Random Estimates in QMC

Size: px
Start display at page:

Download "Random Estimates in QMC"

Transcription

1 Page 1 Random Estimates in QMC J.R. Trail and R.J. Needs Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, UK February 2007

2 Page 2 Numerical Integration Unkown function, r sample points 1 1 f(x) 0.5 f(x) x x Evenly sampled grid: 1 0 f(x)dx a n f(x n ), ǫ p ( 1 r) p/d Points sampled randomly, with PDF P(x): 1 0 f(x)dx 1 r f(xn )/P(x n ), e 1 r

3 Page 3 Sample 3N dimensional space with PDF P(R) Quantum Monte Carlo (VMC) Est[E tot ] = ψ 2 E L /P ψ2 /P = ψ Ĥ ψ + Y ψ ψ + X where E L = ψ 1 Ĥψ. Simplest case is Standard Sampling : Choose P(R) = Aψ(R) 2, then Est[E tot ] = 1 r EL = ψ Ĥ ψ ψ ψ + W W is the random error in a sum of random variables, so what is its distribution? IF the CLT is valid then it is Gaussian with mean 0, and variance σ/r 1/2.

4 Page 4 3N 1 dimension Why?: Easier to deal with the general case analytically A change of the random variable from spatial to energy: E tot = = V ψ 2 E L d 3N R/ P ψ 2(E)EdE V ψ 2 d 3N R with P ψ 2(E) = E=E L P(R) R E L d3n 1 R A histogram of E L approximates the seed PDF P ψ 2 R E L results from curvilinear co-ordinates and change of variables. Useless numerically, but useful analytically.

5 Page 5 What can we say about P ψ 2? Singularities in the local energy: E L (R) = Rψ ψ + i<j 1 r ij i Z r i E L (R) = E tot if the trial wavefunction, ψ, is exact Enforce Kato cusp conditions no Coulomb singularities Nodal surface is ψ = 0, and is 3N 1 dimensional Kinetic energy part gives singularity on a 3N 1 dimensional surface Singularities provide information about P ψ 2 for large E

6 Page 6 What can we say about P ψ 2? P ψ 2(E) = E=E L P(R) R E L d3n 1 R S ˆn nodal surface ψ = a 1 S +... E L = b 1 S P(R)/ E L = c 4 S P ψ 2(E) = d 4 E or more completely P ψ 2(E) = (E E 0 ) 4 (e 0 + ) e 1 (E E 0 ) +... E E 0

7 Page 7 Jastrow + 48 determinants + backflow: Example: All-electron isolated Carbon atom ψ = e J(R) m a m D m (R )D m (R ) with R = R (R) 10 0 σ P ψ 2(EL) % correlation energy at VMC level (E L µ)/σ Estimated seed probability density function Also shown is 2 π σ 3 σ 4 +(E µ) 4, and a Normal distribution

8 Page 8 Random error in total energy estimate Est[E tot ] = 1 r (E E r ) Product of probability of r samples energies that add up to re tot convolution integrals P r=2 (2E tot ) = P r (re tot ) = P ψ 2 P ψ 2... P ψ 2 Take Fourier transform of P ψ 2(E) Take the r th power P ψ 2(E 1 )P ψ 2(E 2 )δ(e 1 + E 2 2E tot )de 1 de 2 = P ψ 2 P ψ 2 Take the inverse Fourier transform Rescale some variables to get the PDF of averages instead of sum P r (y) = [ η d 3 ( ) ] [ 1 λ 2π r dy + O e y2 /2 + 3 r 3π 1 d 3 ( ) ( y 1 r dy 3D + O 2 r) ] y = (E tot µ)/σ

9 Page 9 PDF of estimate of Total energy 10 0 σ/ r Pr(Etot) (E tot µ) 5 10 r/σ Approximate PDF from 10 4 estimates of total energy, with r = 10 3 For small E, PDF is dominated by 1 2π e x2 /2 For large E, PDF is dominated by CLT is true in its weakest form 2 π λ r 1/x 4 (λ 1 for Carbon trial wavefunction)

10 Page 10 PDF of estimate of the Residual Variance, v Optimisation of wavefunctions using the residual variance, v (Ĥ Etot ) ψ = δ = (EL E tot )ψ v = δ 2 dr 0, and zero for exact ψ To optimise the wavefunction v is usually minimised Analyse effect of tails, as before: P r (v) = [ ] 3 1 v σ 2 2 [ exp v σ 2 π 2γ 2γ 2γ [ sgn ] v σ 2 K 1/3 v σ 2 2γ with the width of the PDF decided by the magnitude of the tails γ = [ 6λ 2 πr ] K 2/3 v σ 2 2γ 3 ] 1/3 σ 2 (1)

11 Page 11 PDF of estimate of the Residual Variance, v γ Pr(v) (v σ 2 )/(2γ) Approximate PDF from 10 4 estimates of residual variance, with r = 10 3 Small v, e x3. Large v 1/x 5/2 PDF has no variance, γ has no vigorous statistical estimate and is r 1/3

12 Page 12 CLT is valid in its weakest form for the total energy CLT not valid for residual variance CLT is likely to be invalid for estimates of other physical quantites Because: ψ 2 samples E L rarely where it is largest, at the nodal surface Can the CLT be reinstated?

