trends in Properties of Homonuclear Diatomic Molecules Up to now, we have discussed various physical properties of nanostructures, namely, two-dimensional - graphene-like structures:

More information

Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state

Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state TCM Electronic Structure Discussion Group James Shepherd (CUC3, Alavi Group)

More information

Computational Chemistry I

Computational Chemistry I Computational Chemistry I Text book Cramer: Essentials of Quantum Chemistry, Wiley (2 ed.) Chapter 3. Post Hartree-Fock methods (Cramer: chapter 7) There are many ways to improve the HF method. Most of

More information

Molecular Magnetic Properties

Molecular Magnetic Properties Molecular Magnetic Properties Trygve Helgaker Hylleraas Centre, Department of Chemistry, University of Oslo, Norway and Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo,

More information

XYZ of ground-state DFT

XYZ of ground-state DFT XYZ of ground-state DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA January 5-9th, 2014 Kieron (UC Irvine) XYZ of ground-state

More information

Calculations of band structures

Calculations of band structures Chemistry and Physics at Albany Planning for the Future Calculations of band structures using wave-function based correlation methods Elke Pahl Centre of Theoretical Chemistry and Physics Institute of

More information

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby Advanced Electronic Structure Theory Density functional theory Dr Fred Manby fred.manby@bris.ac.uk http://www.chm.bris.ac.uk/pt/manby/ 6 Strengths of DFT DFT is one of many theories used by (computational)

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij ) MO Calculation for a Diatomic Molecule Introduction The properties of any molecular system can in principle be found by looking at the solutions to the corresponding time independent Schrodinger equation

More information

Electron Correlation - Methods beyond Hartree-Fock

Electron Correlation - Methods beyond Hartree-Fock Electron Correlation - Methods beyond Hartree-Fock how to approach chemical accuracy Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mülheim September 4, 2014 MMER Summerschool 2014

More information

QUANTUM CHEMISTRY FOR TRANSITION METALS

QUANTUM CHEMISTRY FOR TRANSITION METALS QUANTUM CHEMISTRY FOR TRANSITION METALS Outline I Introduction II Correlation Static correlation effects MC methods DFT III Relativity Generalities From 4 to 1 components Effective core potential Outline

More information

Importing ab-initio theory into DFT: Some applications of the Lieb variation principle

Importing ab-initio theory into DFT: Some applications of the Lieb variation principle Importing ab-initio theory into DFT: Some applications of the Lieb variation principle Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Basis sets for electron correlation

Basis sets for electron correlation Basis sets for electron correlation Trygve Helgaker Centre for Theoretical and Computational Chemistry Department of Chemistry, University of Oslo, Norway The 12th Sostrup Summer School Quantum Chemistry

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

Coupled-Cluster Perturbative Triples for Bond Breaking

Coupled-Cluster Perturbative Triples for Bond Breaking Coupled-Cluster Perturbative Triples for Bond Breaking Andrew G. Taube and Rodney J. Bartlett Quantum Theory Project University of Florida INT CC Meeting Seattle July 8, 2008 Why does chemistry need triples?

More information

Intermediate DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA

Intermediate DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA Intermediate DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA October 10-19th, 2012 Kieron (UC Irvine) Intermediate DFT Lausanne12

More information

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National

More information

Introduction to Computational Quantum Chemistry: Theory

Introduction to Computational Quantum Chemistry: Theory Introduction to Computational Quantum Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC 3108 Course Lectures 2007 Introduction Hartree Fock Theory Configuration Interaction Lectures 1 Introduction

More information

Intermolecular Forces in Density Functional Theory

Intermolecular Forces in Density Functional Theory Intermolecular Forces in Density Functional Theory Problems of DFT Peter Pulay at WATOC2005: There are 3 problems with DFT 1. Accuracy does not converge 2. Spin states of open shell systems often incorrect