13 Page 13 Residual sampling Instead of sampling with P = Aψ 2, sample with P = Aψ 2 /w, then and the residual variance, Est[E tot ] = wel w = ψ Ĥ ψ + Y ψ ψ + X Est [ ] δ 2 dr = w(el E tot ) 2 w = ψ 2 (E L E tot ) 2 dr + Y ψ2 dr + X Choose the weighting function w(e L ) = ǫ 2 (E L E 0 ) 2 + ǫ 2 to interpolate beween sampling the numerator and denominator perfectly. No singularities, and no power law tails Quotient of two correlated random variables, each a sum of random variables

14 Page 14 Fieller s Theorem 5 µ µ 1 (µ 2, µ 1 ) that give Est = µ 2 /µ 1

15 Page 15 Fieller s Theorem 5 µ µ 1 (µ 2, µ 1 ) that give Est = µ 2 /µ 1 Ellipse containing 39% of probability from covariance matrix and bivariate CLT

16 Page 16 Fieller s Theorem 5 µ µ 1 (µ 2, µ 1 ) that give Est = µ 2 /µ 1 Ellipse containing 39% of probability from covariance matrix Wedge that contains 68.3% of probability m 1 < µ 2 /µ 1 < m 2 with confidence 68.3%

17 Page 17 Estimate of total energy Est[E tot ] Histogram of 10 3 total energy estimates, each total energy estimate from 10 3 configurations. Residual sampling (filled) and standard sampling (unfilled) are not significantly different Residual sampling reduces error by 30% For other systems standard sampling may give power law outliers (depending on λ) For all systems residual sampling does not give power law outliers

18 Page 18 Estimate of residual variance Est[v] Histogram of 10 3 residual variance estimates, each estimated from 10 3 configurations. Residual sampling and standard sampling are very different Standard sampling shows the v 5/2 tails and outliers expected Residual sampling gives well defined confidence limits for estimate via the bivariate CLT Standard sampling does not

19 Page 19 Optimisation 1) Take samples using wavefunction with parameter α 0, {R} r 2) These define random sample from a distribution of Optimisation functions, O(α) 3) Find the minimum of O(α), at α = α min 4) set α 0 = α min, and return to 1) What is the distribution of O(α)? O(α) = a 0 + a 1 (α α 0 ) +... b 0 + b 1 (α α 0 ) +... For each type of sampling/optimisation this expansion gives statistics of random error For Standard Sampling error is not normal unless the nodes are suppressed by introducing a weight function into O(α) solely for this purpose (eg g(e L )δ 2 d 3N R). For Residual sampling the error is always normal

20 Page 20 Optimisation r = 10 5 configurations. Total energy Residual variance Etot/(a.u.) Std. Res. Var δ Std. Res. E exp no. cycle no. cycle. Std. - standard sampling with nodal surface suppressed (93% E corr ) Res. - residual sampling of residual variance (95% E corr ) New sampling provides lower total energy and a lower residual variance than standard sampling with nodal surface suppressed

21 Page 21 Conclusions We cannot assume the CLT is true for estimates in standard sampling QMC r large enough must be shown to be true for each estimate in standard sampling QMC The CLT can be reinstated by using an alternative sampling strategy Random functions whose minimum gives optimum wavefunctions are not generally normally distributed. Some do not converge as r The residual sampling strategy can guarantee that the CLT is valid for estimates and optimisation functions, as long as they exist With residual sampling optimisation functions can be chosen on physical grounds - to give a good wavefunction at the nodal surface and small fixed node error in DMC Acknowledgements Financial support was provided by the Engineering and Physical Sciences Research Council (EPSRC), UK, and computational resources were provided by the Cambridge-Cranfield High Performance Computing Facility.

QMC dissociation energy of the water dimer: Time step errors and backflow calculations

QMC dissociation energy of the water dimer: Time step errors and backflow calculations QMC dissociation energy of the water dimer: Time step errors and backflow calculations Idoia G. de Gurtubay and Richard J. Needs TCM group. Cavendish Laboratory University of Cambridge Idoia G. de Gurtubay.

More information

Wave Function Optimization and VMC

Wave Function Optimization and VMC Wave Function Optimization and VMC Jeremy McMinis The University of Illinois July 26, 2012 Outline Motivation History of Wave Function Optimization Optimization in QMCPACK Multideterminant Example Motivation:

More information

Orbital-dependent backflow transformations in quantum Monte Carlo

Orbital-dependent backflow transformations in quantum Monte Carlo transformations in quantum Monte Carlo P. Seth, P. López Ríos, and R. J. Needs TCM group, Cavendish Laboratory, University of Cambridge 5 December 2012 VMC and DMC Optimization Wave functions Variational

More information

Methods for calculating forces within quantum Monte Carlo

Methods for calculating forces within quantum Monte Carlo Methods for calculating forces within quantum Monte Carlo A Badinski 1,2, P D Haynes 1,3, J R Trail 1,4, and R J Needs 1 1 Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge CB3 0HE, UK

More information

All-electron quantum Monte Carlo calculations for the noble gas atoms He to Xe

All-electron quantum Monte Carlo calculations for the noble gas atoms He to Xe All-electron quantum Monte Carlo calculations for the noble gas atoms He to Xe A. Ma, N. D. Drummond, M. D. Towler, and R. J. Needs Theory of Condensed Matter Group, Cavendish Laboratory, University of

More information

QMC dissociation energies of three-electron hemibonded radical cation dimers... and water clusters

QMC dissociation energies of three-electron hemibonded radical cation dimers... and water clusters QMC dissociation energies of three-electron hemibonded radical cation dimers... and water clusters Idoia G. de Gurtubay TCM group. Cavendish Laboratory University of Cambridge Idoia G. de Gurtubay. Quantum

More information

Van der Waals Interactions Between Thin Metallic Wires and Layers

Van der Waals Interactions Between Thin Metallic Wires and Layers Van der Waals Interactions Between Thin Metallic Wires and Layers N. D. Drummond and R. J. Needs TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom Quantum Monte

More information

Continuum variational and diffusion quantum Monte Carlo calculations

Continuum variational and diffusion quantum Monte Carlo calculations Continuum variational and diffusion quantum Monte Carlo calculations R J Needs, M D Towler, N D Drummond and P López Ríos Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge CB3 0HE, UK Abstract.

More information

Quantum Monte Carlo backflow calculations of benzene dimers

Quantum Monte Carlo backflow calculations of benzene dimers Quantum Monte Carlo backflow calculations of benzene dimers Kathleen Schwarz*, Cyrus Umrigar**, Richard Hennig*** *Cornell University Department of Chemistry, **Cornell University Department of Physics,

More information

Fixed-Node quantum Monte Carlo for Chemistry

Fixed-Node quantum Monte Carlo for Chemistry Fixed-Node quantum Monte Carlo for Chemistry Michel Caffarel Lab. Physique et Chimie Quantiques, CNRS-IRSAMC, Université de Toulouse e-mail : caffarel@irsamc.ups-tlse.fr. p.1/29 The N-body problem of Chemistry

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS

I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS Markus Holzmann LPMMC, UJF, Grenoble, and LPTMC, UPMC, Paris markus@lptl.jussieu.fr http://www.lptl.jussieu.fr/users/markus (Dated: January 24, 2012)

More information

Quantum Monte Carlo methods

Quantum Monte Carlo methods Quantum Monte Carlo methods Lubos Mitas North Carolina State University Urbana, August 2006 Lubos_Mitas@ncsu.edu H= 1 2 i i 2 i, I Z I r ii i j 1 r ij E ion ion H r 1, r 2,... =E r 1, r 2,... - ground

More information

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2.

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2. Quantum Monte Carlo Simulations of a Single Iron Impurity in MgO Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2 1 Department of Earth & Planetary Science University of California, Berkeley

More information

Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid

Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid N. D. Drummond and R. J. Needs TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge

More information

Metropolis/Variational Monte Carlo. Microscopic Theories of Nuclear Structure, Dynamics and Electroweak Currents June 12-30, 2017, ECT*, Trento, Italy

Metropolis/Variational Monte Carlo. Microscopic Theories of Nuclear Structure, Dynamics and Electroweak Currents June 12-30, 2017, ECT*, Trento, Italy Metropolis/Variational Monte Carlo Stefano Gandolfi Los Alamos National Laboratory (LANL) Microscopic Theories of Nuclear Structure, Dynamics and Electroweak Currents June 12-30, 2017, ECT*, Trento, Italy

More information

Optimization of quantum Monte Carlo wave functions by energy minimization

Optimization of quantum Monte Carlo wave functions by energy minimization Optimization of quantum Monte Carlo wave functions by energy minimization Julien Toulouse, Roland Assaraf, Cyrus J. Umrigar Laboratoire de Chimie Théorique, Université Pierre et Marie Curie and CNRS, Paris,

More information

Phase Diagram of the Two-Dimensional Homogeneous Electron Gas

Phase Diagram of the Two-Dimensional Homogeneous Electron Gas Phase Diagram of the Two-Dimensional Homogeneous Electron Gas Neil D. Drummond and Richard J. Needs TCM Group, Cavendish Laboratory, University of Cambridge ESDG Meeting Wednesday 13th February, 2008 Two-Dimensional