More information

Variational Monte Carlo Optimization and Excited States

Variational Monte Carlo Optimization and Excited States Variational Monte Carlo Optimization and Excited States Eric Neuscamman August 9, 2018 motivation charge transfer core spectroscopy double excitations the menu aperitif: number counting Jastrows main course:

More information

TDDFT in Chemistry and Biochemistry III

TDDFT in Chemistry and Biochemistry III TDDFT in Chemistry and Biochemistry III Dmitrij Rappoport Department of Chemistry and Chemical Biology Harvard University TDDFT Winter School Benasque, January 2010 Dmitrij Rappoport (Harvard U.) TDDFT

More information

List of Figures Page Figure No. Figure Caption No. Figure 1.1.

List of Figures Page Figure No. Figure Caption No. Figure 1.1. List of Figures Figure No. Figure Caption Page No. Figure 1.1. Cation- interactions and their modulations. 4 Figure 1.2. Three conformations of benzene dimer, S is not a minimum on the potential energy

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoría del Funcional de la Densidad (Density Functional Theory) Motivation: limitations of the standard approach based on the wave function. The electronic density n(r) as the key variable: Functionals

More information

Exercise 1: Structure and dipole moment of a small molecule

Exercise 1: Structure and dipole moment of a small molecule Introduction to computational chemistry Exercise 1: Structure and dipole moment of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the dipole moment of a small

More information

Faddeev Random Phase Approximation (FRPA) Application to Molecules

Faddeev Random Phase Approximation (FRPA) Application to Molecules Faddeev Random Phase Approximation (FRPA) Application to Molecules Matthias Degroote Center for Molecular Modeling (CMM) Ghent University INT 2011 Spring Program Fermions from Cold Atoms to Neutron Stars:

More information

T. Helgaker, Department of Chemistry, University of Oslo, Norway. T. Ruden, University of Oslo, Norway. W. Klopper, University of Karlsruhe, Germany

T. Helgaker, Department of Chemistry, University of Oslo, Norway. T. Ruden, University of Oslo, Norway. W. Klopper, University of Karlsruhe, Germany 1 The a priori calculation of molecular properties to chemical accuarcy T. Helgaker, Department of Chemistry, University of Oslo, Norway T. Ruden, University of Oslo, Norway W. Klopper, University of Karlsruhe,

More information

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Question 1: Basis sets Consider the split valence SV3-21G one electron basis set for formaldehyde

More information

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine An Introduction to Quantum Chemistry and Potential Energy Surfaces Benjamin G. Levine This Week s Lecture Potential energy surfaces What are they? What are they good for? How do we use them to solve chemical

More information

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the electronic energy

More information

Random-phase approximation and beyond for materials: concepts, practice, and future perspectives. Xinguo Ren

Random-phase approximation and beyond for materials: concepts, practice, and future perspectives. Xinguo Ren Random-phase approximation and beyond for materials: concepts, practice, and future perspectives Xinguo Ren University of Science and Technology of China, Hefei USTC-FHI workshop on frontiers of Advanced

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

Role of van der Waals Interactions in Physics, Chemistry, and Biology

Role of van der Waals Interactions in Physics, Chemistry, and Biology Role of van der Waals Interactions in Physics, Chemistry, and Biology How can we describe vdw forces in materials accurately? Failure of DFT Approximations for (Long-Range) Van der Waals Interactions 1

More information

Module 6 1. Density functional theory

Module 6 1. Density functional theory Module 6 1. Density functional theory Updated May 12, 2016 B A DDFT C K A bird s-eye view of density-functional theory Authors: Klaus Capelle G http://arxiv.org/abs/cond-mat/0211443 R https://trac.cc.jyu.fi/projects/toolbox/wiki/dft

More information

Model Hamiltonians in Density Functional Theory

Model Hamiltonians in Density Functional Theory Centre de Recherches Mathématiques CRM Proceedings and Lecture Notes Volume 41, 2006 Model Hamiltonians in Density Functional Theory Paola Gori-Giorgi, Julien Toulouse, and Andreas Savin Abstract. The