More information

Computational Physics Lectures: Variational Monte Carlo methods

Computational Physics Lectures: Variational Monte Carlo methods Computational Physics Lectures: Variational Monte Carlo methods Morten Hjorth-Jensen 1,2 Department of Physics, University of Oslo 1 Department of Physics and Astronomy and National Superconducting Cyclotron

More information

Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization

Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization Julien Toulouse, Cyrus Umrigar, Roland Assaraf Cornell Theory Center, Cornell University, Ithaca, New York, USA. Laboratoire

More information

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Julien Toulouse 1, Cyrus J. Umrigar 2, Roland Assaraf 1 1 Laboratoire de Chimie

More information

Quantum Variational Monte Carlo. QVMCApp

Quantum Variational Monte Carlo. QVMCApp QVMCApp? Problem statement Minimize the functional E[Ψ T ], where E[Ψ T ] = drψ T (R)ĤΨ T(R) dr ΨT (R) 2. (1) The variational principle gives us a lower bound on the ground state energy. E 0 E[Ψ T ] Need

More information

BEC-BCS Crossover in Cold Atoms

BEC-BCS Crossover in Cold Atoms BEC-BCS Crossover in Cold Atoms (2 years later...) Andrew Morris Pablo López Ríos Richard Needs Theory of Condensed Matter Cavendish Laboratory University of Cambridge TTI 31 st July 2009 Outline Theory

More information

Coulomb finite-size effects in quasi-two-dimensional systems

Coulomb finite-size effects in quasi-two-dimensional systems INSTITUTE OF PHYSICSPUBLISHING JOUNAL OFPHYSICS: CONDENSED MATTE J. Phys.: Condens. Matter 6 (004) 89 90 PII: S0953-8984(04)73088-X Coulomb finite-size effects in quasi-two-dimensional systems BWood,WMCFoules,MDTowler

More information

Ab-initio molecular dynamics for High pressure Hydrogen

Ab-initio molecular dynamics for High pressure Hydrogen Ab-initio molecular dynamics for High pressure Hydrogen Claudio Attaccalite Institut d'electronique, Microélectronique et Nanotechnologie (IEMN), Lille Outline A brief introduction to Quantum Monte Carlo

More information

Chapter 6. Convergence. Probability Theory. Four different convergence concepts. Four different convergence concepts. Convergence in probability

Chapter 6. Convergence. Probability Theory. Four different convergence concepts. Four different convergence concepts. Convergence in probability Probability Theory Chapter 6 Convergence Four different convergence concepts Let X 1, X 2, be a sequence of (usually dependent) random variables Definition 1.1. X n converges almost surely (a.s.), or with

More information

Introduction to Path Integral Monte Carlo. Part I.

Introduction to Path Integral Monte Carlo. Part I. Introduction to Path Integral Monte Carlo. Part I. Alexey Filinov, Jens Böning, Michael Bonitz Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany

More information

Methods of Fermion Monte Carlo

Methods of Fermion Monte Carlo Methods of Fermion Monte Carlo Malvin H. Kalos kalos@llnl.gov Institute for Nuclear Theory University of Washington Seattle, USA July, 2013 LLNL-PRES-XXXXXX This work was performed under the auspices of

More information

Noncollinear spins in QMC: spiral Spin Density Waves in the HEG

Noncollinear spins in QMC: spiral Spin Density Waves in the HEG Noncollinear spins in QMC: spiral Spin Density Waves in the HEG Zoltán Radnai and Richard J. Needs Workshop at The Towler Institute July 2006 Overview What are noncollinear spin systems and why are they

More information

Size-extensive wave functions for QMC A linear-scaling GVB approach

Size-extensive wave functions for QMC A linear-scaling GVB approach Size-extensive wave functions for QMC A linear-scaling GVB approach Claudia Filippi, University of Twente, The Netherlands Francesco Fracchia, University of Pisa, Italy Claudio Amovilli, University of

More information

Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state

Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state TCM Electronic Structure Discussion Group James Shepherd (CUC3, Alavi Group)

More information

arxiv: v1 [cond-mat.mes-hall] 10 Feb 2010

arxiv: v1 [cond-mat.mes-hall] 10 Feb 2010 Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid N. D. Drummond and R. J. Needs TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge

More information

Two-parameter Study of the 1s2s Excited State of He and Li + - Hund's Rule

Two-parameter Study of the 1s2s Excited State of He and Li + - Hund's Rule Two-parameter Study of the 1ss xcited State of He and Li + - Hund's Rule The trial variational wave functions for the 1s 1 s 1 excited state of helium atom and lithium ion are scaled hydrogen 1s and s

More information

ii PREFACE This dissertation is submitted for the degree of Doctor of Philosophy at the University of Cambridge. It contains an account of research ca

ii PREFACE This dissertation is submitted for the degree of Doctor of Philosophy at the University of Cambridge. It contains an account of research ca QUANTUM MONTE CARLO CALCULATIONS OF ELECTRONIC EXCITATIONS By Andrew James Williamson Robinson College, Cambridge Theory of Condensed Matter Group Cavendish Laboratory Madingley Road Cambridge CB3 0HE

More information

Random vectors X 1 X 2. Recall that a random vector X = is made up of, say, k. X k. random variables.

Random vectors X 1 X 2. Recall that a random vector X = is made up of, say, k. X k. random variables. Random vectors Recall that a random vector X = X X 2 is made up of, say, k random variables X k A random vector has a joint distribution, eg a density f(x), that gives probabilities P(X A) = f(x)dx Just

More information

COMBINING VARIABLES ERROR PROPAGATION. What is the error on a quantity that is a function of several random variables

COMBINING VARIABLES ERROR PROPAGATION. What is the error on a quantity that is a function of several random variables COMBINING VARIABLES ERROR PROPAGATION What is the error on a quantity that is a function of several random variables θ = f(x, y,...) If the variance on x, y,... is small and uncorrelated variables then

More information

Introduction to Quantum Monte Carlo Methods Applied to the Electron Gas

Introduction to Quantum Monte Carlo Methods Applied to the Electron Gas Introduction to Quantum Monte Carlo Methods Applied to the Electron Gas D. M. Ceperley Physics Department and NCSA, University of Illinois Urbana-Champaign, Urbana, IL, USA 1. Introduction In these lectures,

More information

DIRECT AND INDIRECT LEAST SQUARES APPROXIMATING POLYNOMIALS FOR THE FIRST DERIVATIVE FUNCTION

DIRECT AND INDIRECT LEAST SQUARES APPROXIMATING POLYNOMIALS FOR THE FIRST DERIVATIVE FUNCTION Applied Probability Trust (27 October 2016) DIRECT AND INDIRECT LEAST SQUARES APPROXIMATING POLYNOMIALS FOR THE FIRST DERIVATIVE FUNCTION T. VAN HECKE, Ghent University Abstract Finite difference methods

More information

Lecture 2: Review of Probability

Lecture 2: Review of Probability Lecture 2: Review of Probability Zheng Tian Contents 1 Random Variables and Probability Distributions 2 1.1 Defining probabilities and random variables..................... 2 1.2 Probability distributions................................

More information

UQ, Semester 1, 2017, Companion to STAT2201/CIVL2530 Exam Formulae and Tables

UQ, Semester 1, 2017, Companion to STAT2201/CIVL2530 Exam Formulae and Tables UQ, Semester 1, 2017, Companion to STAT2201/CIVL2530 Exam Formulae and Tables To be provided to students with STAT2201 or CIVIL-2530 (Probability and Statistics) Exam Main exam date: Tuesday, 20 June 1

More information

The Binomial distribution. Probability theory 2. Example. The Binomial distribution

The Binomial distribution. Probability theory 2. Example. The Binomial distribution Probability theory Tron Anders Moger September th 7 The Binomial distribution Bernoulli distribution: One experiment X i with two possible outcomes, probability of success P. If the experiment is repeated

More information

Statistics and Data Analysis

Statistics and Data Analysis Statistics and Data Analysis The Crash Course Physics 226, Fall 2013 "There are three kinds of lies: lies, damned lies, and statistics. Mark Twain, allegedly after Benjamin Disraeli Statistics and Data

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

the abdus salam international centre for theoretical physics

the abdus salam international centre for theoretical physics united nations educational, scientific and cultural organization the abdus salam international centre for theoretical physics international atomic energy agency SMR 1595-7 Joint DEMOCRIOS - ICP School

More information

Multivariate Statistics

Multivariate Statistics Multivariate Statistics Chapter 2: Multivariate distributions and inference Pedro Galeano Departamento de Estadística Universidad Carlos III de Madrid pedro.galeano@uc3m.es Course 2016/2017 Master in Mathematical

More information

1: PROBABILITY REVIEW

1: PROBABILITY REVIEW 1: PROBABILITY REVIEW Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 1: Probability Review 1 / 56 Outline We will review the following

More information

Confidence Intervals, Testing and ANOVA Summary

Confidence Intervals, Testing and ANOVA Summary Confidence Intervals, Testing and ANOVA Summary 1 One Sample Tests 1.1 One Sample z test: Mean (σ known) Let X 1,, X n a r.s. from N(µ, σ) or n > 30. Let The test statistic is H 0 : µ = µ 0. z = x µ 0

More information

Economics 583: Econometric Theory I A Primer on Asymptotics

Economics 583: Econometric Theory I A Primer on Asymptotics Economics 583: Econometric Theory I A Primer on Asymptotics Eric Zivot January 14, 2013 The two main concepts in asymptotic theory that we will use are Consistency Asymptotic Normality Intuition consistency:

More information

Biostatistics in Dentistry

Biostatistics in Dentistry Biostatistics in Dentistry Continuous probability distributions Continuous probability distributions Continuous data are data that can take on an infinite number of values between any two points. Examples