More information

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University AN INTRODUCTION TO QUANTUM CHEMISTRY Mark S. Gordon Iowa State University 1 OUTLINE Theoretical Background in Quantum Chemistry Overview of GAMESS Program Applications 2 QUANTUM CHEMISTRY In principle,

More information

High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules

High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules Markus Schneider Fritz Haber Institute of the MPS, Berlin, Germany École Polytechnique Fédérale de Lausanne, Switzerland دانشگاه

More information

Rabi oscillations within TDDFT: the example of the 2 site Hubbard model

Rabi oscillations within TDDFT: the example of the 2 site Hubbard model Rabi oscillations within TDDFT: the example of the 2 site Hubbard model Johanna I. Fuks, H. Appel, Mehdi,I.V. Tokatly, A. Rubio Donostia- San Sebastian University of Basque Country (UPV) Outline Rabi oscillations

More information

CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 19122

CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 19122 CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 191 THANKS TO MANY COLLABORATORS, INCLUDING SY VOSKO DAVID LANGRETH ALEX

More information

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2 Purdue University CHM 67300 Computational Quantum Chemistry REVIEW Yingwei Wang October 10, 2013 Review: Prof Slipchenko s class, Fall 2013 Contents 1 Hartree energy 2 2 Many-body system 2 3 Born-Oppenheimer

More information

Building a wavefunction within the Complete-Active. Cluster with Singles and Doubles formalism: straightforward description of quasidegeneracy

Building a wavefunction within the Complete-Active. Cluster with Singles and Doubles formalism: straightforward description of quasidegeneracy Building a wavefunction within the Complete-Active Active-Space Coupled-Cluster Cluster with Singles and Doubles formalism: straightforward description of quasidegeneracy Dmitry I. Lyakh (Karazin Kharkiv

More information

Valence electronic structure of isopropyl iodide investigated by electron momentum spectroscopy. --- Influence of intramolecular interactions

Valence electronic structure of isopropyl iodide investigated by electron momentum spectroscopy. --- Influence of intramolecular interactions Valence electronic structure of isopropyl iodide investigated by electron momentum spectroscopy --- Influence of intramolecular interactions Minfu Zhao, Xu Shan, Shanshan Niu, Yaguo Tang, Zhaohui Liu,

More information

计算物理作业二. Excercise 1: Illustration of the convergence of the dissociation energy for H 2 toward HF limit.

计算物理作业二. Excercise 1: Illustration of the convergence of the dissociation energy for H 2 toward HF limit. 计算物理作业二 Excercise 1: Illustration of the convergence of the dissociation energy for H 2 toward HF limit. In this exercise, basis indicates one of the following basis sets: STO-3G, cc-pvdz, cc-pvtz, cc-pvqz

More information

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University Advanced Quantum Chemistry III: Part 3 Haruyuki Nakano Kyushu University 2013 Winter Term 1. Hartree-Fock theory Density Functional Theory 2. Hohenberg-Kohn theorem 3. Kohn-Sham method 4. Exchange-correlation

More information

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier Ab initio calculations for potential energy surfaces D. Talbi GRAAL- Montpellier A theoretical study of a reaction is a two step process I-Electronic calculations : techniques of quantum chemistry potential

More information

Potential Energy Surfaces for Quantum Dynamics Simulations: From ab initio Computations to Vibrational State Determinations

Potential Energy Surfaces for Quantum Dynamics Simulations: From ab initio Computations to Vibrational State Determinations Potential Energy Surfaces for Quantum Dynamics Simulations: From ab initio Computations to Vibrational State Determinations by Ekadashi Pradhan A thesis submitted in partial fulfillment of the requirements

More information

Born-Oppenheimer Approximation

Born-Oppenheimer Approximation Born-Oppenheimer Approximation Adiabatic Assumption: Nuclei move so much more slowly than electron that the electrons that the electrons are assumed to be obtained if the nuclear kinetic energy is ignored,

More information