More information

Diffusion Monte Carlo

Diffusion Monte Carlo Diffusion Monte Carlo Notes for Boulder Summer School 2010 Bryan Clark July 22, 2010 Diffusion Monte Carlo The big idea: VMC is a useful technique, but often we want to sample observables of the true ground

More information

exp{ (x i) 2 i=1 n i=1 (x i a) 2 (x i ) 2 = exp{ i=1 n i=1 n 2ax i a 2 i=1

exp{ (x i) 2 i=1 n i=1 (x i a) 2 (x i ) 2 = exp{ i=1 n i=1 n 2ax i a 2 i=1 4 Hypothesis testing 4. Simple hypotheses A computer tries to distinguish between two sources of signals. Both sources emit independent signals with normally distributed intensity, the signals of the first

More information

The QMC Petascale Project

The QMC Petascale Project The QMC Petascale Project Richard G. Hennig What will a petascale computer look like? What are the limitations of current QMC algorithms for petascale computers? How can Quantum Monte Carlo algorithms

More information

High throughput QMC. Can we make CASINO more automatic..? Mike Towler

High throughput QMC. Can we make CASINO more automatic..? Mike Towler High throughput QMC Can we make CASINO more automatic..? Mike Towler TCM Group, Cavendish Laboratory, University of Cambridge and University College, London QMC web page: vallico.net/casinoqmc mdt26@cam.ac.uk

More information

Quantum Monte Carlo. QMC methods in the continuum

Quantum Monte Carlo. QMC methods in the continuum Quantum Monte Carlo Premise: need to use simulation techniques to solve manybody quantum problems just as you need them classically. Both the wavefunction and expectation values are determined by the simulations.

More information

physica status solidi REPRINT basic solid state physics The quantum Monte Carlo method

physica status solidi REPRINT basic solid state physics   The quantum Monte Carlo method physica pss www.pss-b.com status solidi basic solid state physics b The quantum Monte Carlo method M. D. Towler TCM group, Cavendish Laboratory, Cambridge University, J. J. Thomson Ave., Cambridge CB3

More information

Kernel-based density. Nuno Vasconcelos ECE Department, UCSD

Kernel-based density. Nuno Vasconcelos ECE Department, UCSD Kernel-based density estimation Nuno Vasconcelos ECE Department, UCSD Announcement last week of classes we will have Cheetah Day (exact day TBA) what: 4 teams of 6 people each team will write a report

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

Efficient multivariate normal distribution calculations in Stata

Efficient multivariate normal distribution calculations in Stata Supervisor: Adrian Mander MRC Biostatistics Unit 2015 UK Stata Users Group Meeting 10/09/15 1/21 Why and what? Why do we need to be able to work with the Multivariate Normal Distribution? The normal distribution

More information

A Probability Review

A Probability Review A Probability Review Outline: A probability review Shorthand notation: RV stands for random variable EE 527, Detection and Estimation Theory, # 0b 1 A Probability Review Reading: Go over handouts 2 5 in

More information

Lecture 3: Statistical sampling uncertainty

Lecture 3: Statistical sampling uncertainty Lecture 3: Statistical sampling uncertainty c Christopher S. Bretherton Winter 2015 3.1 Central limit theorem (CLT) Let X 1,..., X N be a sequence of N independent identically-distributed (IID) random

More information

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below Introduction In statistical physics Monte Carlo methods are considered to have started in the Manhattan project (1940

More information

Development and application of statistical and quantum mechanical methods for modelling molecular ensembles

Development and application of statistical and quantum mechanical methods for modelling molecular ensembles Development and application of statistical and quantum mechanical methods for modelling molecular ensembles By Ellen T. Swann A thesis submitted for the degree of Doctor of Philosophy of the Australian

More information

MATH Notebook 5 Fall 2018/2019

MATH Notebook 5 Fall 2018/2019 MATH442601 2 Notebook 5 Fall 2018/2019 prepared by Professor Jenny Baglivo c Copyright 2004-2019 by Jenny A. Baglivo. All Rights Reserved. 5 MATH442601 2 Notebook 5 3 5.1 Sequences of IID Random Variables.............................

More information

Spin-Singlet Resonance State in Proton-Embedded Metals: Discovery of novel high-t K system leading to high-t c superconductivity

Spin-Singlet Resonance State in Proton-Embedded Metals: Discovery of novel high-t K system leading to high-t c superconductivity Mesoscopic & Condensed Matter Physics 2015 Spin-Singlet Resonance State in Proton-Embedded Metals: Discovery of novel high-t K system leading to high-t c superconductivity Yasutami Takada Institute for

More information

Negative Association, Ordering and Convergence of Resampling Methods

Negative Association, Ordering and Convergence of Resampling Methods Negative Association, Ordering and Convergence of Resampling Methods Nicolas Chopin ENSAE, Paristech (Joint work with Mathieu Gerber and Nick Whiteley, University of Bristol) Resampling schemes: Informal

More information

Quantum Monte Carlo wave functions and their optimization for quantum chemistry

Quantum Monte Carlo wave functions and their optimization for quantum chemistry Quantum Monte Carlo wave functions and their optimization for quantum chemistry Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France CEA Saclay, SPhN Orme des Merisiers April 2015 Outline

More information

Computational methods: Coupled Electron Ion Monte Carlo Path Integral Monte Carlo Examples: Electron gas Hydrogen

Computational methods: Coupled Electron Ion Monte Carlo Path Integral Monte Carlo Examples: Electron gas Hydrogen ! Computational methods: Coupled Electron Ion Monte Carlo Path Integral Monte Carlo Examples: Electron gas Hydrogen WHO DID THE WORK? Miguel Morales, Livermore Carlo Pierleoni: L Aquila, Italy Jeff McMahon

More information

Department of Physics and NCSA University of Illinois, Urbana-Champaign, IL, 61801, USA

Department of Physics and NCSA University of Illinois, Urbana-Champaign, IL, 61801, USA UNDERSTANDING ELECTRONIC WAVE FUNCTIONS D. M. Ceperley Department of Physics and NCSA University of Illinois, Urbana-Champaign, IL, 61801, USA INTRODUCTION In this article I discuss some aspects of what

More information

Inferring from data. Theory of estimators

Inferring from data. Theory of estimators Inferring from data Theory of estimators 1 Estimators Estimator is any function of the data e(x) used to provide an estimate ( a measurement ) of an unknown parameter. Because estimators are functions

More information

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN Lecture Notes 5 Convergence and Limit Theorems Motivation Convergence with Probability Convergence in Mean Square Convergence in Probability, WLLN Convergence in Distribution, CLT EE 278: Convergence and

More information

Primer on statistics:

Primer on statistics: Primer on statistics: MLE, Confidence Intervals, and Hypothesis Testing ryan.reece@gmail.com http://rreece.github.io/ Insight Data Science - AI Fellows Workshop Feb 16, 018 Outline 1. Maximum likelihood

More information

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 PROBABILITY. Prof. Steven Waslander

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 PROBABILITY. Prof. Steven Waslander ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 Prof. Steven Waslander p(a): Probability that A is true 0 pa ( ) 1 p( True) 1, p( False) 0 p( A B) p( A) p( B) p( A B) A A B B 2 Discrete Random Variable X

More information

Introduction to Error Analysis

Introduction to Error Analysis Introduction to Error Analysis Part 1: the Basics Andrei Gritsan based on lectures by Petar Maksimović February 1, 2010 Overview Definitions Reporting results and rounding Accuracy vs precision systematic

More information

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester Physics 403 Propagation of Uncertainties Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Maximum Likelihood and Minimum Least Squares Uncertainty Intervals

More information

Quantum Monte Carlo for excited state calculations

Quantum Monte Carlo for excited state calculations Quantum Monte Carlo for excited state calculations Claudia Filippi MESA+ Institute for Nanotechnology, Universiteit Twente, The Netherlands Winter School in Theoretical Chemistry, Helsinki, Finland, Dec

More information

8 Laws of large numbers

8 Laws of large numbers 8 Laws of large numbers 8.1 Introduction We first start with the idea of standardizing a random variable. Let X be a random variable with mean µ and variance σ 2. Then Z = (X µ)/σ will be a random variable

More information

Petascale computing opens new vistas for quantum Monte Carlo

Petascale computing opens new vistas for quantum Monte Carlo SCIENTIFIC HIGHLIGHT OF THE MONTH Petascale computing opens new vistas for quantum Monte Carlo M.J. Gillan 1,2,3, M.D. Towler 4,5,6 and D. Alfè 1,2,3,4 1 Thomas Young Centre at UCL, Gordon Street, London

More information

Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules

Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules Claudia Filippi Laboratory of Atomic and Solid State Physics and Theory Center, Cornell University,

More information

STA205 Probability: Week 8 R. Wolpert

STA205 Probability: Week 8 R. Wolpert INFINITE COIN-TOSS AND THE LAWS OF LARGE NUMBERS The traditional interpretation of the probability of an event E is its asymptotic frequency: the limit as n of the fraction of n repeated, similar, and

More information

Physics 403. Segev BenZvi. Numerical Methods, Maximum Likelihood, and Least Squares. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Numerical Methods, Maximum Likelihood, and Least Squares. Department of Physics and Astronomy University of Rochester Physics 403 Numerical Methods, Maximum Likelihood, and Least Squares Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Quadratic Approximation

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 3 October 29, 2012 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline Reminder: Probability density function Cumulative

More information

Let X and Y denote two random variables. The joint distribution of these random

Let X and Y denote two random variables. The joint distribution of these random EE385 Class Notes 9/7/0 John Stensby Chapter 3: Multiple Random Variables Let X and Y denote two random variables. The joint distribution of these random variables is defined as F XY(x,y) = [X x,y y] P.

More information

on t0 t T, how can one compute the value E[g(X(T ))]? The Monte-Carlo method is based on the

on t0 t T, how can one compute the value E[g(X(T ))]? The Monte-Carlo method is based on the SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 203 Monte Carlo Euler for SDEs Consider the stochastic differential equation dx(t) = a(t, X(t))dt + b(t, X(t))dW (t) on t0 t T, how

More information

Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices

Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices Andreas Rhodin, Harald Anlauf German Weather Service (DWD) Workshop on Flow-dependent aspects of data assimilation,

More information

Course on Inverse Problems

Course on Inverse Problems California Institute of Technology Division of Geological and Planetary Sciences March 26 - May 25, 2007 Course on Inverse Problems Albert Tarantola Institut de Physique du Globe de Paris Lesson XVI CONCLUSION

More information

6.1 Moment Generating and Characteristic Functions

6.1 Moment Generating and Characteristic Functions Chapter 6 Limit Theorems The power statistics can mostly be seen when there is a large collection of data points and we are interested in understanding the macro state of the system, e.g., the average,

More information

Course on Inverse Problems Albert Tarantola

Course on Inverse Problems Albert Tarantola California Institute of Technology Division of Geological and Planetary Sciences March 26 - May 25, 27 Course on Inverse Problems Albert Tarantola Institut de Physique du Globe de Paris CONCLUSION OF THE

More information

Quantum Monte Carlo calculations of two neutrons in finite volume

Quantum Monte Carlo calculations of two neutrons in finite volume Quantum Monte Carlo calculations of two neutrons in finite volume Philipp Klos with J. E. Lynn, I. Tews, S. Gandolfi, A. Gezerlis, H.-W. Hammer, M. Hoferichter, and A. Schwenk Nuclear Physics from Lattice

More information

Reduction of Variance. Importance Sampling

Reduction of Variance. Importance Sampling Reduction of Variance As we discussed earlier, the statistical error goes as: error = sqrt(variance/computer time). DEFINE: Efficiency = = 1/vT v = error of mean and T = total CPU time How can you make

More information

MFin Econometrics I Session 4: t-distribution, Simple Linear Regression, OLS assumptions and properties of OLS estimators

MFin Econometrics I Session 4: t-distribution, Simple Linear Regression, OLS assumptions and properties of OLS estimators MFin Econometrics I Session 4: t-distribution, Simple Linear Regression, OLS assumptions and properties of OLS estimators Thilo Klein University of Cambridge Judge Business School Session 4: Linear regression,

More information

The Overhauser Instability

The Overhauser Instability The Overhauser Instability Zoltán Radnai and Richard Needs TCM Group ESDG Talk 14th February 2007 Typeset by FoilTEX Introduction Hartree-Fock theory and Homogeneous Electron Gas Noncollinear spins and

More information

Explicitly correlated wave functions

Explicitly correlated wave functions Explicitly correlated wave functions Wim Klopper and David P. Tew Lehrstuhl für Theoretische Chemie Institut für Physikalische Chemie Universität Karlsruhe (TH) C 4 Tutorial, Zürich, 2 4 October 2006 Outline

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 5 The Hartree-Fock method C.-K. Skylaris Learning outcomes Be able to use the variational principle in quantum calculations Be able to construct Fock operators

More information

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation Electrochemistry project, Chemistry Department, November 2006 Ab-initio Molecular Dynamics Simulation Outline Introduction Ab-initio concepts Total energy concepts Adsorption energy calculation Project

More information

Chapter 4: Continuous Random Variables and Probability Distributions

Chapter 4: Continuous Random Variables and Probability Distributions Chapter 4: and Probability Distributions Walid Sharabati Purdue University February 14, 2014 Professor Sharabati (Purdue University) Spring 2014 (Slide 1 of 37) Chapter Overview Continuous random variables

More information

Quantum Monte Carlo Study of a Positron in an Electron Gas

Quantum Monte Carlo Study of a Positron in an Electron Gas Quantum Monte Carlo Study of a Positron in an Electron Gas N. D. Drummond Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom P. López Ríos and R. J. Needs TCM Group, Cavendish

More information

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 CLASS NOTES Models, Algorithms and Data: Introduction to computing 208 Petros Koumoutsakos, Jens Honore Walther (Last update: June, 208) IMPORTANT DISCLAIMERS. REFERENCES: Much of the material (ideas,

More information

1 Characteristic functions

1 Characteristic functions 1 Characteristic functions Life is the sum of trifling motions. Joseph Brodsky In this chapter we introduce the characteristic function, a tool that plays a central role in the mathematical description

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2 Purdue University CHM 67300 Computational Quantum Chemistry REVIEW Yingwei Wang October 10, 2013 Review: Prof Slipchenko s class, Fall 2013 Contents 1 Hartree energy 2 2 Many-body system 2 3 Born-Oppenheimer

More information